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Abstract 

Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer 
is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD). Intestinal epi-
thelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body 
of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, 
the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal 
microbiota play different roles during these processes. This review aims to discuss the various roles of different cells 
and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic 
methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.

Keywords Colitis-associated carcinogenesis, IBD therapy, Intestinal epithelial cells, Intestinal mesenchymal cells, 
Immune cells, Gut microbiota

Introduction
Inflammatory bowel disease (IBD), which includes ulcer-
ative colitis (UC) and Crohn’s disease (CD), causes long-
term immune-mediated colitis-associated colorectal 
cancer (CAC) [1]. Patients with IBD have an increased 
risk of developing colorectal cancer (CRC), the third 
most common cancer worldwide [2, 3]. An extended 
meta-analysis demonstrated that the risk of CRC is 
approximately 2% after 10 years and up to 18% at 30 years 
in UC patients [4]. Therefore, chronic inflammation in 
IBD patients leads to a significant increase in CRC risk.

Currently, our understanding of the mechanisms 
leading to a high risk of intestinal cancer in IBD patients 
has improved [5]. In patients with IBD, the pathogen-
esis of CRC involves both genes and environmental 
factors, such as genetic mutations, epigenetic changes 
and alterations in immune response factors [6–9]. The 
molecular alterations in colorectal cancer with IBD var-
ied significantly from those in sporadic CRC [10, 11]. 
First, the timing of gene alterations in colitis-associated 
colorectal cancer is different from that in sporadic CRC 
[12, 13]. The APC gene is usually lost at a later stage 
in CAC, whereas it always occurs at an earlier date in 
sporadic colorectal cancer [14]. And p53 gene mutation 
is an early event in CAC, whereas it appears to be a late 
event in sporadic disease [15]. Second, there are some 
differences in the frequency of gene mutations between 
CAC and CRC. Compared with sporadic mutations, 
APC and KRAS gene mutations are at a relatively 
low level in colitis-related cancer [16]. This evidence 
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indicates that gene expression and pathway alterations 
are closely related to CAC progression in specific cells.

Several types of cells, including intestinal epithe-
lial cells (IECs), intestinal mesenchymal cells (IMCs), 
immune cells and gut microbiota construct the main 
body of the colon. A few genes with barrier func-
tions in the intestinal epithelium play a significant role 
in protecting the gastrointestinal tract from patho-
gen invasion [17–19]. In colitis and colitis-associated 
carcinogenesis, these cells are disrupted, resulting 
in damaged IECs, disorganized IMCs and excessive 
recruitment of immune cells [20, 21]. Patients with 
IBD and colon cancer have been associated with aber-
rant function of the epithelial barrier [22, 23]. In addi-
tion, IMCs can regulate the development of colon 
tumors, including intestinal inflammation regulation, 
epithelial proliferation, stem cell maintenance, angio-
genesis, extracellular matrix remodeling and immune 
responses [24, 25]. Different immune cells such as neu-
trophils, macrophages and dendritic cells, are activated 
by chronic accumulation and are recognized as major 
contributors to gene alterations [26]. Furthermore, the 
gut microbiota plays a vital role in the modulation of 
the immune system in chronic inflammatory diseases 
of the intestine [27, 28]. Therefore, intestinal epithe-
lial cells, mesenchymal cells, immune cells, and gut 
microflora play a pivotal role in colitis and CAC. In this 
review, we discuss the various roles of different cells in 

the transformation of intestinal inflammation to cancer 
and provide new therapeutic ideas for IBD and colitis-
associated colorectal cancer.

IECs and colitis‑associated colorectal cancer
The epithelium is a single-cell layer consisting of various 
subtypes of particular IECs, such as cup cells, tuft cells, 
absorptive cells, enteroendocrine cells, M cells, Paneth 
cells and goblet cells [29]. These cells have pivotal and 
distinctive functions in maintaining intestinal homeosta-
sis [30]. Paneth cells stay in the small intestine with the 
function of secreting antimicrobial peptides and main-
taining the niche of stem cells in the intestine [31, 32]. In 
contrast, goblet cells are stayed in the large intestines and 
produce abundant glycosylated proteins, such as Muc2 
[33]. Intestinal epithelium cells (IECs) preferentially 
absorb nutrients and have a protective barrier effect and 
strong defense ability against a harmful intestinal micro-
environment [34, 35]. Disruption of the intestinal epithe-
lium is a hallmark of IBD. Moreover, the process of gene 
alterations and pathway changes in intestinal epithelial 
cells has been demonstrated during the formation of IBD 
[36–39]. Intestinal tumors originate from gut epithelial 
cells and develop from gene mutations in a few signal-
ing pathways, such as NF-κB, Wnt, STAT, endoplasmic 
reticulum (ER) stress and transforming growth factor 
(TGF)-β (Fig. 1) [40–42].

Fig. 1 IECs are involved in CAC progression. Many signaling pathways are involved in the occurrence and development of colorectal cancer, such 
as the NF-kB, Wnt, STAT3 and TGF-β pathways. A few genes, such as ASAP3, promote tumor growth by binding to Nemo, while others, such as TRF9, 
regulate the binding of NF-kB to the promoter region by affecting target genes. Immune cells such as myeloid cells, Tregs, and DCs can regulate 
the phosphorylation of STAT3 to affect tumor growth. In addition, the Wnt signaling pathway also affects tumor progression. JMJD2D protein 
can regulate the transcription of Wnt-related genes by binding to β-catenin. Similarly, TRIB3 can also regulate the occurrence and development 
of tumors in intestinal stem cells by affecting Wnt-related genes
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The NF-κB pathway in the intestinal epithelium is the 
first pathway in our discussion. Colonic organoid experi-
ments can assess the epithelial responses to inflamma-
tory cytokines in an in vitro model. In colonic organoids, 
NF-κB signaling is activated in patients with chronic 
inflammation, which leads to the occurrence of colitis-
associated colorectal cancer [43]. In CD patients, NOD2 
is a dominant genetic risk factor, accompanied by many 
rare variants and three main risk-conferring variants [44, 
45]. NOD2 regulates TLR signaling and NF-κB pathways, 
which increases the risk of IBD [35]. Recent studies have 
suggested that P65 (an important component of NF-κB) 
binds to the N-terminus of ITF2 to inhibit ubiquitina-
tion, promotes the stability of ITF2 and reduces colitis-
associated colorectal cancer[46]. Moreover, NFKBIZ 
(also known as IκBζ) gene mutations were abundant in 
colitis samples, but the incidence and severity of colorec-
tal tumors decreased significantly in NFKBIZ-deficient 
mice [47]. The gene deficiency of Nemo (NF-κB essential 
modifier) in the epithelium causes epithelial cell apopto-
sis and affects the expression of antimicrobial peptides, 
leading to bacterial migration to the mucosa. In addition, 
ASAP3 interacts with Nemo to regulate the expression 
of NF-κB, which is associated with poor prognosis and 
plays an oncogenic role in colorectal carcinogenesis [48]. 
Moreover, chemotherapy can activate NF-κB and IRAK4 
by increasing the transcription of TLR9. Meanwhile, the 
expression of TLR9 is also inhibited by IRAK4 or IKK 
inhibitors, which can protect colorectal cancer cells from 
chemotherapy drugs through a feedforward pathway 
[49].

