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Abstract 

Background In eukaryotic cells, DNA double strand breaks (DSB) are primarily repaired by canonical non‑homolo‑
gous end joining (c‑NHEJ), homologous recombination (HR) and alternative NHEJ (alt‑NHEJ). Zinc finger and SCAN 
domain containing 4 (ZSCAN4), sporadically expressed in 1–5% mouse embryonic stem cells (mESCs), is known 
to regulate genome stability by promoting HR.

Results Here we show that ZSCAN4 promotes DNA repair by acting with Poly (ADP‑ribose) polymerase 1 (PARP1), 
which is a key member of the alt‑NHEJ pathway. In the presence of PARP1, ZSCAN4‑expressing mESCs are associated 
with lower extent of endogenous or chemical induced DSB comparing to ZSCAN4‑negative ones. Reduced DSBs 
associated with ZSCAN4 are abolished by PARP1 inhibition, achieved either through small molecule inhibitor or gene 
knockout in mESCs. Furthermore, PARP1 binds directly to ZSCAN4, and the second ⍺‑helix and the fourth zinc finger 
motif of ZSCAN4 are critical for this binding.

Conclusions These data reveal that PARP1 and ZSCAN4 have a protein–protein interaction, and shed light 
on the molecular mechanisms by which ZSCAN4 reduces DSB in mESCs.
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Background
Zinc finger and SCAN domain containing 4 (ZSCAN4) 
is expressed in two-cell (2C) stage mouse embryos and 
in the so-called 2C-state mouse embryonic stem cells 
(mESCs), which is a 1 to 5% subpopulation of the mESCs 
that exhibit a gene expression pattern similar to that of 
the totipotent 2C-stage embryos [1, 2]. For this reason, 
ZSCAN4 is regarded as a Bona-fide marker of 2C-state 
mESCs.

Maintaining genome stability is essential for early-stage 
embryos as well as for pluripotent stem cells (PSCs). 
Double-strand breaks (DSB) are the most lethal form 
of DNA damage in eukaryotic cells. DSBs are repaired 
through different pathways, which include canonical 
non-homologous end join (c-NHEJ), homologous recom-
bination (HR), alternative non-homologous end join 
(alt-NHEJ), and others [3]. Among them, c-NHEJ and alt-
NHEJ are error-prone, and HR leads to precise repair. In 
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2010, Zalman et al. reported that ZSCAN4 promotes HR 
in mESCs and elongate telomeres [2]. Later, other groups 
reported that the level of ZSCAN4 is reversely correlated 
with the extent of DSB in mouse induced pluripotency 
stem (iPS) cells [4] and preimplantation embryos [5]. 
These findings indicate that ZSCAN4 plays a key role in 
resolving DSBs in embryos and PSCs.

It is less clear how ZSCAN4 gets involved in DSB reso-
lution. Dan et  al. suggested that ZSCAN4 may achieve 
this through modulating the epigenetic status [6]. They 
demonstrated that ZSCAN4 induces global DNA dem-
ethylation through downregulation of ubiquitin like 
with PHD and ring finger domains 1 (UHRF1) and DNA 
methyltransferase 1 (DNMT1), major components of the 
maintenance DNA methylation machinery. Srinivasan 
et  al. demonstrated another possibility that ZSCAN4 
binds to DSB-prone sequences (e.g., microsatellite DNA) 
thereby protects them from breaking under stress [5].

Poly(ADP-ribose) polymerase 1 (PARP1) is a key fac-
tor in DNA repair. It is involved in c-NHEJ and HR [7, 8], 
but most importantly in the alt-NHEJ pathway [9] where 
it competes with c-NHEJ components such as the KU 
heterodimer (KU70/KU80) to bind the DSB [10], then 
recruits DNA ligase 3 (LIG3) and DNA Polymerase theta 
(POLθ) to complete the alt-NHEJ repair [11–14].

In the present work, we asked the question whether 
there is any interaction between PARP1 and ZSCAN4 in 
the DNA repair process. We show that ZSCAN4 reduces 
DSB in a PARP1-dependent manner. We reveal that there 
is a protein–protein binding between these two proteins, 
and we provide motif level resolution of this interaction. 
Our results suggests that ZSCAN4 engages PARP1 in 
resolving DSBs in mESCs.

