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Abstract 

Background The genetic underpinnings of late‑onset Alzheimer’s disease (LOAD) are yet to be fully elucidated. 
Although numerous LOAD‑associated loci have been discovered, the causal variants and their target genes remain 
largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain 
on a cell subtype specific level to explore the biological processes underlying LOAD.

Methods Here, we present the largest parallel single‑nucleus (sn) multi‑omics study to simultaneously profile gene 
expression (snRNA‑seq) and chromatin accessibility (snATAC‑seq) to date, using nuclei from 12 normal and 12 LOAD 
brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and char‑
acterized cell subtype‑specific LOAD‑associated differentially expressed genes (DEGs), differentially accessible peaks 
(DAPs) and cis co‑accessibility networks (CCANs).

Results Integrative analysis defined disease‑relevant CCANs in multiple cell subtypes and discovered LOAD‑associ‑
ated cell subtype‑specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans‑interact‑
ing transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD‑
DEGs. Finally, we focused on a subset of cell subtype‑specific CCANs that overlap known LOAD‑GWAS regions 
and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD‑cCREs linked to LOAD‑DEGs, 
including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes.

Conclusions To our knowledge, this study represents the most comprehensive systematic interrogation to date 
of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. 
Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogen‑
esis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell 
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subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype‑specific 
cis–trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contrib‑
ute to the development of LOAD.

Keywords Late onset Alzheimer’s disease, Single‑nucleus (sn)RNA‑seq, snATAC‑seq, Regulatory networks, Chromatin 
accessibility, Transcriptomics, Epigenomics, Multi‑omics, Genetic variant

Introduction
Alzheimer’s disease (AD) is a complex multifactorial neu-
rodegenerative disorder characterized by extracellular Aβ 
deposits, referred to as plaques, as well as intracellular 
neurofibrillary tangles consisting of hyperphosphoryl-
ated tau, followed by synaptic and neuronal loss result-
ing in progressive cognitive and functional decline. Late 
onset AD (LOAD) is the common form of the disease 
with heterogenous genetic etiologies [1, 2]. The complex 
genetic architecture of LOAD has been studied over the 
past 3 decades (see Lambert et al. [3] for review). The e4 
allele of the apolipoprotein E gene (APOE e4) was the 
first, strongest, and most firmly established genetic risk 
factor for LOAD [4–7]. The initial discovery was made 
nearly 30  years ago by linkage analysis of pedigrees [4] 
and over the ensuing years it has become the most highly 
replicated genetic risk factor for LOAD [4–7]. Subse-
quent large multi-center genome-wide association stud-
ies (GWAS) have confirmed the strong association with 
the APOE genomic region and identified associations 
with numerous additional genomic loci [8–14]. The 
most recent GWAS meta-analyses reported 75 risk loci 
for LOAD [15, 16]. However, the precise disease-causing 
genes, the specific causal genetic variants, and the molec-
ular mechanisms mediating their pathogenic effects have 
not yet been explained. Most LOAD-GWAS variants are 
in noncoding genomic regions [17]. Previous studies sug-
gested that some noncoding LOAD SNPs are located in 
regulatory elements such as enhancers, affecting their 
functions, and thereby impacting gene expression [18], 
including expression of distal genes [19]. Thus, to untan-
gle the genetic and genomic architecture of LOAD and to 
translate LOAD genetic association discoveries to causal 
mechanisms of disease, LOAD GWAS variants need 
to be assigned to the correct target genes, rather than 
merely the nearest gene [19, 20]. Moreover, it is impera-
tive to map these variants and their linked genes to the 
specific brain cell-type in which they exert their patho-
genic effect.

Many functional genomic studies provide evidence for 
the role of gene dysregulation in LOAD pathogenesis, 
including those examining specific disease-related genes 
[21, 22], pathways [23], expression quantitative trait loci 
(eQTLs) [24–26], differential transcriptome profiles [27], 

and the DNA methylation [28–31] and histone mark [32] 
landscapes in human brain tissues. However, these stud-
ies were conducted in bulk brain tissue, and therefore 
cannot specify the cell type(s) in which gene expression 
or epigenetic changes occur. Mixed cell subtypes could 
also mask signals corresponding to a particular cell sub-
type, especially if the causal cell subtypes comprise a 
small fraction of the entire sample. Furthermore, bulk 
tissue studies are confounded by sample-to-sample varia-
tion in cell type composition, which could be exacerbated 
by the neuronal loss and proliferation of glial cells accom-
panying LOAD [33]. Transcriptomic and epigenomic 
studies using sorting techniques to separate broad cell 
types from LOAD brain tissue [34–39] for example, neu-
ronal vs. non-neuronal, have provided new important 
insights, but even within these categories, there are many 
different cell types and subtypes in the human brain [40]. 
Single-cell experimental approaches can circumvent 
these limitations and inform LOAD-specific epigenomic 
and transcriptomic changes with unparalleled precision.

The past three years have seen a transition into single-
cell multi-omics studies in LOAD functional genomic 
research. Single-cell transcriptomic studies have achieved 
previously unattainable resolution in identifying LOAD-
associated cell type-specific changes in gene expression 
[41, 42]. These studies demonstrate the importance of 
examining gene dysregulation at the cell type-specific 
level. However, they focused only on single-nucleus (sn)
RNA-seq data and therefore the underlying regulatory 
mechanisms for these gene expression signatures remain 
to be identified. More recently, integrative multi-omics 
single-nucleus framework studies profiling chroma-
tin accessibility and gene expression [43, 44] identified 
cell  type-specific, disease-associated candidate cis-regu-
latory elements (cCREs) and their candidate target genes, 
and demonstrated the utility and potential of this strategy 
in moving LOAD genetic research forward.

