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Abstract 

Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strate-
gies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimen-
tal evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. 
The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors 
and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its 
influence on the immune system. In the last few decades, with the development of next-generation sequencing 
(NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy 
through the immune system has been gradually confirmed. Here, we review important studies published in recent 
years focusing on the influences of microbiota on immune system and the progression of malignancy. Further-
more, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint 
blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate 
the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more system-
atic understanding of tumor treatment in the future and promote basic research and clinical application in related 
fields.

Keywords Tumor immunotherapy, Microbiome, Immunity, Immune checkpoint blockade, Adoptive T-cell therapy, 
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Introduction
Cancer is the second leading cause of human death. The 
prevention and control of cancer is still challenging. Pop-
ulation expansion and aging, which have been reflected 
in the growth rate of the number of cancer diagnoses 
and deaths due to cancer, inevitably challenge the pro-
cess of rapid social and economic development and are 
important indicators of its quality. With the increasing 
incidence of cancer, research on its treatment has long 
been a popular and difficult topic in modern biology and 
medicine. Traditional tumor treatment methods, includ-
ing chemotherapy, radiotherapy and surgical resection, 
are prone to drug resistance, have a high recurrence rate 
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and greatly harm the patient’s body, which limits their 
prognostic effect. Therefore, new tumor treatment strate-
gies that induce less resistance are urgently needed. Over 
the past few decades, a large amount of basic experimen-
tal data and clinical trial results have shown that immu-
notherapy has the potential to change this situation. 
However, these treatments have different outcomes in 
different patients; some patients experience lasting ben-
efits, and others do not benefit at all, which limits their 
clinical application [1–4]. This situation makes the devel-
opment of innovative combination therapy to overcome 
drug resistance and improve the response rate an impor-
tant aspect of tumor therapy research.

With the progress and development of whole genome 
sequencing technology, a substantial amount of evidence 
has shown that the microbiota in the human body has an 
important influence on the effect of tumor therapy [5, 6]. 
It is estimated that a normal adult can be colonized with 
up to 3 ×  1013 commensal microbial cells, totaling over 
3000 species, with over 97% colonizing the colon and the 
rest distributed throughout the body [7, 8]. A variety of 
factors can influence the symbiotic microbial composi-
tion within an individual, such as the composition of the 
maternal flora, the manner in which the infant is deliv-
ered, diet, exposure to antibiotics or other drugs, lifestyle, 
and environmental factors [9]. Thus, in contrast to the 
relative uniformity of microbes among different individu-
als at the phylum level, the composition of gut microbes 
at the species level varies greatly among individuals, 
making it difficult for researchers to define the compo-
sition of the core healthy gut microbes in humans. This 
challenge suggests that it may be more appropriate to 
define indicators of a core healthy microbiome based on 
the microbial function indicated by the presence of genes 
involved in microbial metabolic pathways [10, 11].

Commensal microbiomes are closely related to body 
health, and their disorders can lead to a variety of dis-
eases [12, 13]. Increasing attention has been given to 
the relationship between the gut microbiome and the 
occurrence and development of tumors [14–16]. In addi-
tion, with the in-depth study of tumor therapy in recent 
years, a large amount of data has shown that the gut 
microbiota has a considerable impact on the results of 
the treatment of various types of tumors, including lung 
and kidney cancers [17], melanoma [18], and colorectal 
cancer [19]. Most studies have confirmed that the gut 
microbiota affects the antitumor response by influencing 
the immune system. In response to these findings, several 
strategies have been developed to alter gut microbiome 
composition and ultimately prolong progression-free 
survival (PFS) and overall survival (OS) in patients.

Here, we review important studies published in recent 
years focusing on the influences of the microbiota on 

the maturation of the immune system. Furthermore, we 
emphasize the microbiota and the mechanisms under-
lying its effects on tumor immunotherapy, including 
ICB and ACT; we also highlight strategies that shape 
the microbial composition to facilitate the antitumor 
immune response to enable a more systematic under-
standing of tumor treatment in the future and promote 
basic research and clinical application in related fields.

Gut microbiome and tumor progression
One of the hallmarks of malignant tumors is gene insta-
bility and mutation [20, 21], and certain gut microbes 
that can induce gene mutation have an important influ-
ence on the occurrence and progression of tumors, espe-
cially in the gastrointestinal system [22, 23]. Regarding 
the specific mechanism of microbes affecting tumors, 
current research results mainly support two modes of 
action: direct and indirect carcinogenic effects. Some 
bacteria have direct carcinogenic effects and are known 
as carcinogenic microorganisms. For example, Helico-
bacter pylori can produce viral factors, including ure-
ase, which act on epithelial cells in gastric pits, leading 
to endoplasmic reticulum stress, autophagy, oxidative 
stress and other inflammatory reactions, thus promot-
ing the pathological changes of gastric tissues, which may 
develop into gastric cancer [24].

Similarly, Salmonella Typhi bacteria that colonize the 
gallbladder can also produce a cancer-causing typhoid 
toxin, which causes DNA damage and cell cycle changes 
in gallbladder cells, leading to gallbladder cancer[25]. 
Enterotoxigenic Bacteroides fragilis (ETBF) has been 
associated with the induction of colitis and colon tumo-
rigenesis [26]. The toxin produced by ETBF can lead to 
chronic inflammation in CRC. Mechanistically, ETBF can 
migrate from the intestinal tract and localize to the mam-
mary gland, where it induces epithelial cell proliferation 
and promotes tumor growth and metastasis in a Toll-like 
receptor 4 (TLR4)-dependent pathway [27, 28]. Fusobac-
terium nucleatum adheres to colon tissues through its 
unique FadA adhesin, which binds to E-cadherin on the 
surface of colon cells and activates β-catenin signaling 
and Annexin A1, resulting in inflammatory and carcino-
genic responses [29, 30].

In addition, carcinogenic pathogens can also induce 
tumorigenesis indirectly through immune cells of the 
tumor microenvironment. F. nucleatum can express 
Fap2 protein in the tumor microenvironment, which 
binds to the T-cell immunoglobulin and ITIM domain 
(TIGIT) receptor of immune cells and inhibits the cyto-
toxicity of natural killer (NK) cells and activation of T 
cells, thus producing immunosuppressive effects and 
promoting tumor growth and metastasis [31]. In recent 
impressive research reports, Pushalkar et  al. induced 
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immunogenicity reprogramming of the tumor microen-
vironment by reducing the microbial load in pancreatic 
tumors, including a reduction in myeloid-derived sup-
pressor cells (MDSCs) and increased differentiation of 
M1-type macrophages, and promoted  CD4+ T-cell dif-
ferentiation and  CD8+ T-cell activation, thus improving 
the effect of tumor treatment [32]. Ma and colleagues 
found that bile acid (BA) produced by intestinal micro-
bial metabolism could act as a messenger to control the 
accumulation of chemokine-dependent NKT cells in 
the liver and promote liver-specific antitumor immu-
nity [33]. Short-chain fatty acids (SCFAs) could lead to 
an increase in the number of Tregs in the colon, as well 
as the production of the anti-inflammatory cytokines 
interleukin-10 (IL-10) and transforming growth factor-β 
(TGF-β), which inhibit the development of tumors [34]. 
In GF- or antibiotic-treated mice, Kras mutation and p53 
gene deletion cannot induce lung cancer because pulmo-
nary symbiotic bacteria can induce the proliferation and 
activation of γδT cells and promote the development of 
inflammatory tumors through the local release of IL-17 
and IL-23 [35]. Another study also found that p53 muta-
tions induced cancer only in the presence of gallic acid, 
which was produced by commensal bacteria [36]. All this 
evidence suggests that intestinal microbes play an impor-
tant role in tumor progression.