Results
ZSCAN4 expression is associated with reduced DSBs 
in mESCs
Previous studies show that ZSCAN4 is associated with 
DSB reduction in mouse iPSCs [4] and preimplantation 
embryos [5]. To verify these, we established a reporter 
mESC line that expresses the green fluorescent protein 
(GFP) driven by the Zscan4 promoter (pZscan4-GFP, 
Additional file  1: Fig. S1A). Immunofluorescent (IF) 
images show that there is a faithful co-expression of GFP 
and ZSCAN4 (Fig. 1A).

We next separated the GFP-expressing  (GFP+) and 
GFP-negative  (GFP−) mESCs by the fluorescence-acti-
vated cell sorter (FACS, Additional file  1: Fig. S1B, C) 
and determined the ZSCAN4 protein levels in these two 
subpopulations. As expected, a strong ZSCAN4 band is 
observed in the western blot of the  GFP+ cell population, 
but not that of the  GFP− cell population (Fig. 1B).

We compared the endogenous extent of DSB between 
the  GFP+ and  GFP− cells by determining the extent of 
S139 phosphorylation of H2AX (γH2AX). Upon DSB for-
mation, H2AX, a variant of the H2A protein that is part 
of the histone octomer in nucleosomes, are quickly phos-
phorylated to mark the site of damage so that recruit-
ment of DSB repair factors can take place efficiently [15]. 
The γH2AX thus serve as a faithful indicator of the DSB 
events in mammalian cells [16–18]. By western blot, we 
show that γH2AX levels are lower in the  GFP+ cells than 
in the  GFP− cells (Fig. 1B), reversely correlated with lev-
els of ZSCAN4. Notably, PARP1 are expressed at compa-
rable levels between the  GFP+ and  GFP− subpopulations 
(Fig. 1B), indicating that levels of ZSCAN4 does not influ-
ence the levels of PARP1 in mESCs.

To confirm the observations in the pZscan4-GFP sta-
ble cell line, we transiently overexpressed ZSCAN4 by 
lipofectamine mediated transfection of a Flag-Zscan4 
expression plasmid (pFlag-Zscan4) to mESCs (Additional 
file  1: Fig. S2A). Comparing to the cells transfected by 
an empty vehicle vector (EV), pFlag-Zscan4 transfected 
mESCs had a significantly lower level of γH2AX signals 
in Western blot (Fig.  1C). Levels of PARP1 were com-
parable between the overexpression and the EV groups 
(Fig. 1C), consistent with the findings in the Zscan4-GFP 
reporter cells (Fig.  1B). We also employed IF images to 
quantify the DSB extent by counting and calculating the 
percentage of cells with ≥ 10 γH2AX foci, as previously 
reported [19–22]. The FLAG signal was used to iden-
tify FLAG-ZSCAN4 positive cells. Approximately 60% 
cells possessed ≥ 10 γH2AX foci in the FLAG-ZSCAN4 
negative cells, which is about twice that in the FLAG-
ZSCAN4 positive cells (Fig.  1D), again indicating a role 
of ZSCAN4 in DSB reduction.

Next, we introduced an exogenous DNA damage rea-
gent, hydrogen peroxide  (H2O2) at 0.01%, to the system 
to induce DSB formation. In the FLAG-ZSCAN4 nega-
tive cells,  H2O2 treatment increased the percentage of 
cells with ≥ 10 γH2AX foci by 1.7-fold, from 49.08 ± 2.49% 
to 83.04 ± 1.76% (Fig. 1E, left and middle panels). In the 
FLAG-ZSCAN4 positive cells,  H2O2 treatment also 
increased the percentage of cells with ≥ 10 γH2AX foci, 
but to a lesser extent, by 1.4-fold from 35.77 ± 1.95% to 
49.52 ± 1.90% (Fig.  1E). This result suggests a protec-
tive role of ZSCAN4 against exogenous DSB generating 
agents.

Together, these data show that ZSCAN4 is reversely 
associated with DSB signal levels in mESCs.

ZSCAN4‑associated DSB resolution capacity engages 
PARP1
It has been reported that ZSCAN4 promotes HR [2]. It 
is not known whether other DNA repair pathways, such 
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as alt-NHEJ, plays a role in ZSCAN4-associated DSB 
reduction.