The diagram in Fig.  1a presents an overview of this 
study pipeline. We used the 10X Genomics platform to 
perform parallel snRNA-seq and snATAC-seq analy-
ses simultaneously from the same pool of nuclei derived 
from post-mortem temporal cortex tissue of LOAD 
patients and neuropathologically normal controls. 
We used these datasets to identify LOAD-associated 
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differentially expressed genes (DEGs), differentially 
accessible peaks (DAPs) and cis co-accessibility networks 
(CCANs) at the cell subtype level. The parallel experi-
mental design allowed us to integrate these LOAD pro-
files to promote the mechanistic understanding of gene 
dysregulation in LOAD. We identified LOAD-associated 
cell subtype-specific cCREs, their target genes, and the 
transcription factors (TFs) that may mediate their effects 
on gene expression changes in LOAD. We found that the 
expression of a subset of these TFs also changed in LOAD 
in the same specific cell subtype. Moreover, focusing on 
LOAD-GWAS regions, we catalogued putative regula-
tory SNPs positioned in the identified LOAD-associated 
cell subtype-specific cCREs that change the affinities of 
TF motifs and thereby potentially affect the expression of 
the target genes. Collectively, we provided new insights 
into the relationships between DNA sequence variation, 
chromatin structure, and transcriptome in LOAD brains 
at a cell subtype resolution. Furthermore, we identified 
candidate cis- and trans- regulatory networks and their 
target genes for further experimental investigations in 
model systems relevant to LOAD.

Results
Characterization of cell types and subtypes in the human 
temporal cortex of healthy aging and Alzheimer’s 
individuals using multi‑omics datasets
We isolated nuclei samples from frozen post-mortem 
human temporal cortex (TC) tissues of 12 LOAD and 12 
cognitively normal individuals (Table 1, Additional file 2: 
Table S1) and performed both snRNA-seq and snATAC-
seq in parallel by simultaneously using two aliquots from 
the same nuclei sample (Fig. 1a). To exclude the APOEe4 
effect, all donors were APOEe3/3. In both snRNA-seq 
and snATAC-seq nuclei, we discovered multiple neuronal 
and glial cell subtypes which were linked across both 
data sets for downstream analyses (Fig. 1b). This parallel 
experimental design allowed us to minimize differences 

between the snRNA-seq and snATAC-seq assays, includ-
ing technical variables and variability in cell type compo-
sition, and facilitated the multi-omics integrative analyses 
outlined in Fig. 1.

We first annotated the cell types in our snRNA-seq 
dataset by the label transfer method [45] using a pre-
annotated reference snRNA-seq dataset generated with 
the same technology [40], and validated these annota-
tions by examining expression of known cell type-spe-
cific marker genes [41], and additionally by label transfer 
from a human prefrontal cortex snRNA-seq dataset [43] 
(Methods, Additional file 1: Figure S1a and b). After qual-
ity control (QC) filtering, we retained a total of 209,518 
nuclei for snRNA-seq from all 24 temporal cortex sam-
ples (Additional file  2: Table  S2). After dimensionality 
reduction followed by Louvain community detection, we 
identified 33 distinct cell clusters (Figs. 2a, 3a, Additional 
file 2: Tables S3–S4) representing cell subtypes of astro-
cytes (Astro), excitatory neurons (Exc), inhibitory neu-
rons (Inh), microglia (Micro), oligodendrocytes (Oligo), 
and oligodendrocyte precursor cells (OPC). Cell subtypes 
were each given a unique label according to their broader 
cell type (e.g., the 11 clusters of excitatory neurons were 
labeled Exc1-Exc11, Additional file  2: Table  S4). Oligo-
dendrocytes were the most commonly identified cell type 
in our dataset (85,801 nuclei), with excitatory neurons 
being the second most common (52,980 nuclei; Addi-
tional file 2: Table S4). This highest proportion of oligo-
dendrocytes was consistent with the results reported 
by Morabito et  al. [43], whereas Mathys et  al. [41] and 
Anderson et  al. [44] reported excitatory neurons as the 
most common cell type in similar single-cell experi-
ments. It is possible that the relative proportions of the 
major cell types recovered during tissue preparation may 
be affected by the particular brain region of the exam-
ined tissue, and/or technical differences between labo-
ratory settings such as methods of tissue preservation, 
preparation, homogenization, and protocols of nuclei 
purification. Cells associated with brain vasculature are 

Fig. 1 Experimental approach and integration of snATAC‑seq with snRNA‑seq clusters. a, Schematic of nuclei isolation and parallel snATAC‑seq 
and snRNA‑seq library generation. Temporal cortex tissue was collected from 12 Normal and 12 LOAD donors → Nuclei were extracted 
from tissue samples by homogenization followed by sucrose gradient purification → Gel beads in emulsion (GEM) generation followed 
by parallel gene expression and chromatin accessibility library generation according 10X Genomics protocol and sequencing → Cell type 
annotation and subtype clustering for snRNA‑seq data based on gene expression profile comparison to reference dataset, followed by matching 
of subtype clusters between snRNA‑seq and snATAC‑seq datasets → Identification of differentially expressed genes (DEGs) and differentially 
accessible peaks (DAPs) via linear mixed effects modeling→ Identification of cis‑coaccessiblity networks (CCANs) incorporating DEGs and DAPs, 
and categorizing directionality of regulation → Identification of candidate coregulatory elements (cCREs), DAPs coaccessible with DEG regulatory 
regions, and characterization of biological function category enrichment of associated DEGs → Characterization of enriched TF binding motifs 
within regulatory regions of DEGs in CCANs → Identification of SNPs impacting TF binding to DEG regulatory regions within 0.5 Mb of GWAS loci. b, 
Flow chart of snRNA‑seq and snATAC‑seq analytical pipeline leading to cluster assignment, and schematic of analytical strategy with label transfer 
of snRNA‑seq clusters onto snATAC‑seq data by cell type and subtype

(See figure on next page.)