According to the current research results, most of the 
microbes that promote tumor progression by inducing 
gene instability are somewhat specific microbial species 
and their toxic proteins, and the disturbance of intes-
tinal microecology or increased microbial load in the 
tumor microenvironment is often related to the inhibi-
tion of antitumor immunity. However, the fine regulation 
between intestinal microecological disorders and antitu-
mor immune responses has not been thoroughly eluci-
dated, and most research results lack more general trends 
and characteristics, which may be due to the limitation 
of the research scale or differences in research methods.

Microbiome‑based tumor diagnosis
In view of the nonnegligible influence of the microbiome 
on tumor progression, identifying microbial characteris-
tics is a valid means to diagnose the threat and progres-
sion of tumors [37]. CRC and advanced adenoma (AA) 
are closely related to the gut microbiome, but AA is 
easier to cancerate. To identify AA from CRC, metagen-
omic analysis was used to describe the microbiome pro-
file and microbial single nucleotide polymorphism (SNP) 
characteristics [38]. Another recent study distinguished 
clinically relevant subtypes of precancerous colorectal 
polyps, such as tubular adenomas (TAs) and sessile ser-
rated adenomas (SSAs), through microbial signatures 
from 971 patients [39]. Specifically, TA is associated with 

a decrease in microbial methanogenesis and mevalonate 
metabolism, while SSAs exhibit increased NAD, bile acid, 
and sulfate metabolic potential. This study offers human-
ized evidence that microbial characteristics can serve as 
biomarkers of the stage of tumor progression.

In addition to the gut lumen, microbiome-based tumor 
diagnosis can also be applied broadly. Yang et  al. pro-
vided a random forest analysis approach based on the 
oral-gut-tumor microbiome for the early detection of 
hepatocellular carcinoma (HCC) [40]. The fecal microbi-
ome is also different between cervical cancer patients and 
healthy controls, with Ruminococcus_2 negatively corre-
lated with cancerous stage [41]. Moreover, with the usage 
of artificial intelligence, tumor diagnosis has moved to a 
new phase. Xu and colleagues exploited an artificial intel-
ligence diagnosis model, called DeepMicroCancer, for 
a broad spectrum of cancer types [42]. Combined with 
random forest and transfer learning models, DeepMicro-
Cancer covers more than twenty common types of can-
cer, and the accuracy that could be achieved for blood 
samples is satisfactory for clinical scenarios.

Impact of the gut microbiome on the immune 
system
The commensal microbes distributed throughout the 
human body maintain a continuous interaction with 
the host. Many researchers believe that the gut, which 
exhibits immunoreactions driven by a high density of 
microbes, is the largest immune organ in mammals 
[14, 43]. Mammalian immune systems have evolved to 
fight pathogenic microorganisms due to the interac-
tion between the host and commensal microbes [44]. 
Early colonization of microbes on mucosal membranes 
in mammals plays an important role in the development 
and maturation of the immune system. The individuality 
and variability of commensal configuration are highest in 
the first 3  years, during which infants are more suscep-
tible to pathogen infections, and such life-threatening 
infections rarely occur in adulthood [45].

Germ-free (GF) mice are the most commonly used ani-
mal models to study the mechanisms of gut microbes’ 
influence on immune system development and matu-
ration. The immune system and lymphoid organs are 
severely impaired in GF mice [46, 47]; these mice exhibit 
a decreased number of Peyer’s patches, a thinner mucus 
layer, and a lack of lymphoid follicles in the lamina pro-
pria [48]. In addition, widespread defects in monocytes, 
macrophages and neutrophils have been found in the 
spleen, bone marrow and liver in GF mice. The numbers 
of macrophages from both embryonic and bone marrow 
precursors were found to be reduced in the spleen, sug-
gesting that the gut microbiota has an important influ-
ence on the origin and development of bone marrow 
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cells [47, 49]. Immunoregulatory Th17 cells in the lamina 
propria of the small intestine are absent in GF mice but 
are inducible upon colonization by segmented filamen-
tous bacteria (SFB) [50]. Early B-cell maturation in the 
intestinal mucosa is regulated by extracellular signals of 
symbiotic microorganisms and affects intestinal immu-
noglobulin repertoires [51]. Hence, the relationship 
between the microbiota and host is not just characterized 
by parasitism that drafts nutrients from the host; instead, 
the symbiotic relationship matures host defenses and 
immunity.

The regulatory effect on local immunity
A growing number of studies have indicated that the gut 
microbiota may influence host immunity through multi-
ple mechanisms, including local and systemic immunity 
(Fig. 1). Locally, the gut microbiota is essential for main-
taining the integrity of the mucosal barrier in the intesti-
nal lumen. Disruption of the gut microbiota can lead to 
a decrease in mucosal barrier function, which results in 
the entry of pathogenic or normal symbiotic bacteria into 
the bloodstream and activation of distant pattern recog-
nition receptors (PRRs), triggering an immune response 
or inflammation [52, 53]. Gut microbes can activate these 
PRRs, such as Toll-like receptors (TLRs), to signal the 
immune cells in the gut-associated lymphoid tissue and 
mesenteric lymph nodes. Microbe-associated molecular 

patterns (MAMPs) in bacteria, including lipopolysac-
charides (LPS) and peptidoglycan, can be presented by 
macrophages as antigens to Peyer’s patches, where they 
activate the immune response of antigen-specific B cells 
and promote the amplification of IgA-secreting plasma 
cells [54]. In addition, DCs produce tight junction (TJ) 
proteins between intestinal epithelial cells. At the tran-
sepithelial location, DCs can activate TJs and interact 
directly with bacteria and related molecules in the intes-
tinal lumen to perceive signals [55]. Under conditions of 
infection, the gut microbiota can activate local phago-
cytes directly through PPRs to produce cytokines more 
efficiently [56]. The local interaction between the micro-
biota and host actuates defenses against most pathogens 
in the gut lumen and the evolution of immunity, which 
reemphasizes the existence of symbiotic microbes.

