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Abstract 

In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which 
was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. 
This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly asso-
ciated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated 
ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis 
has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of car-
diovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, 
and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential 
for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms 
of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, 
and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
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Background
Recent studies have linked various types of controlled cell 
death to cardiovascular diseases (CVDs) [1–4]. Ferropto-
sis is a recently discovered iron-dependent regulated cell 
death mode that is distinguished from other regulated 

cell death modes by the accumulation of lipid hydroper-
oxides and the distinct mechanism [5, 6].

Iron-dependent accumulation of reactive oxygen spe-
cies (ROS) and consumption of polyunsaturated fatty 
acids (PUFAs) in biofilms are the mechanisms underlying 
ferroptosis, which is initiated by inhibitors of glutathione 
biosynthesis or the glutathione-dependent antioxidant 
enzyme glutathione peroxidase 4 (GPX4). When intra-
cellular lipid ROS levels exceed the antioxidant activity 
of GPX4, redox homeostasis is broken, which eventually 
leads to cell death [7]. However, sex hormones can reduce 
iron decline and ultimately inhibit iron death by modu-
lating MBOAT1 and MBOAT2 expression to reshape cel-
lular phospholipid profiles [8].

CVDs have a significant impact on public health and 
are the leading cause of death and disability worldwide. 
A multinational study showed that the CVD burden 
is increasingly trending towards younger age groups 
[9]. Moreover, recent studies have found associations 
between ferroptosis and a variety of CVDs, including 
ischemia/reperfusion injury (I/R) [10], heart failure (HF) 
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[11], cardiomyopathy [12], and atherosclerosis (AS) [13]. 
For example, AS involves the toxic accumulation of lipids 
in vessel walls, and in AS-related cells, such as mac-
rophages, vascular smooth muscle cells, and endothelial 
cells, GPX levels are low, iron metabolism is dysregu-
lated, and ROS are elevated [13, 14].

In this review, we discuss research on the prevalence 
and regulatory mechanisms of ferroptosis, the effect of 
ferroptosis on the immune system, and the significance 
of ferroptosis in cardiovascular diseases. Finally, we eval-
uate current therapies for CVD that target ferroptosis to 
reveal their challenges and prospects.

Overview of ferroptosis
Cell death is a crucial aspect of healthy biological devel-
opment; however, abnormal cell death is implicated in 
a wide range of diseases [15]. For a long time, cell death 
was considered uncontrolled; however, in the 1950s, the 
concept of “programmed cell death” was suggested and 
adopted. Today, the concept of “regulated cell death,” 
which also refers to pyroptosis and necroptosis, is well 
accepted [16, 17].

Ferroptosis was identified as a new type of cell death 
since 2012, and it can be prevented by the antioxidant 

ferrostatin-1 [18]. In addition, different types of cell 
death connected to iron and oxidative stress have been 
discussed for years [19]. The connection between gluta-
mate- and cysteine-induced cytotoxicity and cancer cell 
death may have initially inspired the concept of ferrop-
tosis [20, 21], and research on oxidative stress-induced 
non-apoptotic cell death in neurons was reported in 2001 
[22]. Erastin was reported to cause cancer cells to perish 
via undetermined mechanisms in 2003 [23]. A number 
of substances were later identified as having the ability to 
cause an iron-dependent cell death pattern with features 
distinct from those of known cell death modes [18, 24, 
25]. The term ferroptosis was coined by Dixon et  al. in 
2012 for this type of iron-dependent cell death [18].

Regulation of ferroptosis
Iron, lipid, and amino acid metabolism governs the fer-
roptosis process, which is triggered when REDOX imbal-
ance manifests as uncontrolled lipid peroxidation. GPX4 
and a variety of antioxidant systems independent of 
GPX4 regulate ferroptosis. Here, we generalize the oxida-
tion mechanisms and antioxidant mechanisms of ferrop-
tosis (Fig. 1).

Fig. 1 Regulatory mechanism of ferroptosis. The unstable iron pool oxidizes the PUFA on the cell membrane through the Fenton reaction 
and eventually leads to ferroptosis. GPX4 reduces PL-OOH to PL-OH in the presence of GSH and thus inhibits ferroptosis. DHODH in mitochondria 
and FSP1 reduce PL-OOH to PL-OH by providing CoQH2. GTP directly inhibits PUFA oxidation by increasing BH4
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Oxidation mechanisms
Lipid peroxidation
Unsaturated fatty acids play a major role in cell mem-
brane lipid peroxidation, which is driven by free radicals, 
and its products increase during ferroptosis. PUFA per-
oxidation is crucial for ferroptosis despite the fact that a 
variety of cell membrane lipids may undergo oxidation 
[26, 27].