Page 4 of 33Gamache et al. Cell & Bioscience          (2023) 13:185 

Fig. 1 (See legend on previous page.)
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Fig. 1 continued
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challenging to recover due to the necessity of dissociation 
from the vessel basement membrane and require enrich-
ment procedures or sample pooling to obtain sufficient 
nuclei quantities for analysis [46, 47]. As such, vascular 
endothelial cells and vascular and leptomeningeal cells 
(VLMCs) represented only 0.22% of recovered nuclei in 
our dataset following QC filtering and were therefore 
excluded from downstream analyses. Previously known 
neuronal subtypes such as somatostatin interneurons 
[48–50] tended to form separate clusters, and a particu-
lar subtype of excitatory neurons marked by LAMP5 
was notably reduced (false discovery rate (FDR) adjusted 
p < 0.01) in LOAD tissue (Additional file  1: Figure S1d 
and e). To check for donor-based batch effects, we exam-
ined the distribution of nuclei across subtype clusters 
for each donor sample. Donor samples overall showed 
qualitatively even distribution across cell subtype clusters 
(Additional file 1: Figure S2a).

Similarly, 79,771 nuclei for snATAC-seq were retained 
after QC filtering (Additional file  2: Table  S5) and Lou-
vain community detection yielded 26 cell subtype clusters 
(Figs. 2b, 4a). We mapped the resulting snATAC-seq clus-
ters to the corresponding snRNA-seq clusters through 
the identification of shared transfer anchors between the 
datasets based on observed gene expression profiles for 
snRNA-seq nuclei and predicted gene expression profiles 
for snATAC-seq nuclei (Methods, Fig. 1b). snATAC-seq 
clusters were linked to most snRNA-seq clusters with 

the exception of seven cell subtypes: Inh7, Inh8, Micro3, 
Oligo2, Oligo7, Oligo8, and OPC2. Validation of the cell 
subtype linking method accuracy based on a test mul-
tiome dataset (see Methods) showed an overall 75.6% 
similarity based on Jaccard index and high concordance 
with a mean of ~ 0.89 hybrid score [42] (Additional file 2: 
Table S6). We also checked the donor-based batch effects 
in snATAC-seq clustering by examining the distribution 
of nuclei across subtype clusters for each donor sample, 
and showed again qualitatively even distribution across 
subtypes (Additional file 1: Figure S2b).

LOAD brains are pathologically characterized by neu-
ronal loss and gliosis [51]. Thus, we examined differences 
in mean cell type and subtype proportions (number of 
nuclei from a particular donor sample belonging to a 
particular cell type/subtype divided by total number of 
nuclei for the same sample) between LOAD and normal 
samples. Using the snRNA-seq dataset from the qual-
ity control (QC)-filtered nuclei we observed significant 
decreases in the proportions of astrocyte and OPC nuclei 
(FDR < 0.001) and increases in the proportions of inhibi-
tory neurons and oligodendrocytes nuclei (FDR < 0.01) 
in the LOAD samples (Fig.  2c). Extending the analysis 
to the full nuclei set, without removing the data from 
lower quality nuclei (based on QC parameters, Addi-
tional file 2: Table S2), replicated the same observations 
and additionally showed a decrease in the proportion of 
excitatory neurons (FDR < 0.05, Fig.  2c), as expected in 

Table 1 Demographics summary of study cohort

PMI post-mortem interval, SD standard deviation, t Student’s t-test statistic (for normal data), U Mann–Whitney U-test statistic (for non-normal data), df degrees of 
freedom, p probability value

Diagnosis Sex n Age (mean ± SD) Statistics PMI (mean ± SD) Statistics

LOAD Female 6 84.83 ± 7.52 U = 23,
p = 0.48

10.59 ± 4.73 t = 0.40,
df = 10,
p = 0.70

Normal Female 6 77.83 ± 10.46 9.36 ± 5.83

LOAD Male 6 77.67 ± 7.09 t = 0.32,
df = 10,
p = 0.76

4.38 ± 6.17 U = 7,
p = 0.092Normal Male 6 75.83 ± 12.16 7.44 ± 6.23

Fig. 2 Proportions of LOAD and normal nuclei among cell types and subtype clusters. a and b, Uniform manifold approximation and projection 
(UMAP) dimensional reduction plots of (a) snRNA‑seq and (b) snATAC‑seq datasets split into LOAD and normal groups following integration 
and clustering of the total nuclei population. Cell types are labeled in top plots and cell subtype clusters are shown in center plots. Lower plots 
show distribution of donor samples within subtype clusters (see also Additional file 1: Figure S2). c, Box plots quantifying differences in proportion 
of nuclei from each donor belonging to each cell type (number of nuclei from a particular donor belonging to a particular cell type divided by total 
number of nuclei for the same donor) split by diagnosis, based on snRNA‑seq dataset. As indicated, plots represent cell datasets following QC 
filtering and without QC filtering. Dots represent means for each sample set. Boxes represent interquartile range, with median values indicated 
via horizontal line. Mean values are indicated by open diamonds. Whiskers extend to sample means within 1.5 times the interquartile range. 
Asterisks represent statistical significance of variation between LOAD and normal mean values at FDR‑adjusted p‑value levels of FDR < 0.05 
(*), FDR < 0.01 (**) and FDR < 0.001 (***) based on bootstrapped Wilcoxon test. d, Box plots quantifying differences in cell type proportions 
between LOAD and normal samples based on snATAC‑seq dataset. e and f, Box plots quantifying differences in subcluster proportions 
between LOAD and normal samples based on (e) snRNA‑seq and (f) snATAC‑seq datasets

(See figure on next page.)