The regulatory effect on systemic immunity
The gut microbiota can also mediate systemic immune 
responses by releasing various metabolites into the cir-
culatory system. A key example is SCFAs, which can act 
on G-protein-coupled receptor (GPCR) signaling path-
ways or affect epigenetic factors as inhibitors of histone 
deacetylases (HDACs). SCFAs, such as butyrate and 
propionate, can induce the differentiation of peripheral 
Tregs by epigenetic modification of Foxp3 sites [57]. It 
has also been reported that butyrate is able to increase 

Fig. 1 The gut microbiome interacts with the immune system locally in the gut and peripherally in the tumor microenvironment (TME). Within 
the gut, the gut microbiota plays an essential role in maintaining the mucosal barrier to protect the gut from pathogens. Microbes can interact 
with DCs directly and induce their maturation. Some microbiota-derived metabolites, such as SCFAs, inosine, and peptidoglycan, or invasive 
microbes can activate macrophages (Møs), T cells and B cells in the lamina propria or Peyer’s patches. Systemically, gut microbiota-derived 
metabolites can disseminate to distal sites, especially the TME, through the portal vein and interact with tumor-associated lymphocytes, 
including DCs, NK cells, Møs and T cells. CTL cytotoxic T lymphocyte
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interferon-γ (IFN-γ) and granzyme B (GZMB) expression 
in  CD8+ T cells [58] and induce their transition from 
an effector phenotype to a memory phenotype [59]. BA 
is another important immunomodulator produced by 
microbial metabolism. Studies have shown that BA and 
its derivatives can control T-cell differentiation and mac-
rophage polarization, especially inhibiting the function 
of Th17 cells [60], thus regulating the intestinal inflam-
matory response [61–63]. Generally, the abundance 
of metabolic genes is irregular among microbes. Thus, 
these varied metabolites enable the delicate regulation of 
the immune response by modulating the gut microbiota 
population.

The interplay between innate immunity and gut 
microbiota
Host innate immunity requires not only defense against 
pathogen invasion but also tolerance to nonpatho-
genic symbiotic microbiota, that is, maintenance of gut 
mucosal barrier homeostasis. Various signaling pathways 
in intestinal epithelial cells and intestinal immune cells 
play an important role in this process. First, TLRs, which 
are PRRs, may sense the presence of MAMPs and deter-
mine defense or tolerance. For example, polysaccharide 
A (PSA) from Bacteroides fragilis can act on the TIR2/1 
heterodimer in cooperation with Dectin-1, thus activat-
ing downstream anti-inflammatory immune regulatory 
genes [64]. NOD-like receptors (NLRs) are also innate 
immune regulatory sensors. NOD2 inhibits inflamma-
tion of the gut by restricting commensal B. vulgatus [65].

Apart from PRRs, MyD88 and inflammasomes are also 
indispensable to host innate immunity for sensing symbi-
otic microbes and maintaining homeostasis. MyD88 is an 
adapter for a variety of innate immune receptors that rec-
ognize microbial signals. The absence of MyD88 in Treg 
cells in the small intestine leads to the expansion of Th17 
cells, inactivation of the IgA immune response, and ini-
tiation of IL-17-dependent intestinal inflammation [66]. 
The inflammasome induces pyroptosis of infected cells 
in response to intense pathogen invasion, thus maintain-
ing homeostasis. For example, the NLRP6 inflamma-
some regulates mucus secretion by “sentinel” goblet cells 
to prevent pathogenic intruders [67]. In patients with 
ulcerative colitis, it was found that a symbiotic microbial-
induced IgG response and increased activation of FcγR 
signaling in the colon mucosa jointly induced NLRP3 
activation in macrophages and increased production of 
the proinflammatory cytokine IL-1β [68]. In addition to 
these immune signaling pathways, innate lymphoid cells 
(ILCs) are a class of innate immune cells that specialize 
in rapidly secreting cytokines and chemokines to combat 
pathogen infection and promote mucosal damage repair 
[69]. ILCs are characterized by phenotypic diversity and 

functional plasticity, which are thought to be shaped by 
different microbial signals. Guo et al. reported that ILC3s 
can mediate immune surveillance, such as Citrobac-
ter rodentium, to facilitate early colonization resistance 
through ID2-dependent regulation of IL-22 [70].

The interaction between adaptive immunity and gut 
microbiota
The interaction between the gut microbiota and adaptive 
immunity is important in the antitumor T-cell response. 
Vétizou et al. found that B. thetaiotaomicron- or B. fragi-
lis-mediated TLR4- and IL-12-dependent Th1 responses 
were associated with the efficacy of cytotoxic T-lym-
phocyte-associated antigen 4 (CTLA-4) blockade [71]. 
Reconstitution of GF mice with commensal microbiota 
abundant in Bifidobacterium longum, Collinsella aero-
faciens, and Enterococcus faecium causes an improved 
T-cell response and more efficient anti-PD-L1 therapy 
[72]. E. hirae in the gut can translocate into the second-
ary lymphatic organs, activating the Th17 cell response 
and promoting the activation of IFN-γ-producing γδT 
cells, thus improving the therapeutic effect of cyclophos-
phamide on patients with advanced lung cancer and 
ovarian cancer [73]. In the study of adaptive immunity 
induced by gut microbes, DC cells in enteric-associated 
lymphoid tissue or tumor-draining lymph nodes play an 
important role in sensing bacteria, presenting bacterial 
antigens, and secreting cytokines [74].

Symbiotic bacteria activate antitumor T-cell responses 
by molecular mimicry of tumor-associated antigens, 
which induces tumor antigen-specific T-cell cross-reac-
tivity. Fluckiger et  al. identified a tape measure protein 
(TMP)-specific H-2Kb-restricted  CD8+ T lymphocyte 
response against a prophage found in the genome of E. 
hirae. In melanoma patients, tumor antigens that are 
cross-reactive with microbial peptides are recognized 
by T-cell clones [75]. Similarly, Bessell and colleagues 
found that T cells targeting epitope SVYRYYGL (SVY), 
expressed in B. breve, cross-react with a model neoanti-
gen, SIYRYYGL (SIY), in B16-SIY. SVY-specific T cells 
recognized SIY-expressing melanomas in  vivo and led 
to beneficial outcomes [76]. Moreover, human leukocyte 
antigen (HLA) molecules of both glioblastoma tissues 
and tumor cell lines present bacteria-specific peptides, 
which are recognized by tumor-infiltrating lymphocyte 
(TIL)  CD4+ T-cell clones [77]. During homeostasis, 
Akkermansia muciniphila (AKK) can induce T follicular 
helper cells in Peyer’s patches to produce an IgG1 anti-
body-dependent immune response [78]. Moreover, 
metabolites produced by bacteria, typically SCFAs [74] 
or tryptophan derivatives [79], can also induce T-cell- or 
DC cell-dependent adaptive immune responses.
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Therefore, the presence of microbes in the gut allows 
the immune system to balance the toleration of beneficial 
microbes and the defense against pathogens. The mainte-
nance of this equilibrium is also influenced by the health 
state of the host and the stability of the microecology. 
Due to the close relationship between the gut microbiota 
and the immune system, there is clearly an important 
correlation between these commensal organisms and 
the efficiency of immune-related therapy. Several stud-
ies have found that gut microbiome disturbances could 
affect local and systemic antitumor immune responses 
[80–82]. In proportion, changing the immune response 
state by regulating the composition of intestinal microbes 
may be an effective strategy to improve the efficiency of 
the treatment of different tumors.

