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CD24+LCN2+ liver progenitor cells 
in ductular reaction contributed to macrophage 
inflammatory responses in chronic liver injury
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Abstract 

Background CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury 
in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed.

Results The current study combined genetic lineage tracing with in vitro small‑molecule‑based reprogramming 
to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non‑parenchymal tissues.  tdTom+ 
hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre‑mediated recombination,  EpCAM+ biliary 
epithelial cells (BECs) from wild‑type intrahepatic bile ducts and ALB/GFP−EpCAM− cells were isolated from AlbCreERT/
R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured 
LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-
vitro cultured LPCs derived from the resident LPCs in non‑parenchymal tissues expressed Lipocalin‑2 (Lcn2) at high 
levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc‑RNA‑sequencing and patho‑
logical datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate 
from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into  CCl4‑induced fibrotic livers exacer‑
bated liver damage and dysfunction, possibly due to LCN2‑dependent macrophage inflammatory response.

Conclusions CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage‑
mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins 
and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.
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Introduction
The liver possesses immense regenerative potential. 
Chronic or severe liver damage including liver fibrosis 
and non-alcoholic steatohepatitis (NASH), is accompa-
nied by pathological proliferation or hyperplasia of the 
bile duct, referred to as the ductular reaction [1]. These 
ductular reactive cells express intermediate hepato-
biliary markers and expand from the periportal region 
into the surrounding parenchyma, which represents the 
activation of facultative liver progenitor cells (LPCs) [1, 
2]. Recently, much attention has been paid to the precise 
origin and role of these hepatic injury-induced LPCs in 
ductular reaction [3, 4], especially concerning advanced 
liver diseases.

Cells located in the canals of Hering of the adult liver 
are considered to be the resident LPCs and express mark-
ers of both fetal hepatocytes and biliary epithelial cells 
(BECs), which may generate hepatocytes and bile duct 
cells during chronic injury [5, 6]. Recent studies have 
demonstrated the potential of both hepatocytes and 
BECs for post-injury division [7, 8] and mutual transdif-
ferentiation [9]. Thioacetamide-induced liver damage 
[10] or genetically impaired hepatocyte proliferation [11] 

have been shown to stimulate the conversion of BECs 
into bi-phenotypic states, capable of transdifferentiation 
into hepatocytes. In addition, the conversion of hepato-
cytes into LPCs was shown to promote liver parenchyma 
regeneration after chronic injury in hepatocyte fate trac-
ing [12, 13] and chimeras of the fumarylacetoacetate 
hydrolase knockout (Fah−/−) mouse [7, 14]. Further stud-
ies indicated that LPCs originating from hepatocytes may 
be a predominant source of new parenchymal cells in 
mice undergoing chronic liver injury [15, 16]. These find-
ings raised the question of which type of LPC contributes 
to the ductular reaction and how it affects liver repair.

We have previously assembled a small-molecule cock-
tail by mimicking the in  vivo milieu of liver injury and 
regeneration that converts hepatocytes into expandable 
LPCs [17, 18]. Here, the proliferative activity of the resi-
dent LPCs was activated by the cocktail  (CD24+LCN2+ 
LPCs), and their phenotypes and roles in liver dysfunc-
tion was characterized together with those of hepat-
ocyte-derived LPCs (HepLPCs) and BEC-derived 
LPCs (BecLPCs). Transcriptional profiling and immu-
nofluorescence staining allowed the identification of 
Cd24a+Lcn2+ LPCs as the major LPC type contributing 
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to ductular reaction. Transplantation of in-vitro cultured 
Cd24a+Lcn2+ LPCs was found to exacerbate liver dys-
function by provoking a robust macrophage response via 
LCN2. These findings shed light on hepatic cellular plas-
ticity and contribute to advances in LPC-based treatment 
for chronic liver disease.

Results
Generation and characterization of  CD24+ liver progenitor 
cells from hepatic parenchymal and non‑parenchymal cells
CD24 is an essential marker of epithelial stem/progenitor 
cells, regulating homeostatic cell renewal by controlling 
the balance between proliferation and differentiation [19, 
20]. In clinical samples of liver fibrosis,  CD24+CK19+/
CD24+SOX9+ ductular reactive cells were abundantly 
found in regions of ductular reaction (Fig. 1a, Additional 
file 1: Fig. S1a, Tables S4 and S5) [21], suggesting the acti-
vation and expansion of ductular reactive cells[1]. Con-
sistently, sc-RNA analysis of NPCs after  CCl4-induced 
liver injury identified a subset of facultative  CD24+LPCs 
cells expressing SOX9/CK19/HNF1B/FOXA2/ALB/ASS1 
(Fig.  1b) [22]. These findings confirmed the presence of 
the putative LPCs in ductular reaction. To determine 
the origin of LPCs in the damaged liver, AAV-Tbg-
Cre infected ROSA26tdTomato mice were used, in which 
hepatocytes and their derivatives were tdTomato-pos-
itive  (tdTom+). With ductular reaction appearing after 
6 weeks of exposure to  CCl4 [23], an increasing popula-
tion of  CD24+tdTom− LPCs was observed in ductular 
reactions foci (Fig. 1c, white arrow), suggesting that they 
originated from non-hepatocytes.