Page 7 of 33Gamache et al. Cell & Bioscience          (2023) 13:185  

Fig. 2 (See legend on previous page.)
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LOAD brains. Supporting these findings, all significant 
changes in the proportions of LOAD nuclei compared to 
controls were also detected in QC-filtered snATAC-seq 
nuclei (FDR < 0.01) (Fig. 2d, Additional file 2: Table S5).

We then performed the nuclei proportion compari-
son on the  more granular level of cell subtypes. For 
the majority of the cell subtypes, the snRNA-seq and 
snATAC-seq QC-filtered nuclei demonstrated differ-
ences in proportion between LOAD and control, and 
the directionality of most differences were consistent 
between these datasets (Fig. 2e and f, respectively). How-
ever, we observed some discrepancies in directionality 
between the snRNA-seq and the snATAC-seq datasets 
for the smaller subclusters comprising less than 2% of 
total nuclei (e.g., Exc9, Inh6, Micro2), where even small 
deviations would be expected to have a greater impact on 
observed proportions. Several subclusters within particu-
lar cell-types showed the same directions of proportional 
differences between LOAD and control as those reported 
previously [43]. Furthermore, similarly to the previous 
observations [43], we found that within the same cell type 
some subclusters were significantly enriched in LOAD, 
whereas others were depleted (Fig.  2e and f ). Nonethe-
less, the overall proportions of cell types and subtypes 
may not reflect true proportions in the brain due to some 
cell types not being equally amenable to the nuclei prepa-
ration procedure.

Cell type‑ and subtype‑specific differential gene 
expression and chromatin accessibility in LOAD
We used the snRNA-seq and snATAC-seq datasets to 
characterize LOAD-associated dysregulated genes and 
changes in chromatin structure within each cell type 
and subtype. To examine differential gene expression 
using the snRNA-seq data, we utilized a mixed effects 
model that incorporates a random effect for donor to 
avoid pseudo-replication bias [52] (Methods), which is 

typically not accounted for in single-cell studies. In addi-
tion to diagnosis, age, sex, post-mortem interval (PMI), 
sequencing saturation, and nuclei proportion within each 
cluster were incorporated into the model as fixed effects, 
based on our covariate analysis of 38 metadata variables 
(Methods, Additional file 1: Figure S3, Additional file 2: 
Table S2).

This analysis identified numerous differentially-
expressed genes (DEGs) in LOAD for each cell type 
(ranging from 135 in OPCs to 429 in oligodendrocytes; 
Additional file  2: Table  S7) and subtype (ranging from 
zero in subtype clusters Exc11, Inh7 and 8, and OPC2, 
to 968 in cluster Oligo4; Additional file 2: Table S8). The 
DEGs that showed the strongest (based on |log2FC|) and 
most significant (FDR-adjusted p-value) upregulation 
and downregulation effects in LOAD are highlighted 
in Fig.  3b–d and Additional file  1: Figure S4. In addi-
tion, we indicated the top DEGs that are within 500  kb 
(upstream or downstream) of a LOAD-GWAS tag SNP 
[15] (Fig.  3b–d, Additional file  1: Figure S4). Some of 
these DEGs were the most proximate to the tag SNP (e.g., 
APOE in Micro1 and WWOX in Oligo4), however, many 
were more distal within the tag SNP ± 500  kb window 
(Fig.  3c and d). For example, while EPHA1 is the near-
est gene to LOAD-GWAS SNP rs10808026, TCAF1 was 
identified as a DEG in Exc1 within this LOAD region 
(Fig. 3b).

The differential expression analysis at the cell type level 
found that the majority of the strongest DEGs did not co-
occur across cell types, supporting the need for cell type 
specificity in genomic analyses of LOAD. The common 
DEGs showed more subtle changes, and few had opposite 
directionality between cell types (Fig. 3e).

We used the upregulated and downregulated DEGs 
in LOAD from each cell type to perform gene ontology 
(GO) analysis, revealing enrichment of biological pro-
cesses, cellular components, and molecular functions, 