The activation of the Janus kinase (JAK)/signal trans-
ducer and activation of the transcription (STAT) path-
way is important in IEC disorders [50, 51]. STAT3 plays 
a crucial role in maintaining intestinal homeostasis and 
strongly protects against chemically induced colitis [52]. 
Mice with reduced STAT3 activity were highly suscep-
tible to colitis by regulating the IL-6ST/gp130 cytokine 
receptor, which plays a key role in promoting intestinal 
barrier function and epithelial regeneration [53, 54]. 
Conditional knockout mice with a specific STAT3 or 
ATG16L1 deficiency in IECs can affect the secretion of 
IL-22, which is associated with wound healing and has a 
high risk of developing colitis [55–57]. However, abnor-
mal STAT3 activation is also closely related to the malig-
nant progression and pathogenesis of solid tumors such 
as CAC [58]. The activation and translocation of STAT3 
into the nucleus promote the transcription of target genes 
related to cell proliferation, metastasis and inflammatory 
response. In colon epithelial cells, BMI1 and MEL18 can 
promote proliferation and reduce apoptosis to accelerate 
the development of CAC by regulating the secretion of 
IL-6/11, which is a regulator of STAT3 [59]. During CAC 

development, overexpression of the CAMK2γ gene facili-
tates the activation of STAT3 in the epithelium, thereby 
promoting the survival and proliferation of IECs [60]. 
Additionally, the oncogene RXRα is an effective regula-
tor of the inflammatory response that promotes colorec-
tal tumorigenesis by activating the NF-κB-IL-6-STAT3 
signaling cascade [61]. Moreover, mTORC1 can activate 
COX-2 transcription by phosphorylating STAT3 and 
enhancing the interaction with COX-2 promoter in the 
colonic epithelium, thus recruiting T helper-17 (Th17) 
cells and promoting tumor growth [62]. Blockade of IL-6 
levels in IECs can inhibit the activation of STAT3 and 
abnormal cell proliferation, which provides new thera-
peutic potential [63, 64]. Thus, these studies indicate that 
STAT3 plays a protective role by maintaining epithelial 
cell proliferation during acute colitis, while abnormally 
activated STAT3 promotes the progression of CAC.

The third pathway in our discussion is the Wnt/β-
Catenin signaling pathway, which is essential for the 
pathogenesis of CAC [65]. Whole-exome sequencing 
analyses have indicated that Wnt pathways play a pre-
dominant role in IBD-associated colon tumorigenesis 
[66]. There is an important correlation between the acti-
vation of Wnt and the expression levels of a few genes 
in intestinal epithelial homeostasis [67–69]. In the CAC 
mouse model, MUC1-C can form a transcription com-
plex with MYC and act on the LGR5 promoter region, 
thereby activating LGR5 expression and tumor growth 
[70, 71]. In addition, histone demethylase JMJD2D is 
highly expressed in tumors, regulates a few signaling 
pathways (including Wnt/β-Catenin and Hedgehog) and 
activates the transcription of downstream target genes 
related to proliferation, migration, and invasion, which 
leads to the formation of CAC [72, 73]. In colorectal can-
cer stem cells, TRIB3 can interact with β-catenin and 
Tcf4 to increase AOM/DSS-induced colorectal tumor 
formation and xenograft tumor growth in mice [74]. Cur-
rently, researchers are exploring drugs that can inhibit 
key signaling pathways. For example, Zeng et  al. found 
that scutellarin improved colitis-related colorectal cancer 
by reducing Wnt/β-Catenin signaling [75]. Researchers 
also found that synbiotics can significantly inhibit abnor-
mal activation of the Wnt signaling pathway in an AOM/
DSS-induced mouse model and alleviate the progression 
of CAC [76].

Changes in gene expression may affect the devel-
opment of inflammatory bowel disease [77–79]. The 
MEP1A gene, which encodes the α subunit of meprins, 
has a strong relationship with UC patients. In IECs, the 
subunit of meprins is associated with the transmem-
brane β subunit and cleaves different substrates, which 
suppresses the development of UC. Mep1A-deficient 
mouse models are more susceptible to chemically 
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induced colitis, in accordance with the decreased 
expression of MEP1A in UC patients [80]. In addition, 
it has been reported that hepatocyte nuclear factor 4α 
(HNF4α), a nuclear transcription factor encoded by the 
gene HNF4α, is crucial for epithelial tight junctions and 
intestinal permeability by regulating several cytokines 
and signaling pathways. In IBD patients, HNF4α has 
low expression, which is consistent with the results in 
mice lacking HNF4α in IECs, indicating that IECs are 
more susceptible to drug mediated colitis in mouse 
models [81]. Moreover, FAM3D (a cytokine-like mol-
ecule) is highly expressed in the gastrointestinal tis-
sues and is associated with colonic mucosal integrity, 
epithelial cell proliferation, antibacterial effects and 
the development of inflammatory bowel disease [82]. A 
few genes, such as BRG1 and SETD2, attenuate inflam-
mation in CRC by modulating oxidative stress [83, 
84]. E-cadherin, a cell adhesion molecule expressed in 
epithelial cells encoded by the gene CDH1, plays an 
important role in cell growth, proliferation, and epithe-
lial differentiation. In addition, a typical pathological 
characteristic of IBD patients is the loss or disorder of 
E-cadherin accompanied by increased epithelial per-
meability [85]. These differentially expressed genes and 
signaling pathways have the potential to become targets 
for the diagnosis and treatment of IBD.