Long-chain-fatty-acid-coenzyme A (CoA) ligase 4 
(ACSL4) and lysophosphatidylcholine acyltransferase 
3 (LPCAT3) are enzymes that can incorporate PUFAs 
into the cell membrane. Either an enzymatic catalyst 
or a non-enzymatic free radical chain reaction can be 
used to achieve PUFA oxidation [28, 29]. The two major 
PUFAs that cause ferroptosis are arachidonic acid (AA) 
and adrenic acid (AdA) [26]. ACSL4, for example, cata-
lyzes CoA to link with AA to create CoA-AA intermedi-
ates, which are esterified to phosphatidyl ethanolamine 
by LPCAT3, resulting in arachidonic acid-phosphatidyl 
ethanolamine (PE-AA). Both types of PE-AA oxida-
tion, enzymatic (by lipoxygenase) and non-enzymatic 
(by autooxidation to PE-AA-OOH), eventually result in 
cell death [18, 30–32]. The ability of ACSL4 to effectively 
link CoA with long-chain PUFAs, such as AA and AdA, 
allows it to play a part in the process of ferroptosis. These 
long-chain PUFAs can then be re-esterified in phospho-
lipids by different LPCAT enzymes. Short-chain mono-
unsaturated fatty acyl tails (MUFAs) replace long-chain 
PUFA tails in phospholipids because of the genetic dele-
tion of ACSL4 [26, 28]. Exogenous MUFA administration, 
MUFA synthesis upregulation, and ACSL3-dependent 
MUFA membrane accumulation can all decrease the 
likelihood of ferroptosis [30, 33, 34]. Therefore, one of 
the main methods of desensitizing cells to ferroptosis 
may be inhibiting ACSL4 expression, which is controlled 
by a number of signalling pathways [35, 36].Conversely, 
increased ACSL4 expression may contribute to ferropto-
sis in various pathophysiological settings [37, 38].

Iron metabolism
The Fenton reaction, for which iron is crucial, catalyses 
the peroxidation of PUFA-phospholipids (PUFA-PLs) 
through non-enzymatic automatic oxidation [39, 40]. 
Ferritin autophagy increases susceptibility to ferroptosis 
by increasing unstable iron pools through ferritin deg-
radation [41–43]. Ferritin is recruited by nuclear recep-
tor coactivator 4 (NCOA4) to selective cargo receptors 
on autophagosomes [44]. Targeting NCOA4 may be an 
important protocol for regulating unstable iron pools 
and controlling susceptibility to ferroptosis. The gen-
eration of ROS by iron-dependent Fenton reactions and 
the activation of iron-containing enzymes that regulate 

lipid peroxidation and redox homeostasis, such as ara-
chidonate 5-lipoxygenase (ALOX), are two methods by 
which excess iron controls lipid peroxidation [30, 45]. In 
doxorubicin-induced mouse cardiomyopathy, an iron-
deficient diet mitigated doxorubicin-induced myocardial 
toxicity and led to a higher survival rate by targeting car-
diac iron metabolism [46].

Antioxidant mechanisms
GPX4 dependent antioxidant mechanisms
The GPX family includes a number of isoenzymes that 
are expressed in various subcellular locations and organs. 
PL hydroperoxide can be reduced to PL alcohol by GPX4 
[47, 48]. GPX4 primarily defends against ferroptosis 
by preventing the production of lipid peroxides in the 
cell membrane. Compared with solute carrier family 7 
member 11 (SLC7A11) knockout mice, GPX4 knockout 
mice displayed early embryonic pathogenicity [49, 50]. 
This implies that GPX4 and SLC7A11 may have differ-
ent functions in the synthesis of lipid peroxides. Sele-
nium and glutathione (GSH) control GPX4 expression 
and function. GPX4 reduces cytotoxic lipid peroxide to 
the equivalent alcohol accompanied by oxidation of GSH. 
GSH is a cysteine-containing tripeptide that functions as 
an intracellular antioxidant, and its production is mainly 
dependent on the uptake of cystine and the conversion of 
cystine to cysteine, which is mediated by the amino acid 
reverse transport system SLC7A11 [18]. When SLC7A11 
is suppressed by erastin, the transsulfuration pathway is 
upregulated, which could block ferroptosis [51]. GPX4 
is inactivated immediately after GSH depletion. Gluta-
mate cysteine ligase inhibitors, such as butylthiamine 
subfoximine, or system  xc−  (xc−) cystine-glutamate anti-
porter inhibitors (erastin), can drive deficiencies of GSH 
[52]. The active domain of GPX4 is selenocysteine. The 
form of selenium used during GPX4 synthesis is seleno-
cysteine, which is similar to cysteine but with sulphur 
substituted by selenium. Selenium can boost the anti-
ferroptosis activity of GPX4 via selenocysteine residues 
at position-46 [53], and exogenous selenium supplemen-
tation inhibited ferroptosis in a mouse model of intracer-
ebral haemorrhage [53–55].