(See figure on next page.)
Fig. 3 Top differentially‑expressed genes (DEGs) upregulated and down‑regulated in LOAD by cluster and cell type. a, UMAP dimensional 
reduction plot of 33 cell subtype clusters based on snRNA‑seq data. Clusters highlighted in panels b‑d are circled in red. b–d, Unbiased volcano 
plots for six example clusters representing excitatory neuron (Exc), microglia (Micro), and oligodendrocyte (Oligo) cell types.  Log2 fold change 
(FC) between LOAD and normal control (NC) samples is plotted against –log10 p‑value (FDR). Points representing DEGs with statistically significant 
(p < 0.05) upregulation in LOAD are shown in green while DEGs with significant downregulation are shown in red. Genes without significantly 
differential expression are shown in blue. The proportion of DEGs to total genes examined is shown above each plot. The six DEGs 
with the highest absolute fold change  (log2FC > 0.2) in the up‑ and downregulated categories are labeled in green and red, respectively. The top 
up‑ and downregulated DEGs within 500 kb of disease‑associated SNPs previously identified in GWAS are labeled in teal and pink, respectively. 
For each of the labeled genes, dot plots are shown below representing their unscaled expression levels (color) and percent of cells expressing 
the gene (width) for LOAD and NC samples. e, Heatmap showing  log2 FC for the top three DEGs with the highest  log2 FC values > 0.2 in at least 
one cell type in upregulated (green) and down‑regulated (blue) categories for each cell type examined, as well as the top three DEGs  (log2FC > 0.2 
in at least one cell type) within 500 kb of identified GWAS SNPs (labeled in purple). f, The top ten enriched GO terms for downregulated LOAD genes 
(FDR adjusted p < 0.5) for oligodendrocytes and downregulated LOAD genes for microglia. Statistical significance threshold of category enrichment 
(FDR < 0.05) indicated by vertical lines. g, Table and Venn diagrams comparing cell type level DEGs identified in this study to those of Morabito et al. 
[43] and Anderson et al. [44] Consensus DEGs were identified in 2 or more studies
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Fig. 3 (See legend on previous page.)
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Fig. 4 Top differentially‑accessible peaks (DAPs) upregulated and down‑regulated in LOAD by cluster and cell type. a, UMAP dimensional reduction 
plot of snATAC‑seq cell data indicating both cell type and subtype clusters. Clusters highlighted in panel b are circled in red. b, Unbiased volcano 
plots for four example clusters representing excitatory neuron, inhibitory neuron, and microglia cell types.  Log2 fold change (FC) between LOAD 
and normal control (NC) samples is plotted against—log10 p‑value (FDR). Points representing DAPs with statistically significant (p < 0.05) 
upregulation of accessibility in LOAD are shown in green while DAPs with significant downregulation are shown in red. Peaks without significantly 
differential accessibility are shown in blue. The proportion of DAPs to total peaks examined is shown above each plot. The closest genes to the six 
DAPs with the highest absolute fold change  (log2 FC > 0.2) in the more and less accessible categories are labeled in green and red, respectively. The 
closest genes to the top more and less accessible DAPs within 500 kb of GWAS SNPs are labeled in teal and pink, respectively. Distances of closest 
genes from corresponding peaks (in bp) are indicated adjacent to gene labels where such distances are greater than zero. For each of the labeled 
peaks, dot plots are shown below representing their unscaled accessibility levels (color) and percent of cells with identified peak accessibility 
(width) for LOAD and NC samples. c, Heatmap showing  log2 FC for the top three DAPs  (log2FC > 0.2 in at least one cell type) with the highest fold 
changes in upregulated (green) and down‑regulated (blue) categories for each cell type examined, as well as the top three DAPs  (log2FC > 0.2 
in at least one cell type) within 500 kb of identified GWAS SNPs (labeled in purple). Closest gene names are indicated to the left of the heatmap 
while peak ranges are shown to the right. d, Table comparing cell type‑level DAPs identified in this study to those of Morabito et al. [43] e, Venn 
diagrams showing overlap between DEGs identified via snRNA‑seq and DAPs identified via snATAC‑seq for each cell type examined



Page 11 of 33Gamache et al. Cell & Bioscience          (2023) 13:185  

relevant to neuronal function and neurological disease 
processes in several cell types (Fig.  3f and Additional 
file  1: Figure S5). For example, the biological processes 
‘cell projection organization,’ ‘regulation of dendrite 
extension’ and ‘postsynaptic specialization assembly’ 
were enriched for downregulated genes in LOAD for oli-
godendrocytes, and ‘vesicle mediated transport in syn-
apse’ and ‘synaptic vesicle priming’ were enriched for 
downregulated genes in LOAD for microglia (Fig. 3f ).

Next, we compared the cell type level DEGs identified 
in our dataset (overall 248 DEGs across all cell subtypes) 
to those reported by Morabito et  al. [43] (811 DEGs) 
and Anderson et  al. [44] (1,091 DEGs), (Fig.  3g). Genes 
identified in at least two studies within the same cell 
type and showing the same directionality of regulation 
were considered consensus DEGs (listed in Additional 
file  2: Table  S9). Only 15 DEGs were identified as con-
sensus DEGs across all three of the studies (PDE10A in 
Exc; SHC3 and PDE10A in Inh; PTPRG, MEF2C, FMN1, 
EPS15, DPYD, CX3CR1 and ACSL1 in Micro; PTPN13, 
LDB3, GLDN, and FKBP5 in Oligo; and CNTN3 in OPC). 
Our study identified the fewest DEGs per cell type, pos-
sibly due to the regression of a greater number of covari-
ates in our mixed effects model. Nonetheless, our results 
demonstrated the highest proportion (28.63%) of con-
sensus DEGs, providing support for the reproducibility 
of our findings. Furthermore, the common cell subtype-
specific DEGs between our study and Morabito et al. [43] 
(i.e., cell type and directionality) included known LOAD-
risk genes such as APOE in a microglial subtype (Micro1, 
 log2FC = 0.454, FDR = 0.008), and BIN1 in a subtype of 
oligodendrocyte (Oligo4,  log2FC = 0.153, FDR = 0.037).