IMCs in CAC progression
Intestinal mesenchymal cells (IMCs) are major compo-
nents of the normal intestinal tract and intestinal tumors 
[86]. They include numerous cell types with a similar 
origin, function and molecular markers, such as intesti-
nal fibroblasts, myofibroblasts and pericytes [87] (Fig. 2). 
Recent studies used unbiased single-cell profiling involv-
ing over 16,500 colonic mesenchymal cells and revealed 
four subsets of fibroblasts, including TNF superfamily 
member 14 (TNFSF14), fibroblastic reticular cell-associ-
ated genes, IL-33, and lysyl oxidases, which express dif-
ferent transcriptional regulators and signaling pathways 
[88, 89]. Activated IMCs can promote inflammation 
and tumor progression by directly affecting the growth 
of neoplasms and changing the microenvironment of 
the surrounding tumors. Cancer-associated fibroblasts 
(CAFs) consist of a population of cells from different ori-
gins that lead to tumor initiation, progression, metasta-
sis and poor outcomes of patients via interactions and 
changes in the microenvironment [90, 91].

Fibroblasts
Fibroblasts reside in the lamina propria with α-smooth 
muscle actin (α-SMA)-negative characteristics, are adja-
cent to the intestinal epithelium and remain in the qui-
escent phase with poor transcriptomic and metabolic 

Fig. 2 The main function of IMCs in intestinal homeostasis. Intestinal mesenchymal cells play an important role in maintaining intestinal 
homeostasis. The main functions of fibroblasts and pericytes are maintaining epithelial homeostasis, stem cell niche, vascular function and ECM. 
Meanwhile, CAFs and myofibroblasts can promote inflammation, cell proliferation, angiogenesis, invasion and migration
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activities in the normal colon [92]. Fibroblasts have dif-
ferent characteristics than epithelial and immune cells 
and possibly originate from a mesenchymal lineage. They 
are connective tissues that can synthesize collagen com-
ponents [93]. The main functions of fibroblasts include 
the accumulation and maintenance of the extracellu-
lar matrix (ECM), stabilization of adjacent epithelia and 
regulation of inflammation [92, 94]. Many studies have 
shown that fibroblasts can be activated by multiple fac-
tors, such as growth factors, inflammatory cytokines and 
chemokines, mechanical stress and reactive oxygen spe-
cies in colitis and colorectal cancer [95, 96]. The secretion 
of periostin in fibroblasts can promote the occurrence 
and development of colorectal cancer by activating FAK-
Src kinase, the Yap/TAZ pathway and IL-6 expression 
in tumor cells [97]. In addition, IL-11+ fibroblasts can 
activate tumor cells and fibroblasts by producing a large 
amount of IL-11 and promote tumorigenesis at the same 
time [98]. Furthermore, fibroblasts in tumors include 
activated fibroblasts (myofibroblasts), cancer-associated 
fibroblasts (CAFs) and cancer-associated mesenchymal 
stem cells (MSCs) [99].

Myofibroblasts
Myofibroblasts are stellate shaped, proliferate and are 
usually more active, which makes them different from 
quiescent fibroblasts in terms of morphology and 
metabolism [100]. The typical characteristics of intesti-
nal myofibroblasts are the expression of α-SMA, CD90, 
and vimentin. Among these markers, α-SMA is consid-
ered the most typical intestinal myofibroblast marker. 
However, α-SMA is also expressed in pericytes, partial 
smooth muscle cells and bone marrow-derived mesen-
chymal stromal cells [101]. Myofibroblasts can perform 
various functions by regulating signaling pathways and 
cytokines. MyD88 signaling in myofibroblasts promotes 
CAC progression by activating osteopontin secre-
tion, macrophage M2 polarization and the STAT3/
PPARγ pathway [102]. Activated fibroblasts can pro-
duce MMPs, which are ECM-degrading proteases and 
promote cancer cell invasion. For example, the over-
expression of MMP1 induces invasiveness, and MMP3 
expression promotes epithelial-to-mesenchymal tran-
sition (EMT) progression and the invasion of cancer 
cells into adjacent tissues [103]. Studies conducted in 
 TnfΔARE/+ mice have shown an increase in the expres-
sion of MMP9 and ICAM1, thereby inducing ECM 
remodeling and adaptive immune responses [104, 105]. 
Activated fibroblasts play a role in regulating immune 
homeostasis, including immune cell recruitment and 
modulation by secreting chemokines and infection- or 
injury-related cytokines. Additionally, myofibroblasts 

can maintain epithelial homeostasis by sensing the 
inflammatory environment created by the tissue or bac-
teria and mediate epithelial regeneration through the 
activation of the Cox-2 signaling pathway [106–108].

Cancer‑associated fibroblasts
Cancer-associated fibroblasts (CAFs) have a specific 
definition that includes all fibroblastic, non-vascular, 
non-neoplastic, non-inflammatory and non-epithelial 
features in tumorigenesis [109–111]. Usually, the mark-
ers of CAFs are α-SMA, fibroblast activation protein-α 
(FAP-α), fibroblast-specific protein-1 and platelet-
derived growth factor receptor-β (PDGFR-β) [112]. In 
cancer-associated fibroblasts, lncRNA-H19 is highly 
expressed and promotes stemness and chemoresistance 
through exosomal transmission. And H19 promotes 
CRC progression by competitively binding miR-141 
and increasing the expression of β-catenin [113]. In 
recent years, the importance of CAFs in the progres-
sion of colitis and CAC has been recognized.

In CAFs, TGF-β signaling is necessary for metasta-
sis by promoting the activation of STAT3 signaling and 
the secretion of CCL2 and CCL8 during the develop-
ment of CAC disease [114]. Additionally, Smad7 and 
Smurf1 (negative regulators in the TGF-β signaling 
pathway) are decreased in Ikkβ-deficient fibroblasts, 
which can increase the secretion of hepatocyte growth 
factor (HGF) and activate CAC progression [115, 116]. 
In addition, CAFs are associated with ECM remod-
eling, which can produce ECM constituents and rebuild 
enzymes, such as TIMPs, MMPs and other proteases 
[117, 118]. Moreover, another study found that inhibit-
ing the activation of STAT3 in  COL1+ fibroblasts can 
reduce tumor growth, while the activation of STAT3 
can accelerate the progression of CAC. Thus, reducing 
the activation of STAT3 in  COL1+ fibroblasts has the 
potential to become a therapeutic target for CAC [119].