The gut microbiome in tumor immunotherapy
The rapid proliferation of tumor cells is partly believed 
to be caused by the failure of immune control. Tumor 
cells evade the surveillance of the host immune system 
through various mechanisms, such as downregulating 
target antigens or creating a TME with immunosup-
pressive characteristics [83, 84]. Tumor immunotherapy 
enhances or rebuilds the immune system to monitor, rec-
ognize and destroy tumor cells, thereby eventually pro-
longing the survival of patients [85, 86]. Immunotherapy 
has significantly prolonged survival and improved quality 
of life for many cancer patients in whom chemotherapy 
or radiotherapy regimens have failed [87, 88]. However, 
with the increase in the clinical application of immuno-
therapy, researchers have gradually found that the thera-
peutic effect of immunotherapy on tumor patients varies 
among individuals. Stool samples from clinical patients 
who were subjected to sequencing analysis revealed 
that the features of the gut microbiome and treatment 
effect exhibited a significant correlation (Table 1), imply-
ing that the gut microbiome has a significant impact on 
tumor therapy. There may be an internal mechanism that 
is involved in the relationship between the individual 
diversity of the gut microbiota and the heterogeneity of 
antitumor immunotherapy outcomes. However, current 
mechanistic research is mainly focused on the preclinical 
phase, and the implementation of research findings into 
clinical application has remained very limited.

Immune checkpoint blockade (ICB)
Tumors, as collections of cancerous cells, can be recog-
nized and eliminated by the immune system. However, 
tumor cells secrete inhibitors that recognize and bind to 
adaptive immune cell surface receptors and inhibit their 
immune response to tumor cells [121]. ICBs that have 
been approved by the U.S. Food and Drug Administra-
tion (FDA) target two classes of T-cell receptors (TCRs), 

including CTLA-4 and programmed cell death protein 
1 (PD-1) and its ligand (PD-L1). Inhibitory antibod-
ies targeting CTLA-4 [122], PD-1 [123], or PD-L1 [124] 
can induce antitumor effects in  vivo. In addition, many 
antibodies and small molecule drugs targeting other 
immunomodulators, including LAG3, TIGIT, TIM3, 
CD39, CD47 and CD73, are in the process of clinical 
investigation.

Although ICB therapy improves outcomes for patients 
with many cancer types, only a portion of patients expe-
rience a stable benefit. Even among melanoma patients 
with the highest response rate to ICB, more than 60–70% 
of patients do not respond positively to anti-PD-1 anti-
body therapy; 20–30% of these patients eventually show 
tumor recurrence and progression [125, 126]. Therefore, 
there is an urgent need to identify new immunotherapy 
strategies to improve the immunotherapy response.

There is substantial clinical evidence that the baseline 
composition of a patient’s gut microbiome is associ-
ated with the antitumor efficacy of ICB therapy [17, 81] 
(Table  1). Notably, the microbes that are favorable and 
unfavorable to the treatment outcome in different study 
populations have varied greatly overall, but they may 
share some important metabolic pathways that allow 
them to be distinguished. Based on these clinical stud-
ies, stool samples from patients with different treatment 
outcomes were transferred to GF or antibiotic-treated 
tumor model mice, and the differences in ICB treat-
ment outcomes were paralleled in these mice [18, 72, 
127]. Sequencing analysis of fecal samples has often been 
used to reveal the signature of the bacteria in responding 
patients, and the signature of beneficial bacteria identi-
fied through culture isolation or directly through the use 
of commercial strain supplements can further confirm 
the role of key gut microbes in promoting ICB treatment 
[18, 128]. More strikingly, intestinal bacteria and fungi 
have opposite effects on tumor therapy, with commen-
sal bacteria essential for an effective antitumor immune 
response but symbiotic fungi modulating the immu-
nosuppressive microenvironment after treatment. The 
opposite effect is likely due mainly to fungi, since the size 
of fungal populations is significantly increased in the gut 
after bacterial deletion [129]. Although the mechanism 
by which the microbiome affects tumor therapy is not 
completely understood, fecal microbiota transplantation 
(FMT) can be regarded as a therapeutic strategy. How-
ever, the future research objective is still to use more spe-
cific and direct methods to regulate the microbiota based 
on a clear understanding of the mechanism of action.

To date, different studies have found that the key bacte-
rial signatures involved in the ICB response are different, 
and the mechanisms of action vary as well (Fig. 2). Based 
on how bacteria exhibit a synergistic antitumor effect 
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with the treatment, the mode of action can be divided as 
follows: (a) exopolysaccharides [71, 130] or surface pro-
teins [131] in the structure of bacteria themselves can be 
used as pathogen-associated molecular patterns (PAMPs) 
to directly stimulate intestinal immune cells and induce 
innate or adaptive immune responses; (b) metabolites 
produced by bacteria, such as SCFAs [109, 132, 133], ino-
sine [134], peptidoglycan [127], trimethylamine N-oxide 
(TMAO) [135, 136], neurotransmitters (including dopa-
mine, norepinephrine, serotonin, or γ-aminobutyric acid) 
[137], ferrichrome [138], β-galactosidase [139], etc., enter 
the circulatory system through the portal vein to stimu-
late the TME, changing the immune state and revers-
ing tumor immune tolerance and thus promoting the 

therapeutic effect of ICBs (Table  2). On this basis, the 
gut metabolomic profile was characterized in 11 non-
small cell lung cancer (NSCLC) patients treated with 
nivolumab anti-PD-1 therapy, which showed that 2-pen-
tanone and tridecane were significantly associated with 
early progression, while SCFAs, lysine and nicotinic acid 
were significantly associated with long-term beneficial 
effects [140]. Moreover, other studies have found that 
regulating gut microbial composition and supplement-
ing beneficial bacteria could alleviate immune-related 
adverse reactions (irAEs) induced by monoclonal anti-
body therapy targeting CTLA-4 or PD-1 [141, 142], 
which reiterated the importance of the relationship 

Fig. 2 Mechanism through which some gut microbiota-derived metabolites influence antitumor therapy. These metabolites, including TMAO 
from Clostridiales, c-di-AMP from Akkermansia, inosine from Bifidobacterium pseudolongum, peptidoglycan from Bifidobacterium bifidum, 
β-galactosidase from Streptococcus thermophilus and butyrate, are representative metabolites that have been reported in the last two years. They 
can spread to the TME through the circulatory system or interact with mutated enterocytes directly and mediate antitumor therapy by different 
mechanisms and pathways. TLRs Toll-like receptors, AhR aryl hydrocarbon receptor, A2AR: adenosine 2A receptor
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between the gut microbiome and immunotherapy. Based 
on these findings, strategies that regulate bacterial popu-
lations in the host are reasonable and applicable.

Given the diversity of results, increasing attention is 
being paid to integrating data from multiple cohorts or to 
further expanding the cohorts so that the optimal com-
bination of key microbes that further improve the clini-
cal application prospects of strategies targeting the gut 
microbiota for tumor immunotherapy can be identified.