When GPX4 activity is suppressed, lipid peroxides may 
build up and induce ferroptosis. Downregulated GPX4 
expression increases the susceptibility of cells to fer-
roptosis, whereas upregulated GPX4 expression has the 
opposite impact [24]. Cystine starvation leads to GSH 
depletion and also induces glutamate accumulation, 
which inactivates GPX4 and ultimately leads to ferrop-
tosis [52]. In addition, SLC7A11 activity is regulated in 
terms of protein–protein interactions, gene expression, 
and protein stability [56–60]. In addition to regulating 
GPX4 function, ferroptosis agonists also degrade GPX4 
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via autophagy or the ubiquitin–proteasome system [61–
63]. Notably, GPX4 regulates cell apoptosis, necrosis, and 
pyrodeath in addition to ferroptosis [64–66].

GPX4‑independent antioxidant mechanisms
Following the inactivation of GPX4, some cancer cells 
still remain resistant to ferroptosis [67, 68], implying that 
there are other ferroptosis defence mechanisms. Fer-
roptosis suppressor 1 (FSP1) inhibits ferroptosis inde-
pendently of GPX4 [68, 69]. By reducing CoenzymeQ10 
(CoQ), FSP1 prevents lipid peroxidation and suppresses 
ferroptosis [68, 69]. Similarly, in the mitochondrial inner 
membrane, dihydro-orotate dehydrogenase (DHODH) 
converts CoQ to CoQH2. By increasing DHODH activ-
ity when GPX4 is inactive, CoQH2 production is signifi-
cantly increased and lipid peroxidation is neutralized, 
thereby mitigating ferroptosis in mitochondria [70]. The 
combination of GPX4 and DHODH in mitochondria 
inhibits mitochondrial lipid peroxidation. In addition 
to reducing CoQ, GTP cyclohydrolase-1 (GCH1) could 

produce tetrahydrobiopterin/dihydrobiopterin (BH4/
BH2), thereby antagonizing ferroptosis independent of 
GPX4 by inhibiting lipid peroxidation [71].

Ferroptosis and immune microenvironment
Regulated cell death is vital for maintaining homeosta-
sis. In the immune system, ferroptosis is essential. The 
immune system is divided into two parts: inherent immu-
nity and adaptive immunity. Ferroptosis can contribute 
to the immune process by influencing the quantity and 
function of immune cells. Additionally, immune cells can 
detect ferroptosis in non-immune cells and use it to trig-
ger an immune response [72]. CVD is closely related to 
immune response [73–75]. The impact of ferroptosis on 
macrophages, T cells, and B cells will be covered in next 
section (Fig. 2).

Ferroptosis and macrophages
Ferroptosis has a pro-inflammatory impact in mac-
rophages [76] and this process can be blocked by 

Fig. 2 Interaction between ferroptosis and immune cells. Ferroptosis can promote the proliferation and activation of B cells, T cells, 
and macrophages. Ferroptosis also promotes the recruitment of macrophages. Macrophages induce ferroptosis by causing iron overload, and T 
cells induce ferroptosis by secreting IFN-γ
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RAS-selective lethal 3 [77]. GPX4 requirements in  vivo 
are not consistent across macrophage subsets and are 
limited to alternatively activated macrophages whose 
proliferation or expansion is reduced after GPX4 dele-
tion [78]. Macrophages usually store iron by binding 
to ferritin. At various stages of macrophage polariza-
tion, the expression of genes related to iron also varies. 
The expression of HAMP and ferritin L and H subunits 
was higher in M1 macrophages compared to M2 mac-
rophages, while the expression of ferroportin 1 (FPN) 
and iron regulatory protein 1/2 was lower, suggesting a 
greater ability to store iron and a stronger resistance to 
ferroptosis [79, 80]. Iron overload promotes the polariza-
tion of M1 macrophages by increasing the levels of M1 
markers interleukin-6, tumour necrosis factor, and inter-
leukin-1 and decreasing the levels of M2 marker tissue 
transglutaminase-2 [81].

Similarly, the malondialdehyde content and Fe2+ load 
were substantially increased in mice with myocardial 
infarction, accompanied by ferroptosis of myocardial 
cells. In heart tissue from myocardial infarction mice, 
the expression of the M1 marker nitric oxide synthase 2 
(NOS2) was substantially upregulated compared with 
that of the control group, while the expression of the M2 
marker interleukin-10 was significantly downregulated 
[82]. In the context of polycythemia, macrophages can 
induce iron death by phagocytosis of erythrocytes, thus 
exacerbating AS [83].