Additionally, CAFs have been proposed to regulate 
the tumor microenvironment [120, 121]. CAFs produce 
various cytokines and chemokines to regulate tumor 
proliferation, migration and adhesion [122, 123]. In 
CAC patients, a high level of CCL2 produced by CAFs 
leads to the formation of macrophages with a tumor-
suppressive function [124]. In addition, researchers 
have found that MCAM is a specific marker for colo-
rectal cancer stromal cells in the CAC mouse model. In 
 MCAM+ cancer-associated fibroblasts, MCAM inter-
acts with IL-1 receptor 1 to enhance the NF-κB-IL34/
CCL8 signaling pathway and promotes the recruitment 
of tumor-associated macrophages [125]. The co-expres-
sion of CAFs and macrophages has become an impor-
tant marker of malignant tumors [126, 127].



Page 6 of 19Li et al. Cell & Bioscience          (2023) 13:194 

Various types of immune cells are correlated 
with CAC 
Several studies have recently shown that colitis-associ-
ated colorectal cancer is accompanied by many adaptive 
immune cells, including T and B lymphocytes, and innate 
immune cells that contain myeloid-derived suppressor 
cells (MDSCs), macrophages, dendritic cells (DCs), neu-
trophils, and NK cells (Fig. 3) [128–131].

T lymphocytes, such as regulatory T cells (Tregs) and 
helper T cells (Th) are associated with CAC [132, 133]. 
The removal of  CD4+ T cells and blocking CCL4 or 
IL-17 reduced the formation of tumorigenesis caused 
by myeloid cells [134, 135]. G-CSF/G-CSFR increased 
the secretion of FoxP3-expressing  CD4+ and  CD8+ T 
cells, while G-CSFR deficiency in T cells increased cyto-
toxic activity in the tumor microenvironment by pro-
ducing IL-17A which improved resistance to anti-PD-1 
therapy [136–138]. In IBD patients, the blockade of 
IL-7R reduced colonic inflammation by inhibiting T-cell 
homing to the gut and altering the activation of effector 
T cells [139]. Additionally, S1PR4 affected the expres-
sion of PIK3AP1 and LTA4H, which is associated with 
the proliferation and survival of  CD8+ T cells [140]. In 
recent years, immunotherapy has played an important 
role in the treatment of IBD patients [141–143]. FK228 
is a histone deacetylase inhibitor that can upregulate the 
expression of PD-L1 in tumor cells and enhance the anti-
tumor effect by affecting the activity of  CD4+ and  CD8+ 
T cells [144]. In addition, the recruitment of  CD4+ Th 

lymphocytes can play an important role in maintaining 
chronic enteritis in UC and CD patients and promot-
ing colitis-associated colon cancer. Detection in patients 
with colonic CD showed that high levels of Th1 cytokines 
lead to an increased risk of CAC in the intestine, whereas 
the Th2 immune response is directly involved in colitis-
associated tumorigenesis by inducing DNA mutations 
caused by Th2-associated cytokines (i.e., IL-4 and IL-13) 
in cultured colonic epithelial cells [145, 146]. The expres-
sion of FAM64A regulates the differentiation of Th17 but 
not Th1 cells by modulating the IL-6/STAT3 axis in CAC 
[147, 148]. Moreover, regulatory T cells are  CD4+ T cells 
that express the master transcription factors Foxp3 and 
CD25, showing immunosuppressive effects by direct cell 
communication and the release of the cytokines TGF-β 
and IL-10 [149, 150]. A few components are necessary 
for the appropriate differentiation and function of Tregs 
[151, 152]. The analysis of single-cell RNA sequenc-
ing data of human colorectal cancer tissues showed that 
MondoA-thioredoxin-TXNIP axis maintains Tregs and 
regulates glucose uptake [153]. Erdman et  al. suggested 
that Tregs could develop pathological changes and at the 
same time reduce tumor formation, which is consistent 
with a recent study that Tregs have antitumor activity in 
colitis-associated colon cancer [154].

Myeloid-derived suppressor cells (MDSCs) originate 
from the bone marrow, which participates in the acti-
vation of specific elements and continues multiplica-
tion in the pathologic environment [155, 156]. MDSCs 

Fig. 3 Immune cells regulate the progression of colon cancer by affecting the secretion of cytokines and chemokines. Under inflammatory 
conditions, immune cells including T cells, dendritic cells, MDSCs, macrophages and neutrophils can secrete cytokines and chemokines to change 
the tumor microenvironment, thus causing DNA damage and activating tumor-related genes
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are involved in suppressing T-cell immunity via numer-
ous mechanisms, including disturbing T-cell function 
by reducing necessary nutrients, destroying the normal 
response of effector T cells, indirectly depressing T-cell 
function by activating the expansion of regulatory T cells 
(Treg), and inhibiting the proper expression of L-selectin 
in naïve T cells [157, 158]. In addition to their immuno-
suppressive activity, MDSCs play an important role in 
enhancing angiogenesis [159, 160]. In B16 and RENCA 
mouse models, STAT3 signaling is considered a funda-
mental factor in increasing angiogenesis activity in tumor 
cells. MDSCs and macrophages and the expression of 
related proteins, such as β-FGF and VEGF, are controlled 
by STAT3 signaling, which is activated in endothelial 
cells, facilitates angiogenesis and can be interrupted 
by STAT3 inhibitors [161]. The pace of colitis develop-
ment slows down with the treatment of resveratrol in 
IL-10-deficient mice accompanied by MDSC multipli-
cation and reduced colitis-associated cytokine produc-
tion [162]. In the development of CAC, MyD88 signaling 
plays an important role in colonic myeloid cells by reg-
ulating the production of pro-inflammatory cytokines 
and by increasing proliferation and reducing apoptosis 
in epithelial cells [163, 164]. Recent studies indicate that 
suppressing the activity of EZH2 promotes MDSC pro-
duction and ameliorates CAC [165]. Moreover, IL-27 
plays an important role in the accumulation of MDSCs 
and increases tumor cell proliferation, which contrib-
utes to CAC development in a murine model [166]. In 
the AOM/DSS model, there were increased tumor loads 
and MDSCs in Card9-deficient mice compared with WT 
mice. In addition,  Card9−/− macrophages caused changes 
in the composition of the intestinal flora, such as a sig-
nificant increase in C. tropicalis [167]. The gut micro-
biota was associated with the increased CXCL1, CXCL2, 
CXCL5 expression and MDSC accumulation in tumor 
tissues [168].