Using snATAC-seq, we profiled accessible chromatin 
regions (peaks) and catalogued cell type and subtype-
specific differentially accessible peaks (DAPs). A differ-
ential analysis approach revealed many DAPs between 
LOAD and normal for each cell type (ranging from 25 
in astrocytes to 44,703 in excitatory neurons) and sub-
type (ranging from zero in clusters Exc11, Inh7 and 8, 
Micro3, Oligo2, 7 and 8, and OPC2, to 53,661 in Exc1). 
We thus identified LOAD-associated DAPs at both cell 
type and cell subtype resolutions (Fig.  4a–c, Additional 
file  2: Tables S7 and S8). At the cell subtype level, we 
show four representative examples, and for each we indi-
cate the top DAPs with the strongest (based on |log2FC|) 
and most significant (FDR-adjusted p-value) LOAD-
associated effects on chromatin accessibility, as well as 
the top DAPs within GWAS loci [14] (tag SNP ± 500 kb; 
Fig.  4b). We also show the top DAPs (|log2FC|< 0.2) for 
all cell types and highlight those that overlap with GWAS 
loci (Fig. 4c). DAPs were labeled by distance to the near-
est gene. Several DAPs, such as ATOX1, were identified 
in a few cell types, while others were unique for a spe-
cific cell type, such as the DAPs near the PTK2B and 
INPP5D genes in microglia (Fig. 4c). Next, we compared 
our results to the LOAD-associated cell type-specific 
DAPs reported by Morabito et al. [43] (see Methods) and 
demonstrated a total of 544 consensus DAPs for all cell 
types, with the highest number (312) found in oligoden-
drocytes (Fig. 4d). Of note, comparative analysis between 
the LOAD DEGs and DAP closest genes for each cell 
type found a relatively small degree (0.4–2.1%) of overlap 
between the two gene sets (Fig. 4e), possibly due in part 

(See figure on next page.)
Fig. 5 Identification of cis co‑accessible networks and associated DEGs in LOAD nuclei. a and b, Diagrams of example unidirectional CCANs—
in which all overlapping DAPs and DEGs are regulated in the same direction in LOAD nuclei (e.g. more accessible peaks and higher gene 
expression) and mixed CCANs—in which at least one DAP/DEG pair are regulated in the same direction and at least one pair are regulated 
in opposite directions. Vertical lines at the top of each diagram indicate chromatin peaks and regulatory linkages of accessibility between peak 
pairs and associated co‑accessibility scores are indicated by Bezier curves. Only CCAN‑associated peaks are shown. DAPs with greater accessibility 
in LOAD are shown in salmon, while those with reduced accessibility in LOAD are shown in blue. Non‑differentially‑accessible peaks are shown 
in grey. Below the peak linkage plots, gene exons overlapping CCAN regions are depicted as arrows indicating the directionality of transcription. 
DEGs are labeled with gene names, and LOAD‑upregulated DEGs are shown in salmon while non‑differentially‑expressed genes are shown in grey 
(no downregulated DEGs depicted). At the bottom of each diagram, a Manhattan plot is shown indicating ‑log10 of p‑values for LOAD‑association 
of chromosome loci within CCAN region as calculated by Kunkle et al. [7] Dotted lines in Manhattan plots indicate statistical significance threshold 
(p = 0.05). Panel a depicts example CCANs that do not overlap GWAS‑identified LOAD‑associated SNPs, while panel b depicts example CCANs 
that do overlap LOAD‑associated SNP loci, indicated via orange dots and labeled on Manhattan plots. c, Table showing total number of CCANs 
identified for each snATAC‑seq nuclei cluster, as well as the number of unidirectional and mixed CCANs, and the mean number of DAPs and DEGs 
identified per CCAN for each cluster in both the unidirectional and mixed categories, along with the standard deviation (SD) and maximum 
and minimum values. d, Table listing DEGs linked to cCREs in unidirectional and mixed CCANs for each applicable cluster, as well a functional 
annotation of specific DEGs with known associations to neurodegenerative disease. Number of cCREs linked to each DEG is shown in parentheses. 
e, Diagram of potential DEG/cCRE associations in which (i) one DAP is coaccessible with one peak overlapping the DEG, (ii) one DAP is coaccessible 
with multiple DEG peaks, (iii) two DAPs are coaccessible with one DEG peak, and (iv) two DAPs are coaccessible with two DEG peaks. f, Gene 
ontological analysis of biological processes for cCRE‑linked DEGs associated with CCANs in the indicated cell subtype clusters. Up to the top ten 
significantly enriched biological processes involving a minimum of three DEGs are listed. Statistical significance of category enrichment (p < 0.05) 
indicated by vertical lines
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Fig. 5 (See legend on previous page.)
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to the challenges in accurately assigning DAPs to target 
genes.

Cis co‑accessibility network analysis in LOAD identified cell 
subtype‑specific DEGs linked to cCREs
Next, we examined the crosstalk between cCREs and 
gene expression in LOAD TC. We defined a cCRE as a 
noncoding DAP that is co-accessible with one or more 
peaks overlapping the promoter/intron1 of a DEG. The 
small degree of overlap between DEGs and DAP closet 
genes noted above (Fig. 4e) suggested a complex interac-
tion between LOAD-associated cCREs and target genes, 
and that cCREs may not simply regulate their nearest 

genes. To address this complexity, we performed a multi 
omics integrative approach using our parallel snRNA-
seq and snATAC-seq datasets to characterize the cis-
regulatory landscape in LOAD and to identify target 
genes of LOAD-associated cCREs. To this end we used 
the snATAC-seq data from the LOAD nuclei only and 
utilized the Cicero algorithm [53] (Methods) to construct 
cis-co-accessibility networks (CCANs) for each cell sub-
type. We defined a total of 25,020 CCANs in LOAD TC 
across all 26 snATAC-seq cell subtypes and provided a 
detailed summary of their characteristics (Additional 
file  2: Table  S10). To identify CCANs with likely spe-
cific relevance to LOAD, we further refined this set to 