To investigate this, we treated pFlag-Zscan4 transduced 
mESCs with a small molecule compound 3-Aminobenza-
mide (3-AB). 3-AB is a potent inhibitor of PARP and is 
commonly used to suppress the alt-NHEJ pathway [23].

Western blot analysis revealed that without 3-AB, the 
γH2AX signals were, as expected and consistent with 
earlier results, significantly lower in the pFlag-Zscan4 

transfected cells than those transfected with the EV 
(Fig.  2A). Intriguingly, with 3-AB, the γH2AX signal 
levels became similar between these two groups, while 
both are higher than those without 3-AB (Fig. 2A). The 
γH2AX foci counting assay by IF confirmed this obser-
vation (Fig.  2B). These findings indicated that PARP 
inhibition not only increased the overall DSB extent, 
but also eliminated the DSB reduction effect associated 
with ZSCAN4, suggesting that PARP proteins may par-
ticipate in the ZSCAN4-associated DSB resolution.
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Fig. 1 ZSCAN4 expression is reversely correlated with the extent of DSBs in mESCs. A Immunofluorescence images of the pZscan4-GFP mESCs. 
Note only a small subpopulation of cells (boxed in top row) express ZSCAN4 at a given time. Scale bar: 10 µm. B Left: western blot of γH2AX, PARP1, 
and ZSCAN4 the  GFP+ (indicative of ZSCAN4 expressing) and  GFP− (indicative of ZSCAN4‑negative) mESCs. Middle and right: quantitative levels 
of γH2AX and PARP1. Data are normalized to the  GFP− group and are represented as mean ± SEM. C Left: western blot of γH2AX, PARP1, and ZSCAN4 
in the wildtype mESCs transiently expressing FLAG‑ZSCAN4. Middle and right: quantitative levels of γH2AX and PARP1. Data are normalized 
to the  GFP− group and are represented as mean ± SEM. D Left: IF images of FLAG and γH2AX in wildtype mESCs transiently overexpressing 
FLAG‑ZSCAN4. Scale bar: 20 µm. Right: quantitative percentage of cells with ≧10 γH2AX foci. Data are represented as mean ± SEM. E Left: IF images 
of FLAG and γH2AX in wildtype mESCs transiently overexpressing FLAG‑ZSCAN4 with 0.01%  H2O2 treatment. Scale bar: 20 µm. Middle: quantitative 
percentage of cells with ≧10 γH2AX foci. Data are represented as mean ± SEM. Right: fold change of the percentage of cells with ≧10 γH2AX foci 
after the  H2O2 treatment. See also Additional file 1: Figs. S1, S2 and Table S2
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3-AB is a general inhibitor of PARP including PARP1 
and PARP2. To delineate if PARP1 participates in 
ZSCAN4-associated DSB resolution, we generated 
Parp1 knockout (KO) mESCs by CRISPR/Cas9 (Addi-
tional file  1: Fig. S3). Two Parp1 KO (Parp1−/−) mESC 
clones (#1 and #2) were selected and maintained for the 
following experiments. Both KO lines had no detect-
able PARP1 protein expression as evidenced by West-
ern blot (Fig.  2C). The DSB extent, indicated by the 
γH2AX bands in the Western blot, was much higher in 
the KO lines than in the Parp1 wildtype cells (Fig.  2C), 
which is as expected because Parp1 is a key factor in 
several DNA repair pathways especially in the alt-NHEJ 
pathway. We next checked if Parp1 KO had any effects 
on ZSCAN4’s DSB reduction capacity. Both Western 
blot and γH2AX foci counting assays indicated so: in 
the Parp1 wildtype mESCs, the extent of DSB is signifi-
cantly lower in the pFlag-Zscan4 transfected cells than 
in EV transfected cells or FLAG-ZSCAN4 negative cells; 

in the Parp1−/− mESCs, the extent of DSB became simi-
lar between these two subpopulations (Fig.  2C and D). 
This observation suggests that PARP1 contributes to 
ZSCAN4-associated DSB resolution.

Taken together, our results indicate that ZSCAN4 
engages PARP1 in resolving DSB in mESCs.