Adoptive T‑cell therapy (ACT)
The therapeutic effect of ICB is dependent on the pres-
ence of preexisting tumor-specific immune cells [149], so 
its clearance effect is limited in certain tumors with low 
immunogenicity. Due to this phenomenon, artificial sup-
plementation of tumor-specific immune cells may have a 
better therapeutic effect. ACT uses autoimmune T cells 
such as TILs or cytotoxic T lymphocytes (CTLs) to com-
bat cancer. In 1985, transfusions of autologous mature 
lymphocytes were first reported to produce effective can-
cer regression [150]. The ACT treatment process typi-
cally consists of three steps: (1) isolating and extracting T 
cells from patient tumor tissues or peripheral blood ves-
sels; (2) culturing and enriching for lymphocytes in vitro; 
and (3) reinjecting the amplified specific T cells into the 
patient [151, 152]. With the development of basic biol-
ogy and immunology, research on the characteristics of 
immune cells has become increasingly comprehensive. 
Many studies have shown that T cells produce more spe-
cific TCRs or chimeric antigen receptors (CARs) in vitro 
through gene modification, which could produce a 
stronger antitumor immune response after infusion into 
patients [153–155]. Unlike conventional TCRs, CARs 
recognize antigens independent of major histocompat-
ibility complex (MHC) antigen presentation, avoiding the 
restriction of MHC molecules and solving the problem of 
tumor immune escape caused by the inhibition of MHC 
molecule expression [156, 157]. Recently, ACT, espe-
cially CAR-T-cell therapy, has shown excellent efficacy 
in patients with hematological malignancies and meta-
static melanoma [158, 159]. This rapid development of 
cell therapy brings more hope and possibilities for a cure 
to patients, but the rate of response to cell therapy also 
needs to be further improved.

Given the widely accepted role of the gut microbi-
ome in ICB therapy, its impact on CAR-T-cell efficacy 
was supported by indirect evidence [19, 160, 161] and 
confirmed in a retrospective cohort study [162]. The 
study (n = 228) found that antibiotic use during the first 
4  weeks of treatment was associated with poorer sur-
vival and increased neurotoxicity in B-cell lymphoma 
and leukemia patients receiving CD19-targeted CAR-T 
therapy. 16S rRNA and metagenomic sequencing of 

feces showed that Ruminococcus, Bacteroides and Fae-
calibacterium were related to the efficacy of CD19 
CAR-T treatment. Bacterial metabolic pathways, 
such as peptidoglycan synthesis and pentose phos-
phate metabolism, may be biomarkers of CD19 CAR-
T-cell efficacy. Moreover, a clinical trial revealed that 
the irAEs produced in response to CAR-T, especially 
cytokine release syndrome, are also modulated by the 
gut microbiome in patients with hematologic malig-
nancies, and similarly, Faecalibacterium and Rumino-
coccus are enriched in patients who achieved complete 
remission [118]. The dominant bacteria and detailed 
mechanism need further confirmation and exploration. 
Future application of this mechanism would uniquely 
enable the stimulation or activation of therapeutic T 
cells by specific metabolites produced by microbes 
in vitro before their transplantation into patients.

The relationship between the gut microbiome 
and ACT response in solid tumors has not yet been 
reported. However, gut microbes can stimulate tumor 
cells to secrete a variety of chemokines in patients with 
colorectal cancer, thus recruiting more T cells into the 
TME and improving the prognosis of patients. These 
results revealed the role of the gut commensal micro-
biota in controlling the extent of tumor invasion by 
immune cells [19]. In another analysis of plasma sam-
ples from colorectal cancer patients treated with ACT 
in combination with chemotherapy, the abundance of 
Bifidobacterium, Lactobacillus and Enterococcus in the 
blood of responders was higher than that in nonre-
sponders [94]. Therefore, using the blood microbiome 
to predict the effect of tumor immunotherapy may be a 
more convenient and effective method. In animal mod-
els, there were significant differences in the effective-
ness of ACT against tumors in mice with similar genes 
but different origins. Fecal microbiota sequencing 
showed significant differences in the fecal microbiota 
composition of mice with different origins, and vanco-
mycin exposure could enhance the therapeutic effect of 
ACT. This effect was demonstrated by increasing sys-
temic CD8α+ DC and IL-12 levels and was associated 
with more efficient expansion of adoptive antitumor T 
cells in mice [160]. This study confirmed that it is possi-
ble to improve the therapeutic effect of ACT by modu-
lating the gut microbiome composition and promoting 
the tumor immune response.

Currently, studies on the impact of gut microbes 
on CAR-T therapy are still in the stage of discovery 
and validation, but due to the considerable role of the 
gut microbiome in antitumor immunity, it is believed 
that there will be increasing evidence to support the 
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effects of this relationship and the specific mechanisms 
involved.

Association between the gut microbiome 
and immunotherapy‑related toxicity
Although immunotherapy has achieved remarkable 
results in the clinical application of tumor patients, there 
are still a considerable number of cases with toxic reac-
tions, especially irAEs.

In the ICB therapy setting, irAEs correlate with the 
type of ICB used, such as anti-CTLA4 therapy, which 
tends to induce colitis and pituitary inflammation, and 
anti-PD-1 therapy, which tends to induce thyroid dys-
function and pneumonia. The patient baseline gut 
microbiome has been shown to correlate with the risk of 
irAEs. In a study of 77 patients with advanced melanoma 
treated with a combination of CTLA-4 and PD-1 block-
ing, analysis of blood, tumor, and gut microbes showed 
that irAEs were not associated with the α diversity of 
the microbiome but were associated with the baseline 
abundance of specific bacterial taxa, including Bacte-
roides intestinalis and Intestinibacter bartlettii. The abun-
dance of Bacteroides was positively correlated with irAEs 
occurrence and IL-1β levels in the intestinal mucosa, 
and this conclusion was verified in mouse models [96]. 
In another study of patients with metastatic melanoma 
treated with a CTLA-4 and PD-1 blocking combination, 
Bacteroides dorei and B. vulgatus were found to be asso-
ciated with irAEs in a reversed pattern [163]. In a study 
of 26 patients with metastatic melanoma treated with 
anti-CTLA-4 monotherapy, the author reported that the 
baseline abundance of Faecalibacterium and other Fir-
micutes were associated with both treatment efficiency 
and irAEs, and Bacteroidetes were associated with lower 
treatment response and lower irAEs [164].

The differences between the two studies may be due to 
differences in treatment methods or may be the result of 
functional redundancy between different microbes. In 
addition, there may be geography-related differences in 
the microbial communities associated with ICB efficacy 
and irAEs. Simpson et  al. compared fecal microbes of 
103 patients with metastatic melanoma from Australia 
and the Netherlands treated with neoadjuvant ICBs and 
found that the Ruminococcaceae family taxa and AKK 
were associated with lower treatment effectiveness and 
more severe irAEs.

In addition, C-reactive protein in peripheral blood can 
be used as a biomarker for severe irAEs [116]. In the con-
text of immune agonist antibody (IAA) therapy, such as 
anti-CD40 and anti-CD137, the presence of gut micro-
biota is correlated with therapeutic toxic reactions such 
as cytokine release syndrome (CRS), liver damage and 

colitis. The incidence of toxic reactions was significantly 
reduced in GF mice or mice treated with antibiotics, 
while there was no significant effect on the therapeu-
tic efficiency [165]. Although this study did not investi-
gate the function of specific bacterial taxa in depth, the 
comparison of IAA with ICBs with different effects has 
implications for intestinal microbial immunotherapy of 
tumors.