To further address their origin, a small molecule-based 
culture system, transition, and expansion medium (TEM) 
to culture hepatocyte-derived LPCs (HepLPCs) [17, 18], 

was used to culture LPCs derived from non-hepatocytes 
such as BECs or resident LPCs. Firstly,  tdTom+ HepLPCs 
from AAV-Tbg-Cre infected ROSA26tdTomato mice were 
included as controls (Fig. 1d, lower row). Next, to obtain 
biliary epithelial cells, intrahepatic bile ducts were 
digested and  EpCAM+ BEC were isolated and expanded 
with a dedifferentiation process in TEM, giving rise to 
BEC-derived LPCs (BecLPCs) (Fig. 1d, middle row). Due 
to the lack of specific markers for LPCs in the canal of 
Hering [5], the AlbCreERT/R26GFP strain was employed 
to yield  GFP− NPCs as almost all parenchymal cells of 
hepatic lineage were labeled with GFP. The labeling effi-
ciency of  AlbCreERT/R26GFP mice by FACS was over 99% 
(Additional file 1: Fig. S1b).  EpCAM− cells were further 
isolated from  GFP−cells to exclude the limited contami-
nation by cholangiocytes. Then the purified ovoid cells 
were cultured and expanded in TEM (Fig. 1d, upper row). 
We assumed that these TEM-cultured proliferative cells 
originated from the pre-existing resident LPCs as previ-
ously reported [24].

All 3 types of LPCs grew to form continuous monolay-
ers with similar doubling times at passage 5 (Fig. 1e, f ). 
EdU incorporation assay and Ki67 staining indicated that 
all LPCs had similar division rates when cultured in TEM 
(Fig. 1d, Additional file 1: Figs. S1c, d). Immunofluores-
cence staining and FACS analysis showed that all three 
LPCs had similar expression levels of SOX9, CD24, and 
CD44, but not CD34, CD45, and CD90 (Fig. 1g, h, Addi-
tional file 1: Fig. S1d–f). Global gene expression analysis 
was conducted to compare the gene expression patterns 
of LPCs with those of Kupffer cells (KCs), hepatic stellate 
cells (HSCs), liver sinusoidal endothelial cells (LSECs), 
hepatocytes (HCs), and biliary epithelial cells (BECs) to 
exclude possible contamination by these cells (Fig. 1i). It 

(See figure on next page.)
Fig. 1 Derivation of cultured liver progenitor cells from the hepatic parenchymal and non‑parenchymal cells. a Representative 
immunofluorescence staining of α‑SMA, CK19, SOX9, and CD24 in human liver fibrotic tissues. Scale bar: 200 μm. b Liver non‑parenchymal cells 
(NPCs) were isolated from mouse livers after 4  CCl4 injections and subjected to scRNA‑Seq. U‑map visualization of  CD24+ cell clusters is based 
on 1038 single‑cell transcriptomes and bubble plots show the expression levels of Foxa2, Sox9, Ck19, Hnf1b, ASS1, and Alb. The color bar indicates 
the expression level of scaled genes. c Representative immunofluorescence staining of  CD24+tdTom− liver progenitor cells in mice treated with  CCl4. 
 ROSA26tdTomato mice were infected with AAV8‑Tbg‑Cre and treated with 2 mL/kg  CCl4 twice a week for a continuous period of 6 weeks. Scale 
bar: 100 μm. d Schema model and representative images for isolation and culture of LPCs. ALB/GFP−EpCAM− cells were isolated from  AlbCreERT/
R26GFP mice by FACS and cultured in TEM (resident LPCs‑derived LPCs). Mechanically abraded epithelial cells from wild‑type intrahepatic bile 
ducts were FACS‑sorted and  EpCAM+ cells were cultured in TEM (BECs‑derived LPCs). Control  tdTom+ hepatocytes from  ROSA26tdTomato mice 
with AAV8‑Tbg‑Cre were cultured in TEM (Hepatocytes‑derived LPCs). Scale bar: 200 μm. Representative immunofluorescence staining of Ki67 
(Green) in three cultured LPCs at passage 5. Scale bar: 100 μm. e Proliferation measurements of progenitor‑like cells in TEM calculated from CCK‑8 
assay at passage 5. f Progenitor‑like cell doubling time at passage 5, measured by cell counting. g Representative immunofluorescence staining 
of SOX9 (Green) in three cultured LPCs at passage 5. Scale bar: 100 μm. h Quantification of CD44 and CD24 positive cells among three cultured LPCs 
at passage 5, assessed by flow cytometry. Red peaks represent staining samples and blue peaks represent the isotype control. i Heat map of three 
cultured LPCs of gene expression levels compared with HCs, BECs, HSCs, LSECs, and KCs. n = 2 independent experiments. Resident LPCs‑derived 
LPCs, reLPCs; Hepatocytes‑derived LPCs, HepLPCs; BECs‑derived LPCs, BecLPCs; HC, hepatocyte; BEC, biliary epithelial cell; LSEC, liver sinusoidal 
endothelial cell; HSC, hepatic stellate cell; KCs, Kupffer cells. For panels e and f, data summarize 3 independent experiments. Data are expressed 
as means ± SD
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is noteworthy that all three types of LPC expressed many 
stem/progenitor markers, such as CD44, Hnf1b, Foxa2, 
and Sox9 [25]. In summary, these three cultured LPCs 
from different liver origins were generated by culture in 
TEM.

Functional difference between LPCs from parenchymal 
cells and those derived from pre‑existing LPCs
RNA-seq demonstrated that HepLPCs and BecLPCs 
continued to express hepatobiliary lineage genes. In con-
trast, the LPCs derived from the resident LPCs express 
neither hepatocyte-lineage markers including Cyp1a2, 
Hnf1a, nor bile duct-associated gene, Epcam, with iso-
lated hepatocytes and BECs included as controls (Fig. 2a, 
Additional file 1: Fig. S2a, b). Among these markers, the 
expression of HNF1α and EpCAM in the three LPCs was 
validated by FACS analysis (Fig. 2b, Additional file 1: Fig. 
S1f ). Furthermore, GESA analyses showed that genes 
of the Wnt pathways were enriched in HepLPCs and 
genes of the Notch pathways were enriched in BecLPCs, 
respectively (Additional file  1: Fig.S2c), confirming that 
they were independently derived from hepatic and biliary 
lineage.