Ferroptosis and T cells
T cells are engaged in adaptive immunity, which includes 
responses to pathogens, allergens, and tumours [84]. T 
cell activity and function are regulated by ferroptosis. 
SLC7A11 is almost completely absent from human naive 
CD4+ T cells but is markedly increased during the T cell 
activation process [85]. T cell activation and prolifera-
tion require the maintenance of intracellular GSH levels 
[86]. T cells undergo ferroptosis when the GPX4 level is 
diminished or lipid peroxidation levels are elevated. T 
cell mortality induced by the glucocorticoid and diter-
pene compound Kayadiol entails ferroptosis [87, 88]. In 
contrast, loss of ACSL4 or overexpression of GPX4 can 
prevent ferroptosis in T cells [89–92]. Interestingly, fer-
roptosis is an important mechanism of T cell activation 
and immune function [92–94]. Vitamin E supplementa-
tion is a treatment option for GPX4 insufficiency because 
it prevents CD4+ or CD8+ T cells from expanding in the 
event of an acute infection [95].

The acute rejection of transplanted hearts has a nega-
tive impact on the therapeutic result. The number of 
CD3+, CD4+, and CD8+ cells in spleen cells and drain-
ing lymph node cells was substantially decreased in 
tumour necrosis factor-induced protein-8 −/− mice, and 

CD4+ and CD8+ cells also showed a decreased capacity 
to produce interferon based on activation of the TANK-
binding kinase 1 signalling axis and the upregulation of 
GPX4. Interferon-γ promotes lipid peroxidation associ-
ated with ferroptosis in cardiomyocytes and is inhibited 
by GPX4 expression. Thus, heart allograft damage is sig-
nificantly reduced by inhibiting ferroptosis [96]. Ferrop-
tosis has great application potential in the treatment of 
a variety of diseases via its ability to influence immune 
response involving T cells.

Ferroptosis and B cells
Hematopoietic stem cells (HSCs) are the source of B 
cells, which grow through a number of stages before 
maturing into B cells, including early lymphoid progeni-
tors, common lymphoid progenitors, pre-B cells in bone 
marrow, and transitional B cells in peripheral lymphoid 
organs [97]. During B1 and marginal zone B cell devel-
opment, maintenance, and immunity, GPX4 is necessary 
to promote ferroptosis. However, GPX4 plays the oppo-
site role in follicular B2 cell development, germinal cen-
tre response, and antibody response, which is because 
B1 and marginal zone B cells are more susceptible to 
lipid peroxidation and ferroptosis than follicular B2 cells 
[98]. In chickens, melatonin causes a significant increase 
in malondialdehyde content and inducible nitric oxide 
synthase expression and a significant decrease in super-
oxide dismutase, GSH peroxidase, and total antioxidant 
capacity, which ultimately promotes B cell proliferation 
[99]. Interestingly, both inadequate and excessive GPX4 
concentrations inhibited B cell proliferation [100]. The 
impact of GPX4 on B cell proliferation requires addi-
tional research. The ferroptosis agonist erastin induces 
lipid peroxidation that promotes the proliferation and 
differentiation of human peripheral blood mononuclear 
cells into B cells and natural killer cells by downregulat-
ing the expression of bone morphogenetic protein family 
members [101]. B cells produce antibodies that interfere 
with cardiomyocyte function, recruit a variety of immune 
cells, and play an important role in heart failure [102]. 
Interestingly, regulatory B cells reduce the expression of 
C–C motif chemokine receptor 2 (CCR2) in monocytes, 
thereby inhibiting the mobilization of pro-inflammatory 
monocytes and ultimately limiting ventricular remodel-
ling after myocardial infarction [103].

Ferroptosis and cardiovascular diseases
In this section, we summarize the relationship between 
ferroptosis and various CVDs. Patients with hereditary 
hemochromatosis often have iron overload, myocardial 
hypertrophy, and decreased left ventricular ejection frac-
tion [104]. An increasing body of research has implicated 
ferroptosis in a number of CVDs, including myocardial 
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I/R injury, cardiomyopathy, arrhythmia, chemotherapy, 
and heart injury caused by Corona Virus-2 (CoV-2) 
(Fig. 3).

Ischemia reperfusion (I/R)
The leading cause of death and disability globally is acute 
myocardial infarction (MI). The best method of reduc-
ing acute myocardial ischemia injury and decreasing 
the size of myocardial infarction is through prompt and 
efficient myocardial reperfusion. However, I/R can cause 

myocardial reperfusion injury, which results in myocar-
dial cell death [5]. Ferroptosis occurs in the early stages 
of I/R injury and represents the dominant form of cell 
death during prolonged reperfusion [105]. Ischemia trig-
gers redox reaction between PUFAs and phospholipids 
in cardiomyocytes, which results in powerful oxidative 
damage during the reperfusion stage [106]. Therefore, 
ferroptosis plays an important role in I/R injury [107]. 
Iron chelating agents can protect cardiomyocytes from 
cardiac iron deposition during I/R [10]. Oxidation of 