CAR-mediated toxicities are still a problem in CAR-T 
therapy, including CRS or immune effector cell-associ-
ated neurotoxicity. Smith and colleagues reported that 
antibiotic use was associated with increased neurotox-
icity in B-cell lymphoma and leukemia patients treated 
with CD19-targeted CAR-T therapy [162]. These results 
not only confirmed the relationship between the intes-
tinal microbiota and the effect and side effects of tumor 
immunotherapy but also provided a strategic basis for 
improving the effect of immunotherapy by regulating the 
intestinal microbiota in different ways.

Modulation of the gut microbiome to facilitate 
tumor immunotherapy
The diversity and composition of the gut microbiota are 
associated with the efficacy of various cancer treatment 
strategies. In addition to demonstrating the correlation 
between the two, most studies in this area have demon-
strated that the gut microbiota is a therapeutic target, 
and its modulation is a tool to improve the prospects of 
clinical application [166]. Large-scale population stud-
ies have shown that the diversity of commensal micro-
bial communities in different populations or individuals 
is largely shaped by environmental factors [167]. With a 
focus on achieving high clinical compliance or enabling 
function in daily life, several strategies have been stud-
ied to regulate the composition of the gut microbiome 
to promote immune-related antitumor therapy. The next 
section reviews the literature related to these studies 
published in recent years.

Fecal microbiota transplantation (FMT)
Despite the controversy over its mechanism and safety, 
FMT has been widely used in the treatment of recurrent 
Clostridium difficile infection (CDI) in the past decade 
and has achieved good results [168], which also laid the 
foundation for the therapeutic application of FMT in the 
treatment of other diseases. Clinical studies on antitumor 
immunotherapy using the FMT strategy are in the initial 
stage, and many results have been achieved mainly in 
animal models [169].

FMT is performed on the premise that the degree 
of host response to immunotherapy can be transmit-
ted between different individuals through fecal com-
ponents. Numerous studies have found that GF mice 
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transplanted with stool from patients who had a clini-
cally significant response to ICB treatment are more 
likely to develop an antitumor immune response to ICB 
treatment than control mice transplanted with stool 
from nonresponders. Specifically, tumor progression is 
slowed, and overall survival is significantly prolonged 
[18, 72, 170]. These results suggest that the therapeutic 
outcome of ICB may be influenced by regulating the gut 
microbiota of tumor patients. More recently, Baruch 
et  al. [128] and Davar et  al. [171] verified the efficacy 
of FMT in anti-PD-1 immunotherapy in patients with 
metastatic melanoma for the first time in a clinical trial. 
Two separate studies each observed evidence of clinical 
benefit in some patients who received FMT treatment. 
Based on the benefits of FMT in anti-PD-1 therapy in a 
mouse model [72], Baruch et al. designed a phase I clin-
ical trial (NCT03353402) in which stool donors, includ-
ing two melanoma patients who received anti-PD-1 
antibody therapy and achieved complete remission, 
were recruited to evaluate the safety and feasibility of 
FMT combined with anti-PD-1 antibody immuno-
therapy in 10 patients with refractory metastatic mela-
noma. Clinical response results were observed in three 
patients, including two partial responses and one com-
plete response. Moreover, FMT treatment was associ-
ated with favorable changes in immune cell infiltration 
and gene expression profiles in the intestinal lamina 
propria and TME. In the clinical trial (NCT03341143) 
conducted by Davar et al., 6 of the 15 patients enrolled 
in the trial exhibited clinical benefits, including rapid 
and lasting changes in their gut microbiome and 
increased abundance of some previously reported gut 
microbial taxa associated with clinical response, such 
as Bifidobacterium. longum, Collinsella aerofaciens, and 
E. faecium [18, 72]. In the TME, increased activation 
of  CD8+ T cells and a decreased proportion of mye-
loid cells expressing IL-8 were observed. In addition, 
patients treated with FMT had different proteomic and 
metabolomic characteristics. These two studies also 
became the first clinical proof-of-concept studies show-
ing that FMT overcomes ICB resistance [172], which 
greatly expanded the prospects of the clinical applica-
tion of FMT in antitumor immunotherapy strategies. In 
addition, there are many other ongoing or completed 
clinical trials [15, 173–176], which provide strong evi-
dence for the safety and efficacy of FMT regulation of 
the gut microbiome in the treatment of tumors.

Nevertheless, the compatibility of the donor feces and 
the recipient intestinal microenvironment during FMT 
remains to be further ascertained. In addition, there 
are many nontarget components of donor feces that 
are transplanted into the recipient’s body, which have 

unknown effects. Thus, FMT remains a temporary, out-
come-oriented solution until the mechanism of action 
and criteria for use are fully understood. More in-depth 
mechanistic exploration and the identification of more 
refined treatment strategies are the main directions of 
future research.

Probiotics
The concept of probiotics was first proposed by Metch-
nikoff [177] and is defined by the Food and Agriculture 
Organization of the United Nations as “living microor-
ganisms beneficial to the host when injected in sufficient 
quantities” [178]. However, probiotics that are considered 
dietary supplements do not need to go through strict 
review by drug regulatory authorities before being mar-
keted [179], which has resulted in the absence of formu-
lation standards and quality control, exaggerated efficacy 
and lack of scientific experimental data regarding probi-
otics [180]. Therefore, while probiotics have been recog-
nized academically for their health benefits, they are still 
misunderstood by many people. We need to continue 
to explore the effect and mechanism of probiotics using 
advanced science and revise the general understanding of 
probiotic therapy.

Due to the impact of probiotic supplementation on the 
composition of the gut microbiota, it is rational that the 
application of probiotics could enhance the host immune 
response [181, 182], as well as the efficiency of anti-
tumor therapy (Table  3). Lee Se-Hoon et  al. found that 
B. bifidum was significantly enriched among the fecal 
microbes in NSCLC treatment responders in a study 
of patients treated with different methods, and it was 
found in an animal model that supplementation with B. 
bif_K57 combined with oxaliplatin or anti-PD-1 antibody 
significantly enhanced the antitumor effect. Mechanis-
tic studies showed that the probiotic strain B. bif_K57 
could significantly enhance the immune response in the 
TME and increase the activation of  CD4+ and  CD8+ T 
cells, as well as the secretion of the cytokines IFN-γ and 
IL-2. These effects may be achieved through the abil-
ity of the B. bif_K57 strain to synthesize peptidoglycan 
[127]. Mager Lukas et  al. found that inosine produced 
by Bifidobacterium pseudolongum activates the T-cell-
specific  A2AR signaling pathway and stimulates strong 
antitumor immunity in the tumor and spleen, thereby 
promoting the efficacy of anti-CTLA-4 antibodies in 
mouse colon cancer [134]. In addition to supplemen-
tation with Bifidobacterium, preclinical studies have 
found that supplementation with other probiotics, such 
as Lactobacillus [138, 147, 183] or Streptococcus thermo-
philus [139], could significantly improve tumor immuno-
therapy. In addition, AKK is another species of probiotic 
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that has been discovered and widely accepted in recent 
years with the development of microbial sequencing 
technology [184, 185]. AKK, which can induce an adap-
tive immune response in follicular helper T cells  (TFH) 
in Peyer’s patches to maintain intestinal homeostasis, 
has been reported [78]. Model mice orally supplemented 
with AKK combined with anti-PD-1 antibody [17] or 
cisplatin [186] showed apparently improved therapeutic 
outcomes. Shi et al.’s study revealed that the outer mem-
brane protein of AKK, Amuc, could recruit more tumor-
specific cytotoxic T cells in the TME by activating TLR2 
signaling and reducing the levels of immunosuppressed 
Tregs, thus producing a considerable antitumor effect 
when IL-2 was combined as an adjuvant [131]. These 
results suggest that beneficial probiotics for health have 
good prospects for use in research on antitumor effects. 
In addition to the use of single probiotic strains, it has 
been suggested that a mixture of multiple strains may be 
needed to influence the complex microecosystem of the 
gut. Tanoue et al. isolated 11 strains from the feces of vol-
unteers and mixed them, which could significantly induce 
the accumulation of IFNγ+  CD8+ T cells in the intestinal 
tract of mice, and synergistic ICB produced a significant 
therapeutic effect in a mouse tumor model; the induction 
effect was optimal only when all 11 strains were present 
[187]. These results implied that the interaction of the 
gut microbiome with the immune system and tumor may 
involve more complex systemic processes.