PARP1 has a protein–protein interaction with ZSCAN4
Given the potential role of PARP1 in ZSCAN4-associated 
DSB resolution, we asked the question whether ZSCAN4 
and PARP1 proteins directly interact. We constructed 
Flag-Zscan4 and Ha-Parp1 overexpression plasmids 
(Additional file  1: Fig. S2A and B) and co-transfected 
them into HEK293T cells. We examined the interac-
tion of ZSCAN4 with PARP1 by co-immunoprecipita-
tion (co-IP). Protein complexes were isolated using an 
anti-HA antibody, then blotted with ZSCAN4 or FLAG 
antibodies (Fig.  3A and Additional file  1: Fig. S4). The 
results show that PARP1 pulled down ZSCAN4 (Fig. 3A 
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Fig. 2 ZSCAN4‑associated DSB reduction is dependent on PARP1. A Left: western blot of γH2AX and ZSCAN4 in wildtype mESCs transiently 
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and Additional file 1: Fig. S4). IgG was used as a control 
which yielded no positive signal in immunoprecipitations 
(IPs). Using a reverse IP/immunoblotting (IB) protocol, 
IPs were performed by anti-FLAG antibody, then blot-
ted with PARP1 or HA antibodies. We confirmed that 
ZSCAN4 pulled down PARP1 (Fig.  3A and Additional 
file 1: Fig. S4). In line with this finding, IF images revealed 
that FLAG-ZSCAN4 and HA-PARP1 co-localized in the 
nucleus (Fig.  3B). These observations suggest that there 
is a protein–protein interaction between ZSCAN4 and 
PARP1.

To dissect this protein–protein interaction, we con-
structed plasmids to express different versions of trun-
cated ZSCAN4 and PARP1 (Fig. 4A and B). For truncated 
ZSCAN4, we designed three plasmids, each expressing 
one of the following: the SCAN domain only (SCAN, 
1–163 residues), the linker sequence only (LS, 164–396 
residues), and the Zinc finger domain only (ZF, 397–506 
residues). In each plasmid, a Flag tag sequence was added 
to the N-terminal for antibody detection (Fig.  4A). For 
truncated PARP1, we also designed three plasmids, each 
expressing one of the following: the DNA binding domain 
only (DB, 1-382 residues), the auto-modification domain 
only (AM, 383-655 residues), and the catalytic domain 
only (CAT, 656-1014 residues). In each plasmid, an Ha 
tag sequence was added for antibody detection (Fig. 4B).

To identify the key PARP1-binding domain on 
ZSCAN4, we co-transfected the cells with plasmids that 
express (i) the full length PARP1 and (ii) one of the trun-
cated ZSCAN4. IP results suggest that ZSCAN4 interacts 
with PARP1 through its SCAN and ZF domains, but not 
the LS domain (Fig.  4C, lanes 5 and 7). IF images con-
firmed the findings from the IP experiments (Fig. 4D).

Likewise, to identify the key ZSCAN4-binding 
domain on PARP1, we co-transfected the cells with 
plasmids that express (i) the full length ZSCAN4 and 
(ii) one of the truncated PARP1. IP results show that 
the DB and AM domains, but not the CAT domain 

of PARP1, participated in the binding with ZSCAN4 
(Fig. 4E, lanes 5 and 6). IF images confirmed the find-
ings from the IP experiments (Fig. 4F).

After knowing that the SCAN and ZF domains from 
ZSCAN4 (designated as z-SCAN and z-ZF to indi-
cate its protein origin) and the DB and AM domains 
from PARP1 (designated as p-DB and p-AM) par-
ticipate in the protein–protein binding between 
these two proteins, we next looked at the binding 
relationships between these individual domains. All 
four combinations of these domain expression plas-
mids, (i) z-SCAN + p-DB; (ii) z-SCAN + p-AM; (iii) 
z-ZF + p-DB; and (iv) z-ZF + p-AM, were transfected 
into HEK293T cells, followed by IP to exam if there 
are any direct binding between the two corresponding 
domains (Additional file 1: Table S1). The results indi-
cated that the z-SCAN domain bind to either the p-DB 
or the p-AM domain (Fig. 4G, lanes 4 and 5); whereas 
the z-ZF domain only binds with the p-AM but not the 
p-DB domain (Fig. 4H, lane 5).