DCs (dendritic cells) play a vital role in the development 
of colitis because DC deficiency has a strong correlation 
with the ease of DSS-induced colitis in a mouse model 
[169, 170]. DCs exhibit a protective effect by activating 
the rehabilitation of the intestinal epithelium instead of 
regulating the immune reaction [171]. Another experi-
ment ablated DCs before DSS treatment and inflamma-
tion was aggravated, indicating that DCs play a protective 
role in the initiation of colitis, except for pathogenicity 
during the progression of tumors [172]. An observation 
in TGF-β-deficient and IL-10-deficient mice suggested 
that IL-10 and TGF-β act as determinant factors of DC 
function in the intestine [173, 174]. In IBD patients, the 
depletion of DCs in their peripheral blood exacerbates 
the development of diseases, which regulate the infil-
tration of MDSCs and cause an increasing number of 

chemokines, such as CCL20 or MAdCAM-1 (mucosal 
vascular address in cell adhesion molecule-1) [175–177]. 
In acute IBD, immature DCs are dramatically decreased, 
showing that several DC subsets may be absent during 
disease recurrence. In addition, M-DC8+ DCs exist in the 
subepithelial dome ileum of CD patients, which secrete 
abundant TNF-α in the treatment of lipopolysaccharide 
(LPS), contributing to the tumorigenesis of IBD [178]. 
Moreover, p38α deficiency in DCs influences the activa-
tion of Tr1 cells by regulating IL-27 and IL-22 secretion, 
which plays a pivotal role in the intestinal inflammatory 
response and tumorigenesis [179]. Additionaly, lympho-
toxin signaling induces the expression of IL22BP through 
the activation of NF-κB in human colorectal tumors and 
cultured human dendritic cells [180].

Intestinal macrophages are located under the epithelial 
layer and are considered to originate from classical blood 
monocytes activated by CCL2/CCR2 [181, 182]. These 
macrophages express many innate receptors, includ-
ing the scavenger receptors CD36/CD163, the trigger-
ing receptor expressed on myeloid cells (TREM)-2, the 
C-type lectin receptor CD209 and the FcgR CD64, which 
promotes the chemotaxis and phagocytosis of bacte-
ria [183, 184]. In a colitis environment, monocytes are 
moved to the LP and transition to inflammatory mac-
rophages in respond to TLR stimulation and secrete pro-
inflammatory cytokines, such as IL-23 [185, 186]. In the 
human body with Crohn’s disease,  CD14+ macrophages 
are most abundant in inflamed tissues, accompanied by 
the secretion of pro-inflammatory cytokines stimulated 
by TLR, whereas resident macrophages do not respond 
to TLR [187–189]. IL-10-deficient macrophages produce 
higher amounts of prostaglandin E2 after LPS stimula-
tion to impede bacterial killing [190, 191]. Moreover, the 
deletion of EPRAP in macrophages increased the levels of 
p105, MEK, and ERK phosphorylation, which led to the 
activation of stromal macrophages in DSS-induced colitis 
[192]. CX3CR1-deficient mice showed significantly lower 
expression of HOMX-1 (an antioxidant and anti-inflam-
matory enzyme) in adenomatous colon tissue by medi-
ating the CX3CR1 receptor [193]. In primary human 
and mouse colorectal cancer samples, mTORC2 is only 
expressed in the adjacent area of macrophages, but not in 
tumor cells, as mTORC2-deficient macrophages stimu-
late tumor growth through the cytokine SPP1/osteopon-
tin [194]. BATF2 attenuated inflammation and protected 
intestinal epithelial cells by inhibiting the transcriptional 
activation of STAT1/CCL2 and reducing the recruitment 
of macrophages in colon tissues [195].

Neutrophils accumulate in specific tissues with acute 
inflammation, acting as the first line of defense, and play 
an important role in resisting pathogenic microorganisms 
[196]. In various mouse colitis-associated models, the 
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depletion of circulating neutrophils accelerates inflam-
mation, which suggested that neutrophils are a protec-
tive factor in the progression of inflammation [197]. 
Activated neutrophils produce numerous pro-inflamma-
tory cytokines, including TNF-α, IL-1, TGF-β and IL-6, 
as well as chemokines, such as CXCL1, CCL2, CCL3, 
CXCL8 and CXCL9, which result in further recruitment 
of leukocytes and activation of inflammatory pathways 
[198]. Additionally, neutrophils increase the production 
of pro-inflammatory microRNAs (miR-31 and miR-155), 
which affect genomic instability by modulating replica-
tion fork collapse and inhibiting homologous recombina-
tion [199, 200]. Moreover, Zhou et al. found that  CD177+ 
neutrophils suppress tumorigenesis of epithelial cells and 
are markedly increased in tumor tissues compared with 
controls in colorectal cancer [201]. Lin et al. found that 
the expression of BATF3 was correlated with the poor 
prognosis of colitis-associated colorectal cancer and pro-
moted the recruitment of neutrophils by modulating the 
CXCL5/CXCR2 axis [202]. Recently, Zhang et  al. iden-
tified IRAK-M as an innate suppressor of neutrophils 
that regulates the activation of STAT1/3/5 and promotes 
tumor growth [203].

In addition, a few innate immune cells, including baso-
phils and γδ T cells, also play an important role in the 
pathogenesis of IBD and CAC. The inhibition of AKR1B8 
activates innate immunity (including excessive infiltra-
tion of basophils and neutrophils) and promotes the 
occurrence of IBD [204]. γδ T cells, a subset of T cells, 
are abundant in the intestinal mucosa and maintain epi-
thelial homeostasis [205]. AKR1B8 deficiency leads to 
increased infiltration of neutrophils and mast cells, as 
well as a decrease in the number of γδ T cells, thereby 
disrupting the self-renewal of intestinal epithelium and 
promoting the progression of inflammation-related colo-
rectal cancer [206].

Impact of the intestinal microbiome on CAC 
Gut bacteria play an essential role in regulating gut 
homeostasis by affecting immunity [207–209]. Dysbiosis 
of the intestinal microbiome is strongly associated with 
many intestinal diseases, such as inflammatory bowel 
diseases (IBD) and colitis-associated colorectal cancer 
(CAC) [210–212]. With the development of next-gener-
ation sequencing technology, an unprecedented view of 
the intestinal microbiome has been recognized as being 
involved in intestinal disorders in IBD and CAC patients 
[213, 214]. Several studies have demonstrated that bacte-
ria promote CAC progression by recruiting macrophages 
and activating T helper cells [215]. The interaction 
between the gut and different microorganisms such as 
pathogenic bacteria, probiotics and fungi will exert or 
reduce tumorigenic factors in the host [216–218] (Fig. 4).