Next, we investigated the capacity of the three LPCs 
for differentiation into hepatobiliary lineages in  vitro. 
A matrigel-based 3D culture system was used to induce 
the formation of duct-like-organoids from three LPCs. 
Only BecLPCs successfully formed cysts, evidenced by 
uniformly higher expression of EpCAM and CK19 in 
BecLPC-derived cysts (Fig.  2c–e, Additional file  1: Fig. 
S3a, b). These findings suggested that BecLPCs were 
more biased toward a ductal lineage. Furthermore, 3D 
spheroids were generated from three LPCs to deter-
mine their hepatic differentiation capacity (Fig. 2f ). After 
7 days of culturing, HepLPC-derived spheroids had accu-
mulated more glycogen and lipid and showed higher 
expression levels of CYP3A4 and ALB than the other two 
LPCs-derived spheroids (Fig. 2g, h, Additional file 1: Fig. 

S3c, d). Thus, HepLPC-derived spheroids preferentially 
displayed critical functional characteristics of hepato-
cytes. To further evaluate their abilities of hepatic differ-
entiation in vivo, these differentiated LPCs (1 ×  106) were 
transplanted into Fah−/− mice [17] (Fig. 2i), and all mice 
were sacrificed on day 30. Immunofluorescence staining 
showed that only HepLPCs were able to repopulate and 
undergo maturation in  vivo due to their better hepatic 
functions (Fig.  2i, j). Collectively, all 3 cultured LPCs 
could be induced to upregulate the expression of hepa-
tobiliary genes upon differentiation. Preferential differen-
tiation toward hepatic and biliary lineages was observed 
in HepLPCs and BecLPCs, respectively, while the differ-
entiation ability of resident LPCs-derived LPCs towards 
either lineage was much lower than that of HepLPCs or 
BecLPCs.

The expression profile of the in‑vitro cultured Cd24a+Lcn2+ 
LPCs derived from the resident LPCs recapitulated their 
in vivo counterparts found in ductular reactions
Transcriptomic profiles of three cultured LPCs were 
generated and differential gene expression analyses were 
conducted to identify specific markers. In total, 533 genes 
were found to be BecLPC-specific, 657 HepLPC-specific, 
and 266 resident LPC-specific (Fig. 3a, Additional file 1: 
Fig. S4a, b). GO and KEGG analyses illuminated some 
functional differences. Genes differentially expressed by 
BecLPCs were enriched in negative regulation of Wnt 
signaling and those differentially expressed by HepLPCs 
concerned P450 metabolism and negative regulation of 
Notch signaling (Fig. 3b, Additional file 1: Fig. S4c). From 
each specific genes set, we found Epcam, Krt17 [26], Lgr6, 
Ltbp2, and Onecut2 [27] were upregulated in BecLPCs, 
while Rbp4 [28], Hnf1a, Hnf4a, Lgals2, and Stra6 were 
upregulated in HepLPCs (Fig.  3d). Epithelial cell prolif-
eration was enriched in all three LPCs, however, it is of 
note that innate immune and inflammation pathways, 
HIF-1, and oxidative stress and metabolic process were 

Fig. 2 Three cultured liver progenitor cells are functionally distinct in vitro & in vivo. a Heat map showing known hepatocyte and biliary gene 
expression in three cultured LPCs, HC, and BEC. b Quantification of HNF1A and EpCAM positive cells among three cultured LPCs, assessed by flow 
cytometry. Red peaks represent staining samples and blue peaks represent the isotype control. c Representative images of organoids formed 
by three cultured LPCs. Scale bars, 100 μm. d Normalized expression levels of bile duct markers genes in LPCs derived organoids, analyzed 
by RT‑q‑PCR. e Representative immunofluorescence staining of EpCAM and CK19 and uptake of Rhodamine 123 dye in organoids formed 
by BecLPCs at day 10. Scale bars, 100 μm. f Representative images of spheroids formed by three cultured LPCs. Scale bars, 100 μm. g Normalized 
expression levels of hepatic and progenitor marker genes in LPCs derived organoids, analyzed by RT‑q‑PCR. h Representative PAS staining, 
and immunohistochemical staining for CYP3a4 and ALB of 3D spheroid formed by three cultured LPCs, respectively. Scale bars, 100 μm. i Schematic 
overview of the experimental design. The repopulated three cultured LPCs were analyzed by immunofluorescence staining for FAH expression, 
after transplantation of LPCs into  Fah−/− mice at day 30, as described in the Method. Scale bars, 600 μm. j The maturation of repopulated HepLPCs 
was analyzed by co‑immunofluorescence staining for FAH and ALB expression at day 30 after transplantation of LPCs into Fah‑/‑ mice, as described 
in the Method. Scale bars, 100 μm. Resident LPCs‑derived LPCs, reLPCs; Hepatocytes‑derived LPCs, HepLPCs; BECs‑derived LPCs, BecLPCs. For panels 
d and g, results are shown as the mean ± S.D. of three independent experiments. *P < 0.05; **P < 0.005; ***P < 0.001.

(See figure on next page.)
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closely associated with resident LPCs (Fig. 3b, Additional 
file  1: Fig. S4c). In addition, GSEA validated a signifi-
cant enrichment of HIF-1, IL17, JAK/STAT, and NF-kB 
pathways in these LPCs (Fig.S2d). Using the STRING 
database, we determined that LCN2 [29] was highly 
expressed and deeply associated with other immune and 
inflammatory-related genes from these in-vitro cultured 
resident LPCs specific gene sets, especially including 
Parp14 [30], Oas2 [31], Nrp2 [32], and Nlrc5 [33] (Fig. 3c, 
d).