Fig. 3 Ferroptosis-related cardiovascular diseases and potential treatment reagents. Ferroptosis is involved in the occurrence and progression 
of ischemia perfusion injury, atrial fibrillation, chemotherapy-related cardiomyopathy, diabetes-related cardiomyopathy, myocardial hypertrophy, 
and COVID-19-related cardiomyopathy. Molecules and drugs targeting ferroptosis may ameliorate these ferroptosis-related heart diseases, and they 
include SMI, SSYXC, melatonin, curcumin, ferrostatin-1, and deferoxamine
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phosphatidylcholine during reperfusion produces phos-
phatidylcholine oxide (OxPC), which disrupts mito-
chondrial biological function and calcium transport and 
induces ferroptosis, leading to widespread cell death. 
However, cell death during reperfusion is prevented by 
neutralizing OxPC. OxPC produced during reperfusion 
injury is a potent inducer of cardiomyocyte death [108]. 
In I/R, bone marrow stromal cell exo-culture demon-
strated increased cell proliferation and GSH content 
and decreased iron concentration, ROS levels, and iron 
death marker protein levels. As a result, ferroptosis of 
cardiomyocytes was inhibited, I/R-induced cardiac injury 
was reduced, and cardiac function was enhanced [109]. 
Another study showed that the levels of the non-coding 
RNA miR-199a-5p were increased in I/R [110]. Cardio-
myocyte mortality after ferroptosis can be improved by 
inhibitors of ferroptosis. MiR-199a-5p blocks the signal-
ling cascade involving Akt serine/threonine kinase and 
endothelial nitric oxide synthase; thus, it is a key player 
in promoting iron damage-induced cardiomyocyte death 
during ischemia/hypoxia injury [110]. Similarly, blocking 
miR-122, which specifically targets GPX4, can produce 
protective effects against I/R injury in vitro [111]. Com-
pared with animals lacking the cardiomyocyte-specific 
hypoxia-inducible factor-1 (HIF-1), control mice with I/R 
injury presented increased frataxin expression in their 
hearts. Frataxin can preserve mitochondrial membrane 
integrity and normal cardiomyocyte function by reduc-
ing ROS generation and iron overload in the mitochon-
dria, and it may be an iron-storing protein [112].

Thus, the above findings indicate that ferroptosis is a 
potential therapeutic target for myocardial I/R injury. In 
I/R rats, resveratrol reduced oxidative stress levels and 
Fe2+ content and increased GPX4 expression, thereby 
inhibiting ferroptosis. Additionally, resveratrol prevents 
ferroptosis by controlling ubiquitin-specific peptidase 
19-Beclin1 autophagy. Thus, resveratrol may be a poten-
tial drug for preventing myocardial I/R damage [113]. 
The nuclear factor erythroid 2-related factor 2 (NRF2)/
System xc-/GPX4 pathway is regulated by naringenin, 
which can prevent ferroptosis, and erastin reversed the 
naringenin-mediated protective effects of cardiomyo-
cytes. Therefore, maringenin regulates the Nrf2/System 
Xc-/GPX4 axis to suppress ferroptosis, which reduces 
myocardial I/R injury [114]. Shenmai injection can also 
reduce cardiac I/R injury by activating the Nrf2/GPX4 
signalling pathway [115]. In addition, dapagliflozin can 
reduce MI-reperfusion injury via inhibiting ferroptosis 
by modulating MAPK signalling pathways [116].

Atrial fibrillation
Atrial fibrillation (AF), a prevalent arrhythmia in clini-
cal settings, is linked to high clinical mortality rates. 

Patients with AF usually die not from AF but from 
its concomitant complications, such as heart fail-
ure (HF), MI, venous thromboembolism (VTE), and 
stroke. According to data from the Framingham Heart 
Study, the incidence of AF has quadrupled over the 
past 50 years [117]. The occurrence of AF is related to 
many pathological factors; for example, frequent and 
excessive alcohol consumption can activate ferroptosis 
and increase the incidence of AF. However, ferropto-
sis inhibitors can reduce the susceptibility to AF [118]. 
Therefore, ferroptosis may contribute to the develop-
ment of AF. Ferroptosis activation was later discovered 
to significantly increase the susceptibility to AF in rat 
models of endotoxemia, canine rapid atrial pacing, and 
chronic iron overload mice, whereas ferroptosis inhibi-
tion was found to reverse this change [119–121]. Due 
to cardiac iron deposition, beta-thalassemia patients 
have a higher risk factor for developing AF [122]. In 
these patients, iron chelators might help prevent AF. 
Taken together, ferroptosis inhibitors may be promising 
therapeutic targets for the prevention and treatment 
of AF in a range of pathological situations. Shensong 
Yangxin capsule can reduce the susceptibility of AF and 
inhibit electrical and structural remodelling in patients 
with metabolic syndrome by upregulating FPN and 
inhibiting ferroptosis. This indicates that the Shensong 
Yangxin capsule may be a potential drug to treat AF 
caused by metabolic syndrome [123].