Harmful microbiota, including F. nucleatum and E. coli 
can promote the development of inflammation-related 
colorectal cancer. F. nucleatum was first known as a 
common anaerobic gram-negative bacterium in the oral 
cavity and was recently associated with preterm birth, 
rheumatoid arthritis and colorectal cancer [219]. Recent 
studies have found that F. nucleatum is closely related 
to the occurrence and development of CAC. Adherence 
and invasion are important mechanisms in the induction 
of host defense and host responses. CAC has a strong 
correlation with the invasiveness of F. nucleatum [220, 
221]. And F. nucleatum was detected in 39.5% of human 
CAC samples [222]. In addition, F. nucleatum increased 
the expression of tumorigenic genes in CAC by regulat-
ing the TLR4-PI3K-AKT-NF-κB pathway [223]. Specifi-
cally, F. nucleatum increased the expression of miR-21, 
which represents an increased risk of poor outcomes and 
may regulate the levels of RAS GTPase by activating the 
TLR4 signaling pathway and causing the activation of 
NF-κB signaling in CAC progression [224]. Moreover, F. 
nucleatum can promote the EMT process by activating 
the expression of the EGFR signaling pathway, thereby 
accelerating the progression of CAC [221]. Additionally, 
Rubinstein et  al. suggested that F. nucleatum promotes 
the progression of CAC development via its special 
adhesin FadA and regulation of the E-cadherin/β-catenin 
signaling pathway [225].

E. coli is another commensal bacterium in the human 
gastrointestinal tract and belongs to the gram-negative 
and aero-anaerobic bacteria [226]. Various studies have 
indicated that there is a specific link between E. coli 
and CAC [227, 228]. Adherent invasive E. coli (AIEC) is 
an important pathotype, and the amount of AIEC has 
increased in colitis-associated colorectal cancer com-
pared with normal tissues [229, 230]. FimH adhesin vari-
ants of AIEC can more easily bind to intestinal epithelial 
cells, which causes the recruitment of dendritic cells 
(DCs) and macrophages to prevent infection by modulat-
ing the secretion of the pro-inflammatory cytokines IL-8 
and CCL20 in intestinal epithelial cells [231]. In addition, 
increased oxygenation of colon epithelium and prolif-
eration of E. coli in chemically induced CAC lead to the 
production of colibactin (an oncogenic factor produced 
by E. coli) [232]. In the CAC mouse model, researchers 
have found that restricting the proliferation of E. coli can 
alleviate intestinal inflammation and reduce colorectal 
tumors [27]. Thus, inhibiting the proliferation of Escheri-
chia coli is proposed as a preventive strategy for alleviat-
ing inflammation-related colorectal cancer.

Probiotics are living microorganisms that have a strong 
association with diverse health benefits, such as regu-
lating gut microflora, suppressing inflammation and 
exerting antitumor effects [233–235]. Lactobacillus and 
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Bifidobacterium are two species of probiotics with tumor-
suppressive effects indicated in colorectal cancer cell 
lines and mouse models [237, 238]. And there are three 
main mechanisms by which probiotic bacteria prevent 

colorectal cancer: modulating the immune response, 
inducing cell apoptosis, and exerting antioxidant activity 
[239, 240]. The combination of probiotics and prebiot-
ics inhibits the secretion of pro-inflammatory cytokines 

Fig. 4 Intestinal flora affects tumor progression. In the presence of probiotics in the intestinal tract, NK cells and macrophages phagocytize 
the abnormal flora due to the normal state of the body’s immune system. At the same time, the secretion of cytokines and chemokines inhibits 
the abnormal proliferation of intestinal epithelium. In CAC, E.coli and other harmful bacteria enter intestinal epithelial cells, regulate various immune 
cells, and activate tumor-associated transcription factors (such as TLR4, NF-κB and PI3K/AKT), thus aggravating the tumor progression
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and inflammation-associated enzymes, such as TNF-α, 
IL-1β, iNOS and COX-2, and simultaneously upregulates 
the expression of anti-inflammatory cytokines and pro-
apoptotic factors, such as IL-4, IL-10, p53 and p21 [240–
242]. The probiotic strain Lactobacillus casei Shirota can 
suppress tumor growth by enhancing the cytotoxicity of 
natural killer (NK) cells and IL-12 produced by dendritic 
cells [244, 245]. A recent study revealed that L. casei 
BL23 has an immunomodulatory role in CAC by down-
regulating the cytokine IL-22 and has an anti-prolifera-
tive effect by upregulating caspase-7, caspase-9, and Bik 
[245]. Moreover, MSCs can migrate into the colon and 
maintain the dynamic balance of intestinal microorgan-
isms by inhibiting chronic inflammation, thereby alleviat-
ing CAC progression [246]. Recently, microbiota therapy 
has been involved in preventing and treating intestinal 
dysfunction, including IBD, CAC, pathogenic bacterial or 
viral infection, irritable bowel syndrome (IBS), and anti-
biotic-associated diarrhea [248, 249]. Oral treatment with 
zerumbone inhibits the progression of colitis-associated 
colorectal cancer by reducing the harmful bacteria enter-
otoxigenic Bacteroides fragilis [249].

Although fungi account for only 0.02–0.03% of the 
intestinal microbiota, the increase in the number of fungi 
in the intestinal microbiota is an important factor in the 
development of IBD and IBD-associated colorectal can-
cer [251, 252]. The fungi in the intestine mainly include 
Saccharomyces, Candida, Penicillium and Kluyveromy-
ces. Compared with healthy individuals, the diversity of 
fungal species increased in IBD patients [252]. Notably, 
the abundances of C. albicans and Cryptococcus neo-
formans were increased, while Malassezia sympodialis 
and S. cerevisiae were decreased in IBD [252]. The use 
of a single antibiotic, such as cefoperazone, will induce 
fungal infections (especially C. albicans), which affect 
the composition of bacterial microbiota in the intestine 
[253]. The immune response against intestinal fungi may 
affect intestinal inflammation in patients with IBD. Mice 
with IL-22 deficiency are more likely to be infected by 
C. albicans in the gastrointestinal tract [254]. The secre-
tion of the anti-inflammatory cytokine IL-10 increased 
significantly under S.cerevisiae stimulation, indicating 
that S.cerevisiae plays an anti-inflammatory role. And the 
amount of S.cerevisiae was negatively correlated with a 
CARD9 SNP allele (rs10781499, ‘A’ allele) in IBD patients 
[255]. The SYK-CARD9 signaling axis promotes inflam-
masome activation mediated by commensal gut fungi 
and thereby inhibits colitis and CAC. In the AOM/DSS-
induced mouse model, treatment of mice with antifun-
gal drugs aggravated colitis and CAC [256]. In addition, 
Malassezia restricta exists on the surface of mammalian 
skin, which can aggravate colitis in mice and trigger the 
innate inflammatory response through CARD9 [257]. 