Based on these potential markers groups for discrimi-
nation of LPC source, we compared the expression pro-
file of hepatocyte-derived proliferative ducts (hepPDs) 
from animals receiving DDC diet [7] with that of cultured 
LPCs (Fig.  3e). Heatmap generated from the expression 
of specific markers showed that the expression level of 
these markers in DDC-hepPDs was comparable to that 
of cultured LPCs. Furthermore, we observed that DDC-
hepPDs displayed a closer clustering with HepLPCs 
rather than Cd24a+Lcn2+ LPCs or BecLPCs, suggest-
ing the correlation between the in  vitro-cultured LPCs 
and the state of their in vivo counterparts. In accordance 
with this correlation, we also compared the expression 
profile of isolated Cd24a+ LPCs after  CCl4 treatment 
in  vivo  (CCl4-LPC) [21] with that of in-vitro cultured 
Cd24a+Lcn2+ LPCs (Fig.  3e). Consistently, the heatmap 
showed that  CCl4-LPCs were more closely interrelated 
to Cd24a+Lcn2+ LPCs. These results were further con-
firmed by quantitative PCR analysis of the specific mark-
ers in  CCl4-treated and normal groups (Fig.  3f ). These 
findings suggested that endogenous Cd24a+Lcn2+LPCs 
in hepatic ductular reactions might originate from the 
pre-existing resident LPCs.

Single‑cell RNA sequencing and spatial localization 
of resident LPCs‑derived Cd24a+Lcn2+ LPCs
The degree of ductal reactions was positively correlated 
with disease severity from a range of pathogenic causes 
like NASH [34, 35]. Cd24a+Lcn2+ LPC-specific genes 

overlapped with genes differentially expressed in mice 
fed a diet rich in fat, fructose, and cholesterol (FFC) 
to cause NASH (Fig.  3g, h). Notably, LCN2 was also 
shown to be upregulated in ductular reactive cells dur-
ing  CCl4-induced liver fibrosis model and in the NASH 
model induced by Choline-Deficient L-Amino Acid-
Defined High-Fat Diet (CDAHFD) [36, 37] (Fig.  4a). In 
addition, these models with more severe hepatic injury 
showed a higher expression of LCN2 and CD24 by qPCR, 
especially in NASH models (Fig. 4b).

To further clarify the identity of these Cd24a+Lcn2+ 
LPCs, we analyzed the single-cell RNA sequencing data 
of NASH-induced NPCs [38]. Although Cd24a was 
expressed in different immune cells (macrophages, DCs, 
and B cells) while LCN2 in hepatocytes, a subpopulation 
of LCN2 and Cd24a positive cells was identified with not 
only abundant stem/progenitor markers of Sox9, Hnf1b, 
and Foxa2 but also hepatobiliary functional genes such as 
Alb/C3/Krt19 (Fig.  4c, d). Immunofluorescence staining 
defined the cellular morphology and spatial location of 
these endogenous Cd24a+Lcn2+ LPCs in regions of duct-
ular reaction (Fig. 4e). Analysis of clinical samples from 
patients with liver fibrosis also showed a huge abundance 
of endogenous  CD24+LCN2+ cells in ductular reaction 
foci (Fig.  4f, Additional file  1: Fig. S7a). GO and KEGG 
analyses of the Cd24a+Lcn2+ subset showed they were 
mostly enriched in epithelial cell proliferation, hepatobil-
iary system development, and Hippo signaling pathway 
(Fig. 4g, h). These findings suggested that Cd24a+Lcn2+ 
exhibited an LPCs-like profile and contributed to ductu-
lar reactions in chronic liver diseases. Hence, Cd24a and 
Lcn2 could be jointly utilized to identify the subset of 
LPC that mainly originated from resident LPCs.

CD24+LCN2+ LPCs elicit a robust macrophage response 
in vitro and in vivo
As shown in revised Fig.  4a, b, we noted more LCN2-
positive hepatocytes in CDAHFD-fed mice than in 
CCl4-treated mice. These excessively high levels of 

(See figure on next page.)
Fig. 3 Specific markers of resident LPCs‑ and parenchymal cells‑derived LPCs by transcriptomic profiling. a Venn diagrams showing numbers 
and overlap of genes upregulated in three cultured LPCs. b Ten upregulated gene ontologies (biological process) in three cultured LPCs. c Protein–
protein interactions of DEG products in resident LPCs‑derived LPCs related to gene ontologies b were constructed using the STRING database. 
The size and color of the circles depict the average absolute expression level. d Normalized gene counts of the 5 most significantly differentially 
expressed genes from RNA‑sequencing a and validation by RT‑q‑PCR. Gene expression levels were normalized to Actin level and data were plotted 
as mean ± SD of three independent experiments. e Heat map showing expression levels of specific markers in three cultured LPCs, DDC‑hepPD, 
and  CCl4‑CD24 + LPCs. f Normalized expression levels of 5 most significantly differentially expressed genes of resident LPCs‑derived LPCs 
in fibrotic mice after  CCl4 injections. g Venn diagrams showing numbers and overlap of genes uniquely upregulated in resident LPCs‑derived LPCs 
by comparison with the NASH mice fed with FFC diet. h Normalized gene counts of 5 most significantly differentially expressed genes of resident 
LPCs‑derived LPCs in RNA‑sequencing g and their validation by RT‑q‑PCR. Gene expression levels were normalized to Actin and data are plotted 
as mean ± SD of three independent experiments. Resident LPCs‑derived LPCs, reLPCs; Hepatocytes‑derived LPCs, HepLPCs; BECs‑derived LPCs, 
BecLPCs. For panels d, f, and h, data summarize 3 independent experiments. *p < 0.05; **p < 0.005; ***p < 0.001; ns: no significant difference.
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hepatocytes-derived LCN2 in NASH model might ham-
per investigating the roles of LPCs-derived LCN2 against 
hepatic fibrosis as compared to the  CCl4 model. We, 
therefore, determined to transplant GFP/Luciferase 
labeled  CD24+LCN2+ LPCs (2 ×  106) into  CCl4-treated 
mice (Fig.  5a, Additional file  1: Fig. S5a), and HepLPCs 
were considered as controls. Both  CD24+LCN2+ LPCs 
and HepLPCs could be found by live imaging 24 h after 
transplantation (Additional file  1: Fig. S5b). Although 
HepLPCs transplantation reduced liver injury as 
reported before [21],  CD24+LCN2+ LPC transplantation 
enhanced ductular reaction and liver fibrosis in H&E, 
Sirius Red, CK19, and α-SMA staining, and increased the 
serum levels of ALT and AST compared to control mice 
on day 40 (Fig. 5b–d, Additional file 1: Fig. S5c, d). These 
results indicate that  CD24+LCN2+ LPCs exacerbated, 
rather than ameliorate, liver damage.