Prior studies have revealed that there are 5 ⍺-helixes 
(⍺1 to ⍺5) on the z-SCAN domain and 4 zinc finger 
motifs (ZF1 to ZF4) on the z-ZF domain [6, 24]. To 
gain insight on the interaction at the motif resolution 
of ZSCAN4, we next constructed truncated z-SCAN 
domain expression plasmids each missing one of the 
⍺-helixes (△⍺1 to △⍺5, Fig. 5A), and truncated z-ZF 
domain expression plasmids each missing one of the 
ZF motifs (△ZF1 to △ZF4, Fig. 5B). These truncated 
domain plasmids (tagged with Flag) were individually 
co-transfected with full length HA-PARP1 expression 
plasmid for IP experiments (Additional file 1: Table S1). 
The results show that the deletion of the ⍺2 of the 
z-SCAN domain (Fig. 5C, lane 4), or the deletion of the 
ZF1, ZF2 or ZF4 of the z-ZF domain (Fig. 5D, lanes 3, 
4, and 6) abolished the interaction of the corresponding 
domain with the full-length HA-PARP1. As such, the 
⍺2 motif on the z-SCAN domain, and the ZF1, ZF2 and 
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ZF4 motifs on the z-ZF domain are potentially essential 
for ZSCAN4 to establish the protein–protein interac-
tion with PARP1.

To verify these results, we constructed two mutant 
ZSCAN4 expression plasmids: (i) missing the ⍺2 and 
the ZF2 motifs (△⍺2ZF2); and (ii) missing the ⍺2 
and the ZF4 motifs (△⍺2ZF4). We co-transfected the 
△⍺2ZF2 or the △⍺2ZF4 plasmid with full length 
HA-PARP1 expression plasmid for IP experiments 
(Fig.  5E). As expected, both mutations (△⍺2ZF2 and 
△⍺2ZF4) compromised the binding between ZSCAN4 
and PARP1. Strikingly, the △⍺2ZF4 mutation totally 
abolished the IP signals between ZSCAN4 and PARP1 
(Fig. 5F, lane 4). We summarize the interacting domains 
of ZSCAN4 and PARP1 in the Fig. 5G.

We then transfected the mESCs with the △⍺2ZF4 
ZSCAN4 plasmid to investigate the effect of this 
mutant on the ZSCAN4-associated DSB resolution. 
Both the Western blot and γH2AX foci assays show 
that this mutation, presumptively through the disrup-
tion of the ZSCAN4-PARP1 protein–protein-interac-
tion, abolished the DSB-reduction capacity associated 
with WT ZSCAN4 (Fig. 6A, B).

Together, these results reveal that PARP1 interacts 
with ZSCAN4. The ⍺2 motif on the SCAN domain 
and the ZF4 motif on the ZF domain are essential for 
the binding. The binding between these two proteins 
is essential for ZSCAN4-associated DSB resolution 
capacity.
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Discussion
It has been over a decade since the first report on 
ZSCAN4’s role in promoting HR. It remains to be fully 
elucidated, however, how ZSCAN4 is involved in the 
DNA repair process. It was shown that ZSCAN4 reduces 
DNA methylation, which is HR promoting, through 
UHRF1 mediated degradation of DNA methyltransferase 
DNMT1 [6]. In another work, it suggests that ZSCAN4 
binds to DSB-prone sequences (e.g., microsatellite DNA) 
thereby protects them from breaking under stress [5].

We present a new mechanism that ZSCAN4’s DSB 
resolution capacity is PARP1 dependent. Inhibiting 
PARP1 abolishes the DSB-reduction benefits associ-
ated with ZSCAN4. Therefore, besides HR, ZSCAN4 is 
potentially also involved in the alt-NHEJ pathway. Fur-
thermore, ZSCAN4 and PARP1 has a protein–protein 
binding interaction. It is known that PARP1 is engaged in 
the alt-NHEJ process at multiple points. For example, the 
early resection factor MRE11 is recruited by PARP1 [25]. 
PARP1 also plays the key role in recruiting LIG3, the ulti-
mate molecule for the last ligation step in alt-NHEJ [26, 
27]. It is possible that ZSCAN4 interacts with PARP1 in 
one or more of these steps. Future studies are warranted 
to dissect this.