The considerable effect of oral probiotics on the anti-
tumor immune response in mice provides a basis for the 
clinical study of probiotics in the tumor population. In 
a recent phase I trial (NCT03829111), 29 patients with 
mRCC were treated for the first time with nivolumab 
in combination with ipilimumab, and some were sup-
plemented with CBM588, which contains Clostridium 
butyricum. Probiotic CBM588 significantly prolonged 
PFS in patients with mRCC without additional toxicity 
and improved response rates to combined ICB therapy 
[188]. Moreover, the administration of CBM588 to reg-
ulate gut microbiota improved the efficacy of ICB treat-
ment in NSCLC cancer patients receiving PPIs [189]. 
Another analysis of 77 patients with advanced mela-
noma revealed a positive correlation between the toxic-
ity of anti-PD-1 and anti-CTLA-4 antibodies and the 
presence of Bacteroides intestinalis in the feces of the 
patients, suggesting that the bacteria could be used as 
a target for reducing the side effects of ICB treatment 
[96]. At present, clinical studies on the use of probiotics 
in the treatment of cancer have been very rare, and the 
results of only individual clinical trials are not sufficient 
for cross-validation.

Taken together, these data indicate the potential advan-
tages of probiotics for cancer treatment. However, it 

is still necessary to improve the quality control of com-
mercial probiotics to confirm their antitumor effect and 
optimize the strategy for colonization by probiotics. In 
addition, the specific mechanism of antitumor immunity 
induced by probiotics needs to be further elucidated.

Diet and prebiotics
The microbes colonizing the gut can decompose and 
metabolize physical components that cannot be digested 
by the host, and the released nutrients can be absorbed 
by the body [200, 201]. Conversely, diet also affects the 
gut microbiome and metabolome [202, 203] (Table  4). 
This interaction has laid a theoretical foundation for the 
regulation of the bacterial consortium through specific 
metabolic pathways by dietary formulas.

Geographically, different populations exhibit different 
dietary habits, which in turn act on the gut microbiota. 
Accordingly, a prospective trial profiled baseline gut 
microbiota signatures and dietary patterns among 103 
patients from Australia and the Netherlands treated with 
ICBs for melanoma and performed an integrated analy-
sis with data from 115 patients with melanoma treated 
with ICBs in the United States [116]. High dietary fiber 
intake in individuals from areas such as Australia and 
the United States may lead to greater clinical benefit for 
those with Bacteroidaceae-dominated microbiomes than 
in individuals from the Netherlands, who already have 
fiber-influenced microbiomes. Therefore, diet customi-
zation, especially involving dietary fiber, represents a 
potential strategy for improving tumor therapy. Dietary 
fiber components are metabolized to produce SCFAs 
[204, 205], which have been widely reported in the treat-
ment of metabolic diseases [206, 207] and intestinal 
inflammation [200, 204]. In the last decade, the impact of 
SCFAs on tumor immunotherapy has also been reported 
(Table 4). He et al. found that butyrate could promote the 
therapeutic effect of the immunogenicity drugs oxalipl-
atin and anti-PD-1 antibody by directly activating antitu-
mor  CD8+ T cells [133]. However, another study found 
that a higher level of SCFAs in the peripheral blood may 
weaken the antitumor immune response induced by anti-
CTLA-4 antibodies [208], suggesting that the effect of the 
metabolites is different in tissues. Therefore, the use of 
dietary fiber metabolites to regulate antitumor immunity 
requires more refined research.

Prebiotics are more specific than diet and comprise 
specific chemicals, which mainly include oligosaccha-
rides and polysaccharides, that promote the growth of 
specific microbes [209, 210]. Prebiotic usage to promote 
antitumor immunotherapy has attracted increasing 
attention in recent years [211, 212]. Huang et  al. found 
that oral administration of ginseng polysaccharide in 
mice could promote the antitumor effect of ICB, and its 
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internal mechanism was that the supplemented prebiotic 
could improve the TME and systemic  CD8+ T-cell func-
tion by reshaping gut microbial composition and trypto-
phan metabolism and inhibiting the effect of Treg cells, 
leading to the enhancement of the antitumor effect of the 
anti-PD-1 antibody [213]. In another study using an engi-
neering approach to regulate beneficial microbes in the 
gut, Han Kai et al. prepared inulin gel that could be orally 
administered and released site-specifically in the colon 
to regulate microbial composition in situ, promote SCFA 
metabolism, induce a systemic T-cell memory response, 
and enhance the antitumor activity of anti-PD-1 antibody 
[214]. Furthermore, a recent study showed that a natu-
ral polyphenol from the berry of Myrciaria dubia could 
reverse ICB resistance by altering the intestinal micro-
biome composition [215]. These extracted or modified, 
one-component natural products can achieve a finer 
regulation of gut microbes than dietary supplements to a 
certain extent and offer more possibilities for tumor ther-
apy by targeting the gut microbial structure.

Based on preclinical mouse models, a recently pub-
lished clinical observational study of 128 melanoma 
patients treated with ICB found that 37 patients who 
met the 20 g/day dietary fiber intake threshold had sig-
nificantly longer PFS than those who did not. Interest-
ingly, the anti-PD-1 antibody showed better therapeutic 
efficacy in patients with adequate dietary fiber intake and 
no probiotic supplementation. To investigate the causal 
relationship between diet and treatment outcome, the 
authors established a mouse tumor model and found 
that a lower-fiber diet or supplementation with probi-
otics consisting mainly of B. longum and Lactobacillus 
rhamnosus GG weakened the antitumor effect of the 
anti-PD-1 antibody [216]. This result, particularly the 
contrary effect of probiotics, reemphasized the high com-
plexity and specificity of targeting gut microbes to modu-
late the therapeutic effects of tumor therapy. Fortunately, 
gut microbes do therefore have potential as targets for 
antitumor immunotherapy, but the characteristics and 
mechanisms of action of gut microbes may be more com-
plex than expected.