LCN2 recruits inflammatory cells and triggers inflam-
matory response [39]. Consistently, transplantation 
of  CD24+LCN2+ LPCs with high expression of Lcn2 
enhanced the tissue infiltration of F4/80+ macrophages 
and neutrophils, as shown by MPO staining (Fig.  5b, 
Additional file  1: Fig. S5c, e). The CellChat toolkit of 
sc-RNA seq was used to investigate the cell–cell inter-
action network between Cd24a+Lcn2+ cells and other 
NPCs in Fig.  4c [40, 41], showing Cd24a+Lcn2+ cells 
had the strongest interaction with M1 macrophages 
[42] (Fig.  5e, f ). In  vitro transwell assays demonstrated 
that  CD24+LCN2+ LPCs exerted an enhanced chemo-
tactic effect on bone marrow-derived macrophages 
(BMDMs, Fig.  5g, h). Moreover, BMDMs cultured with 
 CD24+LCN2+ LPC conditioned medium expressed 
higher levels of M1 markers, including IL-1b, IL-6, and 
inducible nitric oxide synthase (iNOS; Fig.  5i, j, Addi-
tional file  1: Fig. S6a, b), while BMDMs cultured with 
HepLPC conditioned medium expressed higher levels 
of M2 marker, ARG1 (Additional file 1: Fig. S6c). Silenc-
ing of the Lcn2 gene in  CD24+LCN2+ LPCs eliminated 
the chemotactic paracrine action on macrophages and 
prevented up-regulation of M1 marker genes (Fig. 5k, l, 
Additional file 1: Fig. S6d, e). In summary, replenishment 

of  CD24+LCN2+ LPCs provoked an enhanced mac-
rophage response, which might exacerbate chronic liver 
damage.

Single‑cell atlas revealed CD24+LCN2+ LPC‑macrophage 
cell–cell communication network in human cirrhotic liver
The dataset of NPC types in cirrhotic liver disease was 
partitioned into clusters and annotated using signatures 
of known lineage markers (Additional file  1: Fig.S7b). 
The cell subset with high expression of CD24, LCN2, and 
SOX9 was associated with epithelia (Fig. 6a) and showed 
especially strong interactions with macrophages (Fig. 6b). 
Unsupervised U-map analysis identified 12 sub-clusters 
(sc-0–11) of macrophages, among which sc-10/6/2/5/7 
was the most enriched in cirrhotic livers (Fig.  6c). Sin-
gle-cell transcriptome analysis revealed that sc-6 had 
the highest upregulation of pro-inflammatory genes and 
proinflammatory surface markers than other sub-clusters 
(Fig.  6d, e). The quantitative analysis of NF-kB target 
genes revealed that sc-6/1/5/7 scored higher among all 12 
sub-clusters (Fig. 6f, g). The sc-6 and sc-7 subpopulations 
had enhanced pro-inflammatory phenotypes with the 
strongest interactions with CD24+LCN2+ LPCs (Fig. 6h).

Finally, as ductular reaction aggravated with the pro-
gression of fibrosis to cirrhosis, immunofluorescent 
staining showed increasing numbers of  LCN2+ LPCs sur-
rounded by more macrophages in liver tissues (Fig.  6i, 
Additional file  1: Fig. S7c). Thus, the single-cell atlas of 
human liver NPCs and immunofluorescent staining vali-
dated the involvement of CD24+LCN2+ LPCs in ductular 
reactions, contributing to the exacerbation of inflamma-
tion and fibrosis by macrophage recruitment.

Discussion
Whether LPCs of different origins contribute to injury-
induced liver regeneration and the underlying mecha-
nisms have long been debated. We previously reported 
a small-molecule cocktail for in  vitro maintenance and 
expansion of HepLPCs [17, 18] and have cultured LPCs 
from the resident LPCs and BECs in this study. Tran-
scriptomic and functional analyses have shown that LPCs 