Fig. 6 Differential expression of transcription factors with motifs enriched in cis co‑accessible networks. a, Table showing number of CCANs 
identified for each snATAC‑seq cluster as well as the number of enriched transcription factor (TF) motifs corresponding to TFs identified as DEGs 
with |Log2FC|> 0.2 in our snRNA‑seq analysis within both unidirectional and mixed CCANs. The specific identified TFs and corresponding motif fold 
enrichment values are indicated in brackets where applicable. b and c, Sequence logos for indicated enriched motifs in unidirectional (b) and mixed 
(c) CCANs associated with labeled DEG TFs, along with violin plots of normalized snRNA‑seq expression data split by normal control (NC) and LOAD 
groups for the corresponding TFs for each applicable cluster. Also indicated are adjusted p‑values (FDR) and  log2FC for TF gene expression data. 
Motifs are presented from left to right in decreasing order of enrichment for each cluster. Where multiple motifs corresponded to the same TF, 
the most highly enriched motif is shown
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include only CCANs that contained at least one LOAD-
associated DAP and DEG identified in our differential 
analyses of the snATAC-seq and snRNA-seq datasets, 
respectively (described above). This filtering criteria 
identified a subset of 518 LOAD CCANs in 15 cell sub-
types that were categorized into 3 groups based on the 
directionality  (log2FC) of the DAP-DEG pair: (i) unidirec-
tional (309 CCANs), all more accessible/upregulated or 
less accessible/downregulated; (ii) mixed (129 CCANs), 
both directions for the DAPs and/or DEGs whereas at 
least one DAP-DEG pair showed the same effect direc-
tion; (iii) bidirectional (80 CCANs), all opposite direc-
tions (Figs. 1a, 5a–c, Additional file 2: Table S10). Further 
analyses focused on the unidirectional and mixed LOAD 
CCANs categories (Fig.  5), several of which (4 and 3, 
respectively, across Exc1, Micro1, Oligo4 and Oligo6 cell 
subtypes) also overlapped with LOAD-GWAS loci [14]. 
To identify the target genes of LOAD-associated cCREs 
in each cell subtype, we examined the co-accessibility 
of the peak overlapping the DEG promoter or intron 1 
region with the distal DAP that defined the LOAD-asso-
ciated cCRE. We catalogued the cCRE-linked genes for 
which their promoter/intron 1 peak was also a DAP and 
showed the same directionality as the cCRE-DAP. The 
analysis revealed 69 DEGs linked to cCRE in 8 of the cell 
subtypes with expression fold change (|log2FC|) greater 
than 0.15 (Fig. 5d, Additional file 2: Tables S10 and S11). 
32 of the target DEGs were linked to 2–11 cCREs includ-
ing, APOE and BIN1, regulated by 3 and 2 cCREs, respec-
tively (Fig.  5d, e, Additional file  2: Tables S10 and S11). 
On the other hand, no LOAD cCREs were linked to more 
than one DEG (Additional file  2: Table  S11). A number 
of the identified cCRE-targeted DEGs have been impli-
cated in neurodegenerative diseases, including genes 
involved in AD pathogenesis such as MAPK3, APP, and 
FAM107B in excitatory neuron cluster 1 (Exc1), MYO1E 
and APOE in microglial cluster 1 (Micro1), and BIN1 in 
oligodendrocyte cluster 4 (Oligo4) (Fig.  5d, Additional 

file 2: Table S10). Collectively, our new strategy led to the 
identification of novel LOAD genes as well as validation 
of known disease genes and suggested the cell subtype in 
which they exert their pathogenic effects. In addition, we 
characterized the cis-regulatory elements and networks 
that govern the dysregulation of these genes in disease.

GO analysis of DEGs targeted by cCREs in each cell 
subtype revealed a few enriched biological processes 
(Fig.  5f, Additional file  1: Figure S6). For example, Exc1 
showed enrichment for GO terms related to gene tran-
scriptional regulation and response to external stressors. 
In Micro1, cCRE-linked DEGs involved in biological pro-
cesses related to signal transduction, metabolic process 
and movement of cellular components were among the 
most enriched. Oligo4 and Oligo6 showed enrichment 
for GO terms involved in neural cell development, and 
cell proliferation, respectively. Due to the relatively small 
numbers of genes identified as LOAD associated cCRE-
targeted DEGs specific to these Oligo subtypes, signifi-
cant enrichment scores were found for only three GO 
terms (Fig. 5f, lower panels).