COVID‑19‑related cardiomyopathy
Coronavirus disease 2019 (COVID-19), which is caused 
by the severe acute respiratory syndrome coronavirus 
type 2 (SARS-CoV-2), sparked a global pandemic. Either 
the acute or late acute phase of COVID-19 may induce 
cardiovascular complications, such as palpitations, chest 
pain, stress cardiomyopathy, myocarditis, postural tachy-
cardia, arrhythmias, and MI [124–129]. In patients with 
COVID-19, SARS-CoV-2 can inhibit the expression of a 
specific set of selenoprotein mRNAs and suppress GPX4 
activity [130]. In addition, SARS-CoV-2 ORF3a promotes 
NRF2 degradation through the recruitment of Keap1, 
thus weakening the resistance of cells to oxidative stress 
and promoting ferroptosis [131]. In addition, coronavirus 
can induce ferroptosis via ACLS4. Interestingly, by inhib-
iting ACLS4, coronavirus replication is reduced [132]. 
Thus, ferroptosis has been suggested as a possible thera-
peutic target for the treatment of COVID-19. Following 
SARS-CoV-2 infection, sinoatrial node cells in the heart 
develop ferroptosis and exhibit dysfunction. Iron chela-
tors deferoxamine and lactoferrin and the tyrosine kinase 
inhibitor imatinib prevent viral infection and ferroptosis-
associated injury [133, 134].
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Diabetes‑associated cardiomyopathy
Diabetes is very prevalent in patients with CVDs. Myo-
cardial fibrosis, hypertrophy, and cardiac diastolic dys-
function are characteristics of diabetic cardiomyopathy, 
which is distinct from coronary artery disease and hyper-
tension and eventually results in HF. Diabetic cardio-
myopathy is primarily caused by insulin resistance, type 
2 diabetes, and the resulting hyperinsulinemia [135]. The 
progression of the illness is mediated by a number of 
mechanisms, including oxidative stress [136]. In diabetic 
retinopathy, where autophagy serves a protective role, 
ferroptosis has been implicated in the death of pigment 
epithelial cells [137]. Similarly, ferroptosis inhibitors pre-
vent high-glucose-induced cardiomyocyte dysfunction 
in diabetes-induced cardiomyopathy, suggesting that fer-
roptosis may play an essential part in the development of 
diabetic cardiomyopathy [12].

Ferroptosis was activated in a diabetic rabbit model. 
Curcumin can reduce cardiac injury caused by ferropto-
sis and enhance cardiac performance by increasing Nrf2 
nuclear translocation and GPX4 and haem oxygenase-1 
(HO-1) expression [138]. The activation of HO-1, a mito-
chondrial enzyme that catalyses the degradation of haem 
to generate ferrous iron, results in increased mitochon-
drial iron, thereby upregulating ferroptosis [139, 140]. 
Curcumin might also regulate ferroptosis by upregulating 
ferritin and SLC7A11 levels; moreover, NRF2 stimulation 
prevents ferroptosis [141]. Non-coding RNAs are also 
crucial in the development of diabetic cardiomyopathy. 
lncRNA-ZFAS1 can promote the progression of diabetic 
cardiomyopathy by downregulating cyclin-D2, thereby 
facilitating ferroptosis. These findings suggest a potential 
strategy for treating and preventing diabetic cardiomyo-
pathy by targeting lncRNA-ZFAS1 [142].

Patients with diabetes are more likely to develop coro-
nary heart disease. The optimum treatment for acute MI 
is prompt revascularization. Revascularization may lead 
to I/R injury, thereby impairing clinical benefit [143]. 
Activation of ferroptosis in diabetic patients increases the 
vulnerability of the heart after I/R. The NRF2/FPN1 sig-
nalling pathway can inhibit ferroptosis by regulating iron 
metabolism homeostasis, which partially alleviates myo-
cardial reperfusion injury in diabetes mellitus [144]. One 
effective strategy for the prevention and management of 
diabetic myocardial I/R injury may be to inhibit ferropto-
sis by controlling iron metabolism.

Chemotherapy‑related cardiomyopathy
One of the major side effects of applying doxorubicin is 
potentially fatal cardiovascular toxicity, such as conges-
tive HF and cardiomyopathy [145]. Doxorubicin can 
inhibit GPX4 and NRF2 production, thereby causing 
lipid peroxidation and ultimately ferroptosis. However, 

GPX4 upregulation or Fe2+ chelation in mitochondria 
prevents doxorubicin-induced mitochondrial ferrop-
tosis [146, 147]. In addition, the FoxO4/ectonucleotide 
pyrophosphatase/phosphodiesterase family member 2 
axis and the TRIM21/NRF2 axis can inhibit ferroptosis, 
thereby alleviating doxorubicin-induced cardiotoxicity. 
These findings suggest an effective treatment for doxoru-
bicin cardiotoxicity [148, 149].