Fig. 4 Single‑cell RNA sequencing and spatial location of resident LPCs‑derived Cd24a+Lcn2+ LPCs activated in chronic liver disease models. 
a Representative immunofluorescence staining of LCN2 and CD24 expression in different hepatic disease models. CDAHFD, Choline‑Deficient 
L‑Amino Acid‑Defined High‑Fat Diet; ND, normal diet. Scale bar: 100 μm. b RT‑q‑PCR analysis of Lcn2 and Cd24 expression in mice’s fibrotic 
and NASH liver at different time points. The data are expressed as means ± SD of three independent experiments. *p < 0.05; **p < 0.005; ***p < 0.001. 
c Liver NPCs were isolated from the livers of mice fed with the AMLN diet to induce NASH and subjected to scRNA‑Seq. U‑map visualization of liver 
cell clusters based on 15,380 single‑cell transcriptomes. d U‑map of NASH‑NPCs. The feature plots show Lcn2, Cd24a, Hnf1b, Foxa2, Ck19, Sox9, Alb 
and C3 expression levels. The color bar indicates the expression level of scaled genes. e Representative immunofluorescence staining of LCN2 
and CD24 expression in mouse fibrotic liver treated with  CCl4. Scale bar: 100 μm. f Representative immunofluorescence staining of LCN2 and CD24 
expression in human fibrotic liver tissues. Scale bar: 100 μm. g GO enrichment pathway analysis of Cd24a+Lcn2+ LPCs clusters in NASH‑NPCs. h KEGG 
enrichment pathway analysis of  Cd24a+Lcn2+ LPCs clusters in NASH‑NPCs

(See figure on next page.)
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of different origins shared common progenitor cell fea-
tures, such as increased expression of proliferative mark-
ers (Cd24 and Sox9), and enrichment of stemness-related 
pathways.

Additionally, transcriptomic and functional com-
parisons of cultured LPCs revealed specific markers for 
each cell type of LPCs and illuminated their functional 
differences in the treatment of liver injury. LCN2 was 
identified as a specific marker of the activated resident 
LPCs, distinguishing it from HepLPCs and BecLPCs. 
Using the STRING database, we determined that LCN2 
was highly expressed and deeply involved in innate 
immunity and inflammation, IL-17 signaling pathway, 
and cellular response to reactive oxygen species. LCN2 
is a secretory glycoprotein belonging to the lipocalin 
superfamily but is lowly expressed in healthy adults 
[43]. The upregulation of LCN2 expression in damaged 
hepatocytes and infiltrating immune cells has been 
observed in various liver diseases, including hepatitis, 
alcoholic liver disease, and non-alcoholic steatohepa-
titis [44, 45]. Correspondingly, animal models treated 
with bile duct ligation, repeated  CCl4 injections, and 
CDAHFD diet, also upregulate LCN2 in damaged liv-
ers, resulting in aggravating the inflammatory response 
[39]. Interestingly, LCN2 had higher expression in 
the CDAHFD diet-induced NASH model than in the 
 CCl4-induced liver fibrosis model according to our PCR 
data. There might be several reasons for this observa-
tion. First, mice receiving corn oil had higher levels of 
LCN2 than mice receiving a normal diet [44]. Second, a 
higher degree of damage (including steatosis and fibro-
sis) occurred in mice receiving 6  weeks of CDAHFD 
diet than in mice receiving 6 weeks of  CCl4. In addition, 
compared with WT mice with a high-fat diet (HFD) to 
induce simple steatosis, HFD-fed ob/ob mice (models 
of NASH) had higher hepatic expression of LCN2 and 
larger Sirius Red-stained fibrotic areas [46]. This study 

demonstrated that LCN2 level was correlated with the 
severity of liver inflammation and the stage of hepatic 
fibrosis, making it a good candidate biomarker or even 
a therapeutic target for NAFLD and fibrosis [45, 46].

The transcriptional profile of cultured  CD24+LCN2+ 
LPCs was comparable to that of endogenous  CD24+ LPCs 
in ductular reaction foci [21]. Furthermore, the presence 
of  CD24+LCN2+ LPCs was confirmed by sc-RNA seq 
data of NPCs and immunofluorescent staining of chronic 
liver injury models. These findings may recapitulate the 
cellular plasticity found in ductular reactions in vivo and 
support the hypothesis that the resident progenitor/stem 
cells derived LPCs may drive ductular reaction [2]. A sub-
population of LCN2-expressing  CD24+ LPCs was acti-
vated and expanded in ductular reaction foci with liver 
disease progressed. LPCs have been reported to secrete 
chemokines and proinflammatory mediators during 
ductular reactions, promoting macrophage and neutro-
phil infiltration into the periportal area [47, 48]. Upreg-
ulation of LCN2 had a hepatoprotective effect in acute 
liver injury but accelerated the development of chronic 
cirrhosis and facilitated the crosstalk between neutro-
phils and Kuppfer cells, thereby worsening steatohepati-
tis [29]. In addition, LCN2 acts as a key mediator of HSC 
activation in leptin-deficient obesity via α-SMA/MMP9/
STAT3 signaling, further exacerbating NASH [46]. In 
this study, cultured  CD24+LCN2+ LPCs elicited robust 
inflammatory responses from macrophages in an LCN2-
dependent manner, and transplantation of  CD24+LCN2+ 
LPCs into  CCl4-treated mice promoted macrophage infil-
tration and induced M1 polarization. We hypothesized 
that silencing LCN2 in  CD24+LCN2+ LPCs might alle-
viate hepatic damage, since depletion of LCN2 substan-
tially attenuated necroinflammation and infiltration of 
neutrophils and macrophages, protecting against HFD-
induced steatohepatitis and fibrosis [29]. Thus, the cur-
rent study has established the role of  CD24+LCN2+ LPCs 