How the interaction between ZSCAN4 and PARP1 
contributes to the DSB resolution is intriguing. Based 
on the current data, we speculate at least two possibili-
ties. First, ZSCAN4’s binding with PARP1 could bring 
alt-NHEJ repair factors to the DSB lesion. This may 
be particularly probable at DSB-vulnerable loci where 
ZSCAN4 reportedly bind to [5]. The binding between 
ZSCAN4 and PARP1 there (if any) would allow a quick 
assembly of alt-NHEJ repair factors to resolve any emerg-
ing DSBs. Another possibility is that PARP1 is a regula-
tor of ZSCAN4. This could be achieved at the protein 

level through the interaction between PARP1 mediated 
PARylation and ZSCAN4. ZF4 motif of ZSCAN4, which 
was found to interact with PARP1 in this study, contains 
a consensus PAR interacting motif [28]. This regulation 
may also be achieved at the transcription level. There is 
a PARP1 binding sequence in the human ZSCAN4 pro-
moter [29]. The same binding consensus is found in 
mouse Zscan4 promoter (GGA AAG G), suggesting that 
PARP1 may directly bind on Zscan4 promoter to regulate 
its expression level.

Our work also provides insight into telomere regu-
lation in mESCs by ZSCAN4. ZSCAN4 is known for 
maintaining telomere length by promoting the HR-based 
alternative lengthening of telomeres (ALT) pathway [2, 
6]. PARP1, on the other hand, repairs telomere DSBs 
through the alt-NHEJ pathway. These two seemingly 
independent telomere DSB resolution pathways may 
now be linked given the potential interaction between 
ZSCAN4 and PARP1. PARP1 should be considered in 
efforts to modulate telomeres by ZSCAN4, and vice versa. 
It should be further noted that ZSCAN4 and PARP1 are 
both reported to promote iPSC reprogramming [4, 30]. 
Our work suggests that ZSCAN4 and PARP1 may have 
worked as a pair to improve iPSC reprogramming by pre-
venting or repairing DNA damage induced in the rapid 
iPSC reprogramming process. Modulating the interac-
tion between ZSCAN4 and PARP1 may represent a new 
route to improve the quality of iPSCs, as well as other 
stem cell types, for example, ESCs, that express ZSCAN4.

Conclusions
We reveal a protein-to-protein interaction between 
ZSCAN4 and PARP1 at the motif resolution. We demon-
strate that PARP1 participates in ZSCAN4 mediated DSB 
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repair in mESCs. These data provide novel insights on 
ZSCAN4 and PARP1 biology.

Materials and methods
Animals
The animals used in this project were maintained, cared, 
and used according to the animal protocol #NTU-
105-EL-164 that was reviewed and approved by the Insti-
tutional Animal Care and Use Committee (IACUC) of 
National Taiwan University.

Mouse embryonic stem cells
The wildtype mESCs were derived from blastocyst 
embryos collected from fertilized superovulated female 
mice following our routine protocol [31].

To generate the pZscan4-GFP mESCs, the Zscan4 
promoter sequence cloned from 2570  bp upstream 
of Zscan4c start codon [2] and a 720  bp eGFP cod-
ing sequence were cloned into the pSin vector (16578, 
Addgene) and the plasmid was transfected into HEK293T 
cell along with pSPAX2 (12260, Addgene) and pMD2.G 
(12259, Addgene) to produce lentivirus. Conditioned 
medium containing lentivirus was harvested and used 
to treat the wildtype mESCs, followed by FACS to enrich 
the pZscan4-GFP cells for subsequent culture.

To generate the Parp1 knockout mESC lines, we 
designed a guide RNA (gRNA, 5′-CTG GTA CCA TCC 
AAC TTG CT-3′) targeting Exon 4 of the Parp1 gene. The 
gRNA was cloned to the Cas9 expressing plasmid (64221, 
Addgene) containing a mCherry reporter, following a 
reported CRISPR/Cas9 protocol [32]. We constructed a 
homologous recombination (HR) template containing 
a T2A-eGFP-stop codon sequence flanked by 1003  bp 
long homology arms on each side (Additional file 1: Fig. 
S3B). The Cas9 and HR template plasmids were trans-
fected to mESCs by the lipofectamine stem transfection 
reagent (STEM00015, Thermo). 24  h after transfection, 
GFP and mCherry double positive mESCs were sorted 
out by FACS and single cell seeded in the 96-well plate 
to derive the KO clones. PCR (forward primer: GCC AGA 
TGC GCC TGT CCA; reverse primer: TTC TTG ATG GCC 
GGG AGC T) was performed to confirm the successful 
insertion.