Melatonin and empagliflozin can inhibit ferroptosis 
and protect against doxorubicin-induced cardiotoxicity. 
Melatonin reverses the doxorubicin-induced upregu-
lation of ACSL4 and downregulation of GPX4 and yes-
associated protein 1 (YAP1). By participating in NLRP3 
and NF-kB related signalling pathways, empagliflozin, a 
new hypoglycaemic drug that can improve the progno-
sis of CVDs, can attenuate ferroptosis, fibrosis, apoptosis, 
and inflammation in doxorubicin-treated mice and sig-
nificantly improve cardiac function, thereby opening up a 
new avenue for the treatment of doxorubicin-related car-
diotoxicity [150, 151]. Nevertheless, myocardial ferropto-
sis can be exacerbated by inducing a histamine deficit or 
pharmacologically inhibiting the histamine H1 receptor. 
Disruption of the histamine/histamine H1 receptor sig-
nalling axis regulates the signal transducer and activa-
tor of transcription 3 (STAT3)-SLC7A11 pathway, which 
may exacerbate doxorubicin-related cardiotoxicity [152]. 
This finding suggests possible adverse effects of antihista-
mines in patients treated with doxorubicin.

Hypertrophic cardiomyopathy
In the heart, high blood pressure and aortic steno-
sis often lead to hypertrophic cardiomyopathy, fibrosis 
and eventually HF. Cardiac hypertrophy and decreased 
left ventricular ejection fraction have been observed in 
patients with hereditary hemochromatosis [104], among 
whom heart damage caused by iron overload is the 
leading cause of death. Age-related increases in cardiac 
iron levels were observed in a hemochromatosis mouse 
model, which suggests that iron deposition and elevated 
levels of oxidative stress occurred [153]. Thus, ferroptosis 
may be involved in heart hypertrophy in hemochromato-
sis patients.

A high-iron diet causes decreased GSH levels and 
increased lipid peroxidation, which lead to significant 
heart damage and hypertrophic cardiomyopathy. These 
changes were reversed by ferrostatin-1, thus providing 
solid evidence that ferroptosis contributes to ventricular 
hypertrophy [154]. Cardiomyocytes treated with angio-
tensin II underwent hypertrophy due to the decrease 
of xCT mRNA and protein levels. Knocking out xCT 
can exacerbate cardiac hypertrophy and dysfunction. 
Similarly, ferrostatin-1 and Elabela may reduce heart 
remodelling by inhibiting ferroptosis [155, 156]. Cardiac 
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hypertrophy is associated with abnormal cardiac micro-
vascular function [157]. SLC7A11 transcription is down-
regulated and ferroptosis is promoted when interferon 
regulatory factor 3 (IRF3) is inhibited. However, when 
docosahexaenoic acid is applied, IRF3 expression is 
increased and the endothelial system is protected from 
pressure overload. This finding implies that up-regulat-
ing IRF3 may offer possible therapeutic approaches for 
the management of HF and cardiac hypertrophy [158]. 
In human and mouse hypertrophic heart models and 
mice injected with apelin-13, cardiac mitochondrial iron 
deposition was significantly increased and NCOA4 and 
sideroflexin 1 (SFXN1) expression was elevated. Apelin-
13-induced mitochondrial iron excess is reversed by 
inhibiting SFXN1 and NCOA4 expression, which it also 
mitigates cardiac hypertrophy. Furthermore, NCOA4 
suppression prevented the rise in SFXN1 expression 
brought on by apelin-13. This indicates that NCOA4 
functions upstream of SFXN1 and implicates NCOA4-
mediated autophagy and ferroptosis in the development 
of cardiac hypertrophy [159, 160]. The expression of 
ATP-binding cassette subfamily B member 7 and mito-
chondrial oxidative phosphorylation enzymes were 
significantly downregulated in rats with left ventricu-
lar hypertrophy, while lipid metabolites, iron, ROS, and 
autophagy-associated proteins were upregulated in the 
cytoplasm and mitochondria. However, by interacting 
with mitochondrial complexes IV and V, ATP-binding 
cassette subfamily B member 7 reverses the above pro-
cess when it is overexpressed [161].

Puerarin has been found to ameliorate HF in the clinic, 
and its anti-cardiomyocyte cell death function has been 
confirmed by animal studies. Puerarin can inhibit cardiac 

ferroptosis and protect cardiac function in HF mice with 
over-afterload. This suggests that puerarin may be a 
potential treatment strategy for HF [162]. Mice receiving 
intravenous iron supplementation showed increased iron 
deposition in lung tissue, increased pulmonary artery 
resistance, and right heart hypertrophy. Losartan, an 
angiotensin II-1 receptor blocker, prevents iron overload-
induced vascular remodelling, pulmonary hypertension, 
and right ventricular hypertrophy [163].