(See figure on next page.)
Fig. 5 Transplantation of  CD24+LCN2+ LPCs exacerbated chronic fibrosis and inflammation by infiltrating macrophages. a Schematic overview 
of the experimental design. Eight‑week‑old wild‑type C57BL/6 mice were injected with 2 mL/kg  CCl4 i.p. twice a week for a continuous period 
of 6 weeks. 1–2 ×  106  CD24+LCN2+ LPCs or HepLPCs were transplanted 4 h after the first  CCl4 injection. b Representative images of H&E, Sirius 
Red, and immunofluorescence staining for CK19, α‑SMA, and F4/80 in liver slides. Scale bar: 600 μm for H&E staining and Sirius Red staining; 
200 μm for immunofluorescence staining. c Quantification of Sirius Red positive area as a proportion of the total liver area. Data were measured 
by Image J software. d Serum analysis of ALT and AST. e Circle plots showing the number of interactions between  CD24+LCN2+ LPCs and other cell 
groups in NASH‑NPCs of Fig. 4. f Violin plots showing expression of Il1b, Tnf, and Cd86 in NPCs of Fig. 4. g Schematic model of the transwell assay 
and quantification of migrated cells in basal medium,  CD24+LCN2+ LPC conditioned medium or HepLPC conditioned medium. h Quantification 
of the cell number at the bottom of transwells. i RT‑q‑PCR analyses M1 macrophage expression. M0 macrophages were cultured in basal 
medium (BM) or conditioned media (CM) of  CD24+LCN2+ LPCs or HepLPCs, as indicated. j RT‑q‑PCR analyses of M1 macrophage expression. M1 
macrophages were cultured in basal medium (BM) or conditioned media (CM) of  CD24+LCN2+ LPCs or HepLPCs, as indicated. k, l Quantification 
of the cell number at the bottom of transwells k and RT‑q‑PCR analyses of M1 macrophage expression l M0 macrophages were cultured in basal 
medium (BM) or  CD24+LCN2+ LPC‑conditioned mediums with or without Lcn2 expression. Resident LPCs‑derived  CD24+LCN2+ LPCs, reLPCs; 
Hepatocytes‑derived LPCs, HepLPCs. For panels c, d, h, i, j, k, and l, data are expressed as means ± SD of three independent experiments. p values 
were analyzed by one‑way ANOVA. *p < 0.05; **p < 0.005; ***p < 0.001; ns: no significant difference
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in the inflammatory response of macrophage in ductular 
reactions responses, worsening hepatic dysfunction.

We acknowledge some limitations to the current 
study. Firstly, consistent with the small-molecule-
induced expansion of LPCs in  vitro [24], we speculated 
that  CD24+LCN2+ LPCs were derived from the resi-
dent LPCs. In addition, LCN2 was identified as a critical 
marker and the proinflammatory effects to distinguish 
resident LPCs-derived LPCs from other types of LPCs. 
However, it is unknown whether LCN2 exists in the resi-
dent LPCs in healthy humans or whether its silencing in 
 CD24+LCN2+ LPCs promotes liver regeneration. Sec-
ondly, in  vitro spheroid and organoid formation assays 
demonstrated that all three LPCs could be induced to 
upregulate hepatobiliary gene expression upon differenti-
ation, however, spontaneous and preferential differentia-
tion did exist in distinct LPCs. Further studies are needed 
to explore whether a modified medium with factors like 
wnt3a, Rspo1, and NOGGIN [49–51] can enhance the 
differentiation potency of BecLPCs and  CD24+LCN2+ 
LPCs toward the hepatic lineage. Finally, in this study, 
we proved that a large amount of  CD24+LCN2+ LPCs 
were activated during chronic liver diseases and contrib-
uted to exacerbating hepatic damage. However, we could 
not rule out the existence of transitional liver progenitor 
cells (TLPCs), which originates from BECs during regen-
eration [52]. Meanwhile, further studies are necessary to 
establish whether  CD24+LCN2+ LPCs, a major LPC type 
in ductular reaction, have a ‘reprogramming competence’ 
to reduce hepatocyte and biliary epithelial cell plasticity 
(like hepPDs and TLPC) during liver fibrosis and NASH.

Conclusion
In summary,  CD24+LCN2+ LPCs were activated during 
chronic liver disease, contributed to macrophage infiltra-
tion and polarization, and exacerbated liver inflammation 
and fibrosis. These findings illuminated the distinct roles 
of LPCs of different origins, which may aid the identifi-
cation of appropriate LPCs for treating chronic hepatic 
diseases.

Materials and methods
Cell isolation, culture, and fluorescence‑activated cell 
sorting (FACS)
Aliquots of 2 ×  1011 plaque-forming units (pfu) of 
adeno-associated virus (AAV) vector containing Cre 
recombinase regulated by the thyroxine-binding globu-
lin promoter (AAV8-Tbg-Cre, Celliver Biotechnology 
Inc., Shanghai, China) were intravenously injected into 
8-week-old C57BL/6-Gt (ROSA26)tm1(CAG−LSL−Tdto-

mato)/Bcgen mice (ROSA26tdTomato, the Jackson Labo-
ratory). tdTom-negative hepatocytes  (tdTom−) were 
converted into tdTom-positive  (tdTom+) after 14  days. 
When foregut endoderm cells were ready to express the 
liver-specific gene, Alb [5], AlbCreERT/R26GFP mice bred 
from B6.129S-Albtm1.1(CreERT2) Smoc (AlbCreERT) 
and C57BL/6-Gt (ROSA26) Sortm1(CAG−DTR−EGFP)/Bcgen 
(ROSA26DTR−EGFP) were used for genetic labeling of albu-
min (ALB)-expressing cells and characterized by geno-
typing. These tdTom-positive  (tdTom+) hepatocytes and 
ALB and EpCAM-negative  (GFP−EpCAM−) cells were 
isolated using a two-step collagenase perfusion protocol, 
as described previously [21].

BECs were isolated from 6 to 8  week old mice as 
described [53]. Using the dissecting microscope, hepato-
cytes, portal vein branches, and connective tissues were 
removed after liver perfusion. Pieces of bile ducts were 
immersed in a solution of digestive enzymes for 20 min 
(Celliver Biotechnology Inc.). Then, small pieces of bile 
ducts were incubated into matrigel and cultured in Tran-
sition and Expansion Medium (TEM). After 1–2 pas-
sages, cholangiocytes grew out of the pieces and formed 
a monolayer. Single-cell suspensions were sorted by 
Beckman MoFlo XDP equipped with 405  nm, 488  nm, 
561 nm, and 640 nm excitation lasers.