Moreover, using fungal ITS sequencing, researchers 
found that some mucosa-related fungi were more abun-
dant in CD patients, and Malassezia restricta was espe-
cially present in patients with the IBD CARD9 risk allele 
[258]. These results indicated that targeting specific fungi 
may become a therapeutic strategy for colitis-related 
colorectal cancer.

Therapies for IBD‑associated CRC 
Currently, surgical resection is the most commonly used 
treatment for patients with early-stage (stage 0 to II) 
colorectal cancer. However, chemotherapy drugs such 
as 5-fluorouracil (5-FU), folinic acid, oxaliplatin and 
capecitabine are usually used for patients with stage II 
colorectal cancer. And patients with stage III and IV 
colorectal cancer are usually treated with chemotherapy 
and targeted therapy [260, 261]. For IBD-associated CRC, 
anti-inflammatory therapy in IBD patients may be an 
effective way to prevent CAC [261].

Chemotherapy has been widely used in colorectal can-
cer. And 5-fluorouracil is the preferred anticancer drug 
for the clinical therapy of colorectal cancer. Although 
5-FU has therapeutic effects on advanced CRC, the 
development of drug resistance limits its antitumor 
effect. And researchers have conducted in-depth research 
on the molecular mechanism of 5-FU resistance in recent 
years, hoping to alleviate the development of resistance 
caused by 5-FU [262]. The inhibition of METTL3 can 
enhance DNA damage and induce apoptosis in CRC cells 
by regulating the expression of RAD51AP1, thereby pro-
moting the therapeutic sensitivity of 5-FU. Targeting the 
METTL3/RAD51AP1 axis has the potential to become 
a new adjuvant therapy strategy in 5-FU-resistant CRC 
patients [263]. In addition, the activation of the PI3K/Akt 
and Wnt/β-catenin signaling pathways can lead to the 
upregulation of HIF-1α in 5-FU-resistant CRC cells. And 
the inhibition of HIF-1α combined with 5-FU treatment 
may enhance the sensitivity of colorectal cancer to 5-FU 
[264].

The epidermal growth factor receptor (EGFR) gene 
and its proteins play a key role in promoting CRC tumor 
growth [265]. EGFR-targeted monoclonal antibodies 
such as cetuximab and panitumumab have been widely 
used to treat advanced colorectal cancer [267, 268]. 
KRAS/NRAS (RAS) wild-type, as well as BRAF/HER2 
and MAP2K1 (MEK) mutated CRC patients, are sensi-
tive to anti-EGFR therapy [268]. The expression of EGFR 
increased in tumor-related myeloid cells and was associ-
ated with the outcomes of CRC patients [269]. Anti-angi-
ogenic therapy is also an effective treatment for CRC that 
targets the vascular endothelial growth factor (VEGF) 
protein and affects the development of blood vessels 
during tumor growth. In CAC, inflammation leads to 
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colorectal tumors that are unresponsive to anti-VEGF 
therapy [138]. To improve the therapeutic effect, multi-
target combination therapies are used to treat CAC. The 
combination of a VEGF inhibitor and a C3b/C4b block-
ing agent can effectively inhibit angiogenesis and tumor 
immunity in a mouse CAC model [270].

Immunotherapy has become an effective approach 
for the treatment of various types of cancers [271]. A 
growing number of studies indicate that immune check-
point therapy plays an important role in mediating the 
immune response mediated by antitumor T cells in the 
tumor microenvironment [272]. Antibodies targeting 
PD-1 (programmed cell death 1, also known as PDCD1) 
and PD-L1 (PDCD1 ligand 1, also known as B7H1 and 
CD274) are promising strategies in many cancer types, 
including colorectal cancer. PD-1 is normally seen on the 
surface of immune cells, such as activated T cells, and is 
especially overexpressed in inflammatory and tumor con-
ditions [274, 275]. Recently, it has been shown that the 
loss of PD-L1 in human colorectal cancer cells can lead to 

chemoresistance [275]. Moreover, CTLA-4 is a co-inhib-
itory protein usually seen on tumor cells that plays a vital 
role in immune checkpoint therapy by downregulating 
the activation and expansion of tumor reactive T cells. 
Additionally, anti-CTLA-4 promotes antitumor activity 
by selectively reducing Tregs and simultaneously activat-
ing Teffs in tumors [276]. Recent studies have shown that 
treating mice with therapeutic TNF inhibitors combined 
with PD-1 and CTLA-4 immunotherapy can improve 
colitis and antitumor efficacy [278, 279]. In addition, the 
gene expression of the immune checkpoint molecules 
Tim-3, LAG-3, Galectin-9, PTPN2 and BTLA is signifi-
cantly upregulated in patients with colorectal cancer and 
may become a potential therapeutic target [279–281].

Anti-cytokine therapy, such as anti-TNF and IL-6 
therapy, is used in the treatment of IBD, which improves 
the therapeutic efficiency and prevents the occurrence 
of CAC (Table  1) [282–284]. Anti-TNFα treatment can 
block the activation of TNFα receptors and reduce the 
apoptosis of intestinal epithelial cells, as well as inhibit 

Table1 The clinical experiment of therapies for IBD

The data was obtained from www. clini caltr ials. gov

Drug Target Disease Phase No. of patients Interventions Study Completion Date

PF-04236921 IL-6 Crohn’s disease Phase II 250 Drug: PF-04236921 SC injection February 2015

Esketamine IL-6 Crohn’s disease Phase IV 120 Drug: Esketamine; Drug: 
Placebo

March 2022

UTTR1147A IL-22 Ulcerative colitis; Crohn’s disease Phase II 143 Drug: UTTR1147A July 2022

ABX464 IL-22 Ulcerative colitis Phase II 32 Drug: ABX464; Drug: Placebo 
oral capsule

September 2018

Mirikizumab IL-23 Crohn’s disease Phase II 191 Drug: Mirikizumab; Drug: 
Placebo

February 2021

Risankizumab IL-23 Crohn’s disease Phase II 121 Drug: Risankizumab IV; Drug: 
Risankizumab SC; Drug: Placebo