The wildtype, pZscan4-GFP and the Parp1 KO mESCs 
were all cultured in Dulbecco’s modified Eagle’s medium 
(DMEM; 11965084, Thermo, Carlsbad, CA, USA) with 
15% fetal bovine serum (FBS; TMR-016-B, Millipore, 
Darmstadt, Germany) supplemented with 1% Penicillin/
Streptomycin Solution (P/S; 15140122, Thermo), 2  mM 
GlutaMax (35050061, Thermo), 0.1  mM nonessential 
amino acids (11140-050, Thermo), 0.1  mM 2-mercap-
toethanol (ES-007-E, Millipore), 1  mM sodium pyru-
vate (11,360,070, Thermo) and 1000 units/mL Leukemia 

Inhibitory Factor (ESG1107, Millipore). Mitomycin C 
(2 μg/mL M4287, MilliporeSigma, Burlington, MA, USA) 
treated E13.5 mouse embryonic fibroblast (MEF) cells 
were used as the feeder cells for mESC culture.

HEK293T and BNL CL.2 cells
Human HEK293T (CRL-3216, ATCC, Manassas, VA, 
USA) and mouse BNL CL.2 (TIB-73, ATCC) cells were 
cultured in DMEM (11965084, Thermo) with 10% FBS 
(TMR-016-B, Millipore) supplemented with 1% P/S 
(15140122, Thermo). Plasmid transfection to these 
cells was performed by JetPrime (101000046, Polyplus, 
Illkirch-Graffenstaden, Bas-Rhin, France) following the 
manufacture’s instruction.

3‑Aminobenzamide
3-Aminobenzamide (3-AB, A0788, MilliporeSigma) was 
dissolved in dimethyl sulfoxide (DMSO, D2650, Mil-
liporeSigma) to the final concentration of 10  M as the 
stock solution. The stock solution was added to the cul-
ture medium at 2000 dilution to reach a working concen-
tration of 5 mM 3-AB.

Immunofluorescence (IF) staining
Cells on cover slides were fixed with 10% formaldehyde 
(MA-H121-08, Crespellano, Italy). 2% bovine serum 
albumin (BSA, A9647, MilliporeSigma) and 0.25% Tri-
ton-X-100 (X100, MilliporeSigma) in phosphate-buffered 
saline (PBS, IB3012, Omics Bio, Taipei, Taiwan) was used 
for permeabilizing cells before they were incubated with 
the primary antibodies overnight at 4 ℃ followed by sec-
ondary antibodies and DAPI for 2 h at room temperature. 
The antibodies used were ZSCAN4 (ab4340, Millipore), 
FLAG (F7425, MilliporeSigma), FLAG (66008-4-Ig, Pro-
teintech, Rosemont, IL, USA), γH2AX (ab2893, Abcam, 
Cambridge, UK), HA (sc-7392, Santa Cruz, Dalla, TX, 
USA), Alexa anti-mouse 488 (A11001, Thermo), Alexa 
anti-rabbit 488 (A11034, Thermo), Alexa anti-mouse 594 
(A11032, Thermo), and Alexa anti-rabbit 647 (A27040, 
Thermo). The images were captured by the laser-scan-
ning confocal microscope (TCS SP5 II confocal micro-
scope, Leica, Wetzlar, Germany).

γH2AX foci counting
To count the number of γH2AX foci, images obtained 
from confocal microscopy were analyzed by the ImageJ 
software [33] (exampled in Additional file 1: Fig. S5). The 
counted number of cells in each experiment (range from 
129 to 846) were listed in Additional file 1: Table S2.