Three types of FACS-sorted cells were cultured in 
TEM, as described previously [17]. Briefly, TEM was 
based on DMEM/F12 (Invitrogen) supplemented with 
N2 and B27 (Invitrogen) and the following growth fac-
tors or small molecules: 20 ng/mL EGF, 20 ng/mL HGF 
(all Peprotech), 10 μM Y27632, 3 μM CHIR99021, 1 μM 
S1P, 5  μM LPA, and 1  μM A83-01 (all TargetMol). All 

Fig. 6 Single‑cell atlas validated CD24+LCN2+ LPC‑macrophage cell–cell communication network in human cirrhotic liver disease. a Violin plots 
showing expression of LCN2, CD24, and SOX9 in NPCs from epithelia of the human cirrhotic liver. b Cellchat showed the number of interactions 
between CD24+LCN2+ LPCs and other cell groups in human liver NPCs diagnosed with cirrhosis. c U‑map visualization of macrophage clusters 
is based on 4648 single‑cell transcriptomes and the ratio of the macrophages of different clusters to total macrophages between cirrhotic 
and healthy livers. d, e The heatmap and the score of different pro‑inflammatory markers in different clusters of Kupffer cells are based 
on the analysis by QuSAGE (2.28.0), with the gene set shown in the heatmap. f The activation rate of the NF‑kB signal pathway in different clusters 
is based on the analysis by QuSAGE (2.28.0) of the gene set from the KEGG database. g The heatmap of NF‑kB target genes in different clusters 
of macrophages. h Cellchat showed the number of interactions between CD24+LCN2+ LPCs and other cell groups of macrophages in cirrhotic liver 
NPCs. i Representative immunofluorescence staining of CK19, LCN2, and F4/80 expression in clinical samples of liver fibrosis and cirrhosis. Scale bar: 
200 μm. Resident LPCs‑derived  CD24+LCN2+ LPCs, reLPCs

(See figure on next page.)
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mouse experiments were performed in accordance with 
the Guide for the Care and Use of Laboratory Animals. 
The Institutional Animal Care and Use Committee at the 
Shanghai Model Organisms Center Inc. approved this 
study.

RNA sequencing and bioinformatics analysis
Total RNA was isolated using the RNeasy mini kit (Qia-
gen, Germany), quantified by NanoDrop ND-2000 spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA) and integrity was determined by the Agilent 2100 
system and RNA 6000 Nano kit (Agilent Technologies, 
Santa Clara, CA, USA). Paired-end libraries were con-
structed using TruSeq Stranded mRNA LTSample Prep 
Kit (Illumina, San Diego, CA, USA), according to the 
manufacturer’s instructions. Libraries were sequenced 
on an Illumina platform (HiSeq X Ten, Illumina, Shang-
hai OE Biotech. Co., Ltd.), and 150 bp paired-end reads 
were generated. Fastp software (v0.20.0) was used to trim 
adaptor and remove low-quality reads to get high-quality 
clean reads. STAR software (v2.7.9a) was used to align 
high-quality clean reads to the reference genome. feature-
Counts software (v2.0) was used to get the raw gene level 
mRNA expression counts. Original data were uploaded 
to the Gene Expression Omnibus database (GSE135951 
and GSE125095). Other data were downloaded from 
GEO as follows: hepatocytes and BECs: GEO Acces-
sion No. GSE156894; Macrophages: GEO Accession 
No. GSE152211; Hepatic stellate cells: GEO Accession 
No. GSE96526; liver sinusoidal endothelial cells: GEO 
Accession No. GSE164006; Hepatocyte-derived prolifera-
tive ducts (hepPDs): GEO Accession No. GSE55552 and 
Chow and FFC-induced NASH mice: GEO Accession No. 
GSE164084.

Single-cell RNA analysis was conducted by collat-
ing single-cell expression data from NPCs isolated 
from  CCl4-induced liver fibrosis model (GEO Acces-
sion No. GSM5548830), non-alcoholic steatohepatitis 
(NASH) models (GEO Accession No. GSM3714750, 
GSM3714751, GSM3714752) and patients with cirrho-
sis (GEO Accession No. GSM4041161-GSM4041169). 
A total of 15,380 cells from NASH-NPCs, 4697 cells 
from  CCl4-NPCs, and 25,477 cells from human cirrho-
sis-NPCs passed the quality control threshold of > 500 
transcripts. Any genes detected in fewer than three cells 
(UMI count > 0) were removed. All datasets were nor-
malized using  log2CPM and the raw count matrix (UMI 
counts/gene/cell) was processed by Seurat.

Sample clustering and soft threshold screening were 
conducted using a Euclidean distance metric with com-
plete linkage [54]. GSEA analysis (GSEA, Broad Insti-
tute) was used to classify upregulation by fold change and 
genes [55]. Gene Ontology (GO), Kyoto Encyclopedia 

of Genes and Genomes (KEGG), Cellchat, and QuS-
AGE (2.28.0) [56] analysis were performed. Data were 
analyzed using R software based on the hypergeometric 
distribution.

Quantification and statistical analysis
Samples were randomly collected from five mice per con-
dition and from five independent liver fields per mouse. 
Statistical analysis was performed using GraphPad Prism 
7. A two-tail unpaired t-test was used to compare means, 
and one-way ANOVA with Dunnett correction was 
used for multiple comparisons with single variables. A 
p-value < 0.05 was considered statistically significant.

More details on materials and methods are provided in 
the Supplementary File.
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