November 2016

Ustekinumab IL-23, IL-12 Crohn’s disease Phase II 526 Drug: Placebo; Drug: Usteki-
numab

December 2010

Adalimumab TNF-α Moderate to severe Crohn’s 
disease

Phase IV 100 Drug: Adalimumab January 2017

Golimumab TNF-α Ulcerative colitis Phase IV 112 Drug: Golimumab September 2019

Certolizumab TNF-α Crohn’s disease Phase IV 20 Drug: Certolizumab Pegol October 2018

Infliximab TNF-α Ulcerative colitis Phase IV 21 Drug: Infliximab November 2012

SHR0302 JAK1 Crohn’s disease Phase II 144 Drug: SHR0302; Drug: Placebos December 2021

Upadacitinib JAK1 Crohn’s disease Phase III 524 Drug: Upadacitinib; Drug: 
Placebo for Upadacitinib

January 2022

ABT-494 JAK1 Crohn’s disease Phase II 220 Drug: Placebo; Drug: ABT-494 August 2017

PF-06651600 JAK3 Ulcerative colitis Phase II 319 Drug: PF-06651600 or Placebo; 
Drug: PF-06700841 or Placebo; 
Drug: PF-06700841; Drug: 
PF-06651600

May 2021

PF-00547659 MAdCAM-1 Crohn’s disease Phase II 268 Drug: PF-00547659 July 2016

MT-1303 S1P1 Crohn’s disease Phase II 46 Drug: MT-1303 August 2017

Vedolizumab α4β7 Inflammatory bowel disease – 24 Drug: Vedolizumab February 2019

Abrilumab α4β7 Ulcerative colitis Phase II 359 Biological: Abrilumab; Drug: 
Placebo

April 2018

http://www.clinicaltrials.gov
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intestinal permeability. Infliximab, an anti-TNFα drug 
for IBD treatment, was recently found to facilitate res-
toration of the colonic barrier of microbiota in Crohn’s 
disease [285]. As an effective pro-inflammatory cytokine, 
IL-6 plays an important role in regulating the immune 
system, such as regulating T-cell activation to control the 
balance between Th cells and immunosuppressive regula-
tory T cells in IBD [286]. Also, IL-22 is closely related to 
mucosal immunity and can directly participate in regu-
lating fungal function. It has been found in humans and 
mice that IL-22 induces anti-bacterial related reactions, 
promotes epithelial regeneration, coordinates the endo-
plasmic reticulum (ER) stress response, and has poten-
tial clinical application as a mucosal healing therapy for 
IBD [40, 288]. In addition, the downstream signaling 
targets of inflammatory cytokines are also new thera-
peutic strategies for IBD. Small molecule JAK inhibitors 
repress the expression of a large variety of pro-inflam-
matory cytokines, including IL-6, IL-12 and IFN-γ, in the 
process of IBD [288]. And in the early stage of Crohn’s 
disease, Smad7 is expressed in a large number of cells in 
the epithelium and lamina propria of the new terminal 
ileal mucosa, and the use of Smad7 blocker is helpful to 
prevent postoperative recurrence [290, 291]. Moreover, 
a clinical study showed that bone marrow mesenchy-
mal stem cells can be widely used in fistula treatment of 
patients with Crohn’s disease [291]. And human mesen-
chymal stem cell-derived exosomes (MSC-Exos) have 
similar functions as bone marrow mesenchymal stem 
cells in immune regulation and tissue repair, which can 
protect against experimental colitis and play a potential 
role in the treatment of IBD  [293 294]. T-cell trafficking 
disruption and transcription factor inhibition are new 
therapeutic strategies that have recently been carried 
out in clinical trials. Specifically, targeting β7 integrins 
and the endothelial adhesion molecule MAdCAM-1 can 
effectively inhibit the migration of lymphocytes [294]. 
Recent studies have indicated that α4β7− and α4β7+ T 
cells may upregulate αEβ7 in the intestinal mucosa by 
activating TGF-β signaling [295]. Another trafficking 
modulators sphingosine-1-phosphate receptors (S1PRs) 
is dysregulated on intestinal vascular endothelial cells in 
patients with IBD, and is involved in the growth, angio-
genesis, migration and barrier homeostasis of vascu-
lar endothelial cells [296]. In addition, the transcription 
factor GATA3, whose expression is correlated with the 
secretion of Th2- and Th9-related cytokines, has been 
found in UC patients, and the GATA3 DNAzyme may 
play a role in the treatment of UC patients [297]. Addi-
tionally, RORγt (a transcription factor in Th17 cells) can 
be regulated by a specific strain that induces Th17 cells 
in IBD patients and promotes the process of colitis [298]. 
Therefore, new targets of chemotherapy, targeted therapy 

and immunotherapy have the potential to become effec-
tive methods for the treatment and prevention of colitis-
associated colorectal cancer.

Conclusion
In this study, we reviewed the important functions and 
crosstalk among different cells, such as IECs, IMCs, 
immune cells and gut microbiota, in the progression of 
colitis-associated colorectal cancer. These cells can regu-
late the occurrence and development of CAC in many 
ways. Wnt, NF-κB, STAT and other signaling pathways 
regulate the carcinogenesis of intestinal epithelial cells 
and stromal cells. Furthermore, various immune cells 
affect tumor progression by secreting cytokines and 
chemokines, and the gut microbiota regulates tumo-
rigenesis by influencing the immune response. The 
interactions among microorganisms, immune cells, and 
epithelial cells regulate the occurrence and development 
of tumors. However, the regulatory mechanisms between 
these cells are still unclear.

In recent years, a few studies have shown that chemo-
therapy, targeted therapy and immunotherapy have been 
carried out in mouse models of CAC and have had thera-
peutic effects. However, clinical research on CAC is rare 
and requires further in-depth investigation. In addition, 
many researchers have edited harmful bacteria and used 
probiotics to alleviate tumor progression and chemore-
sistance in CAC [300]. However, the target cells and spe-
cific molecular mechanisms of these drugs and therapies 
still need to be further studied. Therefore, in future stud-
ies, we should focus on regulating specific signaling path-
ways in various cell types and clarifying the regulatory 
mechanisms between different cell types. It is important 
to investigate the crosstalk between various cells and to 
design drugs for chemotherapy, targeted therapy and 
immunotherapy, which provide new approaches for CAC 
patients.
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