Antibiotics and other drugs
The purpose of using antibiotics for tumor patients is to 
prevent infections by various pathogenic microorgan-
isms, which would inevitably change the composition 
of the gut microbiota. Therefore, a mass of preclinical 
studies and clinical cohort retrospective studies have 
reported that the use of antibiotics weakens the effi-
cacy of tumor immunotherapy, especially ICB therapy 
(Table 5) [226]. Routy et al. evaluated the effect of anti-
biotics against PD-1 antibody therapy in 249 patients 

with advanced NSCLC, RCC, or urothelial carcinoma 
and found that PFS and OS were significantly shorter 
in patients who received antibiotics than in those who 
did not [17]. Chalabi et  al. retrospectively analyzed 
two previous clinical trials investigating patients with 
metastatic NSCLC (NCT01903993; NCT02008227) 
and found that both antibiotics and another microbi-
ome altering proton pump inhibitors (PPIs) affected 
atezolizumab treatment, shortening PFS and OS [227]. 
These results indicate that the gut microbiome plays an 
essential role in ICB treatment. Another piece of evi-
dence supporting this idea is that the therapeutic effect 
of ICB may be affected by the spectrum of antibiotic 
action. Specifically, patients receiving broad-spectrum 
antibiotics have a shorter survival than those receiving 
narrow-spectrum antibiotics [228]. Interestingly, the 
effect of antibiotics on tumor immunotherapy is also 
related to the period of patient exposure to antibiotics; 
antibiotics may have beneficial effects before or 30 days 
after ICB treatment [229]. These studies showed that 
antibiotic usage during the ICB treatment period could 
weaken the tumor treatment effect, but antibiotics are 
still irreplaceable in preventing infection and postop-
erative complications after tumor surgical treatment 
[230, 231]. Hence, the design of an antibiotic treatment 
plan according to the actual situation of patients, such 
as an approach determined based on sequencing analy-
sis of the gut microbiome before antibiotic treatment 
and customized antibiotic formulation, may reduce the 
disturbances mediated by broad-spectrum antibiot-
ics in the gut microbiota and improve the therapeutic 
effect.

Nevertheless, there does not always seem to be a 
positive correlation between bacterial burden and 
treatment outcomes. In a retrospective review of 57 
patients with MSI-H/dMMR mCRC receiving anti-
PD-1 mAb, there was no association of lower response 
rates or survival in those patients exposed to antibiotics 
[232]. Gut microbes can relocate into surrounding tis-
sues and influence tumor progression. Broad-spectrum 
antibiotic depletion of the gut microbiome prevented 
invasive PDAC and enhanced the antitumor immune 
response [32]. These results showed that the role of 
the gut microbiome in tumor therapy was contrary to 
previous results, suggesting that an excessive intesti-
nal microbe load or a high concentration of microor-
ganisms in tumors may have adverse effects on tumor 
therapy. Etiologically, the studies that observed nega-
tive effects of the microbiome on therapy outcomes 
have involved studies of pancreatic cancer [233, 234], 
and one possible explanation is that the pancreas and 
gut are anatomically connected through the pancreatic 
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duct [235]. The continuity of the two may lead to a 
higher microbial load in the pancreas than in other tis-
sues, which is related to the occurrence and immuno-
suppression of pancreatic cancer. These results suggest 
that the different benefits of the gut microbiome on dif-
ferent tumor types may be related to the distribution of 
the microbiome in different organs.

Future prospects: opportunity and challenge 
coexist
With the gradual increase in attention towards the 
important role of the gut microbiome in human health, 
research on the formation, development, diagnosis and 
treatment of tumors is steadily advancing to a new stage. 
Due to the widespread application of NGS, metabo-
lomics, proteomics and other multiomics techniques, 
researchers have gradually gained a clearer understand-
ing of the colonization, transfer and recolonization of 
microbes in various tissues and organs of the body and 
identified the close relationship of function and causation 
between health and disease states and the colonization of 
microbes in tissues, including those in the TME. Finally, 
the concept of the “polymorphic microbiome” has been 
regarded as a new hallmark of cancer [21].

Nevertheless, some substantial problems exist that pre-
vent gut microbes from acting as more potent weapons 
against a variety of diseases, including tumors. First, due 
to the limitation of sample allocation, the collected sam-
ple information cannot truly reflect the microbial com-
position of the gut in space [257]. It is still to be discussed 
that stool samples represent the bacterial colonization in 
the niche of the gut-intestinal tract, and it is even more 
difficult to extract microbiota from tumors or other 
focal sites. In addition, there are also many obstacles to 
monitoring the temporal changes in the gut microbiome 
during disease progression or treatment because the gut 
microbiota is easily affected by diet, environment, host 
age, gender, lifestyle and other factors, which reflect the 
collective changes in multiple factors. Therefore, it is dif-
ficult to determine the causal relationship between the 
gut microbiome and diseases. The second is the func-
tional diversity of the gut microbiota. For example, taxo-
nomically, bacteria of the same species differ greatly in 
function. In addition, the same bacteria may show dif-
ferent characteristics due to environmental changes or 
the composition of other bacteria, and different bacteria 
may share similar metabolic pathways with similar func-
tions [47, 193]. Hence, the interactions between bacteria 
should not be ignored. Finally, there is a diversity of data 
and differences in analysis techniques. Although there is 
a wealth of multiomics data, including human samples, 
indicating the microbiome associated with disease and 
treatment outcomes, reproducibility of results across 

research projects has been difficult to achieve (Table  1) 
[258]. This may be due to, on the one hand, the differ-
ences that researchers collect or preserve samples for 
research objects; on the other hand, the generation of 
many multiomics data makes the computational infer-
ence of data a challenge, accompanied by redundant 
data analysis methods. The solution to this problem may 
require standard analytical manual in the future, includ-
ing machine learning and artificial intelligence, as well as 
better data and resource-availability mechanisms.

Conclusion
The existing research results have provided substantial 
evidence for the conclusion that the commensal microbi-
ome impacts the efficiency of antitumor immunotherapy, 
and promoting the effect of antitumor immunotherapy by 
modulating the composition of gut microbiota has been 
shown to work. However, due to the variation in indi-
vidual microbiomes and limitations of complex multiom-
ics analysis, there is a lack of systematic research on the 
factors of the microbiome that are involved in antitumor 
therapy, and mutual authentication among study conclu-
sions cannot be obtained. Moreover, precise mechanistic 
research on the impact of the microbiome on antitumor 
immunity is still scarce. As a result, the manipulation 
of the commensal microbiota by modern medical tech-
niques for the treatment of diseases, including tumors, is 
still far from clinical application.

Nonetheless, it is optimistic that considerable resources 
are being devoted to research that links commensal 
microbiota and host health and disease. Preclinical and 
clinical studies have demonstrated that regulation of the 
gut microbiota may improve the efficacy of antitumor 
therapy from multiple perspectives and at multiple levels. 
In addition to knowledge regarding the individual differ-
ences in the commensal microbiome and the diversity of 
influencing factors, individual multiomics analysis com-
bined with precision medicine, instead of broad FMT or 
probiotics, will inevitably become the future direction of 
the development of tumor immunotherapy or treatment 
for other diseases affected by the microbiome.
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