Ferroptosis‑associated therapeutic opportunities
Ferroptosis is linked to the occurrence and progres-
sion of a number of heart illnesses, including myocar-
dial I/R injury, AF, hypertensive heart disease, diabetic 
heart disease. There are novel opportunities for the 
treatment of these diseases based on the involvement of 
ferroptosis (Table  1). In myocardial I/R damage, iron-
chelating agents can be protective [102]. Exosomes and 
non-coding RNA are also implicated in the induction of 
iron death, and their inhibitors could be used as potential 
therapeutic targets [109–111]. Resveratrol, naringenin 
and Shenmai injection have shown protective effects on 
reperfusion of myocardium [113–115]. The likelihood of 
AF can be decreased by iron-chelating medications [122], 
and it may also be reduced by Shensong Yangxin capsules 
by inhibiting the ferroptosis pathway [123]. Imatinib, the 
iron-chelating agent deferoxamine, and lactoferrin all 
showed protective effects in ferroptosis-induced cardiac 
dysfunction induced by COVID-19 [133, 134]. In diabetic 
cardiomyopathy, non-coding RNA may be involved in 
disease progression by inducing ferroptosis. Therefore, 
specific non-coding RNA inhibitors can play a protec-
tive role [142]. In addition, curcumin has been shown to 

Table 1 Cardiovascular disease treatment strategies involving ferroptosis

Reagents Mechanisms CADs References

BMSCS-EXO Increases GSH level Myocardial I/R injury [88]

FRATAXIN Reduces mitochondrial iron and ROS level Myocardial I/R injury [91]

RESVERATROL Regulates USP19-Beclin1 autophagy Myocardial I/R injury [92]

NARINGIN Regulates the NRF2 /System xc—/GPX4 pathway Myocardial I/R injury [93]

SMI Activates Nrf2/GPX4 pathway Myocardial I/R injury [94]

SSYXC Increases transferrin level Atrial fibrillation [164]

DESFERRIAMINE Inhibits iron overload COVID-19-associated cardiomyopathy [104]

LACTOFERRIN Inhibits iron overload COVID-19-associated cardiomyopathy [107]

MELATONIN Reduces ACSL4 level and increases GPX4 level Chemotherapy-related cardiomyopathy [121]

EMPAGLIFLOZIN Regulates NLRP3 and myd88 related pathways Chemotherapy-related cardiomyopathy [122]

FERROSTATIN-1 Inhibits lipids peroxidation Hypertrophic cardiomyopathy [127]

DHA Increases SLC7A11 level Hypertrophic cardiomyopathy [165]

ABCB7 Interacts with mitochondrial complex IV and V Hypertrophic cardiomyopathy [134]

PUERARIN Inhibits iron overload and lipids peroxidation Hypertrophic cardiomyopathy [135]

Losartan Inhibits iron overload Hypertrophic cardiomyopathy [136]
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inhibit ferroptosis and play a cardioprotective role [138]. 
Doxorubicin treatment-related heart damage is a long-
term clinical concern, although studies have found that 
melatonin and empagliflozin may have a heart-protective 
effect by inhibiting ferroptosis. In addition, empagliflozin 
is frequently used to manage diabetes [150, 151]. Losar-
tan and puerarin can inhibit ventricular hypertrophy 
by inhibiting ferroptosis. Losartan has been used in the 
clinic, and puerarin is a potential therapeutic target [162, 
163].

In ferroptosis-related heart disease, a variety of effec-
tors have been identified that play a cardioprotective role 
either by inhibiting oxidation mechanisms or by regu-
lating antioxidant mechanisms, including the ferropto-
sis pathway. However, further research is needed before 
these agents can be used in the clinic.

Conclusions and perspectives
One of the main threats to human life and health is CVD. 
To improve patient quality of life and save lives, advances 
in the treatment of CVD are desperately needed. Ferrop-
tosis has recently been identified as a regulated mode of 
cell death, and a growing number of studies have dem-
onstrated that ferroptosis is closely related to the occur-
rence and development of various CVDs. Studies have 
revealed the role of ferroptosis in heart disease and its 
regulatory mechanisms and thus have provided mecha-
nistic insights into CVDs and novel treatment options. 
However, the role of ferroptosis in this field is not suf-
ficiently understood to develop an efficient treatment 
strategy.

The field of ferroptosis is being actively studied. More 
research is needed to refine our understanding of the 
regulatory mechanisms of ferroptosis. In addition, the 
inducers and inhibitors of ferroptosis need to be further 
clarified so that more substances with stronger applica-
tion potential can be screened to serve as treatments. 
There are many modes of regulated cell death, and they 
are not completely independent of each other. Thus, fur-
ther research is needed to determine the relationship 
between different regulated cell death modes and reveal 
how they interact with each other. Such work would pro-
vide a deeper understanding of the occurrence and devel-
opment of living processes and may reveal better disease 
treatment strategies.
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