Immunoprecipitation
Immunoprecipitation (IP) was performed by using the 
Dynabeads protein G IP kit (10007D, Thermo), following 
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the manufacturer’s instruction. Briefly, HEK293T cells 
transfected with epitope-tagged expression plasmid(s) 
were lysed in the RIPA buffer (92590, Millipore) for 
10 min at 4 ℃ and centrifuged at 16,000×g for superna-
tant collection. The Dynabeads were incubated with 4 μg 
HA antibody (sc-7392, Santa Cruz) or 2  μg FLAG anti-
body (F7425, MilliporeSigma) at room temperature for 
10 min. Next, the Dynabeads were incubated with 500 µg 
cell lysate at 4 ℃ for 2 h. After washing, the IP samples 
were collected and used for Western blot (see next ses-
sion) to complete the Co-IP assay. Appropriate host of 
IgG served as control which include mouse IgG (550878, 
BD, Franklin Lakes, NJ, USA) and rabbit IgG (550875, 
BD).

Western blot
For western with IP samples (see previous session), 
we included the input control which consists of 1% cell 
lysate. For regular western, 30 µg protein lysate from each 
sample was used.

Samples were run in electrophoresis using 10% acryla-
mide gels and then transfer to 0.22 µm PVDF membrane 
(GE10600021, Millipore). 5% skim milk in TBST (0.1% 
Tween 20 in TBS) was used to block the membrane for 
30 min at room temperature. The membrane was immu-
noblotted with the primary antibody overnight at 4 ℃ 
then incubated with HRP-conjugated secondary anti-
mouse antibody (31430, Thermo) or HRP-conjugated 
secondary anti-rabbit antibody (31460, Thermo) for 2  h 
at room temperature. The signal was detected by T-Pro 
LumiFast Plus Chemiluminescent Substrate Kit (JT96-
K002, T-pro, New Taipei, Taiwan) and captured by 
GeneGnome XRQ Chemiluminescence with CCD (Syn-
Gene, Cambridge, UK). The primary antibodies included 
FLAG antibody (F7425, MilliporeSigma), HA (sc-
7392, Santa Cruz), γH2AX (ab2893, Abcam), ZSCAN4 
(ab4340, Millipore), and PARP1 (9542, Cell Signaling, 
Danvers, MA, USA).

Vector construction
Plasmids were constructed by the Gibson Assembly Mas-
ter Mix (E2611L, New England BioLabs, Ipswich, MA, 
USA) using the pSin vector (16578, addgene, Watertown, 
MA, USA).

Statistical analysis
All quantitative data were represented as mean ± stand-
ard error of the mean (SEM), with at least 3 biologi-
cal independent replicates. The statistical comparison 
between two groups was conducted by unpaired two-
tailed student’s t-test (Numbers, Apple, Cupertino, CA, 
USA).
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Additional file 1: Figure S1. Generation of the pZscan4‑GFP mESCs. 
(A) The plasmid map of the pZscan4-GFP construct. (B) Illustration of the 
strategy for pZscan4‑GFP mESCs generation. (C) Representative FACS plots 
to isolate GFP + mESCs after pZscan4‑GFP plasmid transfection. Figure S2. 
Plasmid maps of FLAG‑ZSCAN4 and HA‑PARP1. Figure S3. Parp1 knockout 
in mESCs. (A) The map of Parp1 targeting Cas9 plasmid. The gRNA (CTG 
GTA CCA TCC AAC TTG CT) was under U6 promoter. Cas9 was controlled by 
chicken β‑actin promoter followed by T2A and mCherry. (B) The map of 
homologous template for Parp1 knockout (KO) plasmid. A T2A‑GFP‑Stop 
sequence was designed for insertion. (C) Illustration of the Parp1 knockout 
strategy. (D) PCR confirmation of the PARP1 knockout. Wildtype (WT) 
cells had the 208 bp band, whereas cells with the successful knock‑in of 
T2A-GFP-stop sequence (which leads to Parp1 KO) had the 993 bp band. 
WT mESCs and HR template plasmid (PLA) served as control. NC: negative 
control, water only. Figure S4. PARP1 binds with ZSCAN4. Co‑IP results 
of FLAG‑ZSCAN4 and HA‑PARP1. Figure S5. Illustration of the γH2AX foci 
counting assay. The γH2AX foci (green dots) were counted for each cell. In 
Example 1, the cell has 7 foci, which is smaller than 10. In Example 2, the 
cell has 7 foci, which is also smaller than 10. In Example 3, the cell has 23 
foci, which is greater than 10. Orange squares indicate the foci counted for 
the data. Scale bar: 10 µm. Table S1. Summary of Co‑IP results. Table S2. 
Summary of counted cell numbers in the experiments. Table S3. List of 
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