Cell subtype‑specific transcription factors relevant to LOAD
We sought to explore the cell subtype-specific trans reg-
ulation involved in LOAD-associated changes in gene 
expression as a complementary approach to our cis-reg-
ulation analysis. To this end, we searched TFs that may 
interact with LOAD CCANs and thus contribute to dys-
regulation of genes in LOAD. The analysis focused on the 
subset of unidirectional and mixed LOAD CCANs iden-
tified in each of the 15 cell subtypes as described above 
(Fig.  5c) and was inclusive to all peaks (all accessible 
chromatin sequences, not limited to DAPs). The HOMER 
software package was used to identify enrichment of TF 
binding sites (TFBS) within the subset of LOAD CCANs 
for each cell subtype for TFs that were expressed in ≥ 10% 
of the corresponding cell subtype (Fig.  6a, Additional 
file 2: Table S12). In this TFBS analysis we used the fold 

(See figure on next page.)
Fig. 7 Identification of SNPs predicted to influence TF binding affinity at GWAS loci in LOAD CCANs. a, Summary tables of SNP‑TFBS overlaps 
in unidirectional and mixed LOAD CCANs. b–e, Diagrams of specific example SNP‑TFBS overlaps. The cell subtype, regulated DEG, TF and SNP ID are 
shown in bold. The log fold change (Log2FC) and significance value (FDR) are shown for each DEG and corresponding cCRE. Additionally, functional 
information for each DEG is provided. The effect of the SNP on the TFBS affinity change and corresponding FDR determined using atSNP (see 
Methods) are noted. CCAN stacked plots show peak coaccessibility scores, directionality of changes in DAP accessibility in LOAD (red = increased 
accessibility, blue = reduced accessibility), and degree of LOAD association for GWAS loci. All features are arranged along the same horizontal axis 
to indicate chromosomal position. cCRE stacked plots are detailed from boxed area of CCAN plots and additionally indicate overlapped gene 
coding regions, with upregulated DEGs shown in red and downregulated DEGs shown in blue, as well as normalized chromatin accessibility 
of the genomic region in LOAD and Normal samples. TFBS activity stacked plots are detailed from boxed areas of cCRE plots and indicate 
aligned chromosomal positions of TFBSs (Reference and disrupted TFBS—dark and light gold horizontal bars, respectively—were determined 
based on position weight matrix as described in Methods) and SNPs (black lettering). TF Network plots illustrate potential regulatory networks 
between DEG‑overlapping peaks (blue) and TFBS‑overlapping peaks (green), with those linkages predicted to be affected by LOAD SNPs shown 
in red
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Fig. 7 (See legend on previous page.)
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Fig. 7 continued
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Fig. 7 continued
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Fig. 7 continued
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enrichment cutoff ≥ 1.2 and FDR ≤ 0.05. The analysis 
revealed enrichment for 17–124 TFBSs in 7 out of the 
15 analyzed cell subtypes (Additional file  2: Table  S12). 
Interestingly, we found that several of these TFs were 
also LOAD-associated DEGs in five cell subtypes includ-
ing, Exc1, Exc4, Micro1, Oligo4, and Oligo5 (Additional 
file 2: Table S12), out of which three TFs in Exc1 and 4 
showed LOAD-associated increases in expression of 
 log2FC ≥ 0.2 (Fig.  6). ELK1—enriched in Exc1—showed 
the highest fold increase in expression in LOAD vs. nor-
mal cells  (log2FC = 0.397, Fig. 6b–c). ELK1 has been pre-
viously shown to initiate regionalized neuronal death and 
to associate with inclusions present in Alzheimer’s dis-
ease, Lewy body disease, and Huntington’s disease [54]. 
Other TF examples included JUN and its heterodimers 
with members of the FOS family [55] enriched in Exc1, 
and a member of SMAD in Exc4 (Fig.  6b–c). Recently, 
Anderson et al. [44] suggested ZEB1 as a candidate mas-
ter regulator in LOAD-specific regulatory networks 
in neurons. Consistently, we found that ZEB1 binding 
motifs are significantly enriched within unidirectional 
CCANs of excitatory neuron cluster Exc1 (fold enrich-
ment = 1.14, FDR = 0.004). However, the ZEB1 results 
did not meet our criteria, that is to say it was expressed 
in less than 10% of Exc1 cells and its enrichment was 
below the cutoff threshold of 1.2. Altogether, these find-
ings point to key TFs, regulatory elements, and cis–trans 
interactions potentially involved in dysregulating gene 
networks in specific cell subtypes contributing to LOAD 
pathogenesis.

Identification of SNPs potentially affecting TF binding 
and expression of DEGs in LOAD‑GWAS regions
GWAS have previously identified numerous LOAD-asso-
ciated SNPs, termed tagging SNPs. However, the major-
ity of these tagging SNPs are based on disease association 
only, and the actual variants involved in disease risk 
have yet to be identified. We sought to prioritize candi-
date functional SNPs within GWAS regions that directly 
affect LOAD risk, specifically via transcriptional mecha-
nisms. To this end we performed the analysis on 21 
LOAD CCANs (unidirectional and mixed) that also over-
lapped LOAD-GWAS regions (Fig. 7a, Additional file 2: 
Table  S13). We further focused the analysis on SNPs 
overlapping predicted TF binding sites for the minor or 
the major allele (p < 1 ×  10–5) with MAF ≥ 1%. Next, we 
catalogued 125 SNPs that were predicted to change the 
affinity of 303 TF binding motifs (FDR < 0.05) using the 
Affinity Test for Identifying Regulatory SNPs (atSNP) 
R software package [56] (Fig.  7a, Additional file  1: Fig-
ure S7a, Additional file  2: Table  S13). The minor alleles 
of the identified candidate regulatory SNPs resulted in 
gain or loss of TF binding sites in a cell subtype-specific 

manner. These identified candidate regulatory SNPs 
mapped within LOAD-associated cCREs sequences 
linked to 16 DEGs across 4 cell subtypes (Exc1, Micro1, 
Oligo4 and 6, Fig. 7a, Additional file 2: Table S13). In the 
majority of the cCRE-linked  DEGs (11 of 16), the peak 
overlapping the DEG promoter/intron 1 was also a DAP 
(Additional file  2: Table  S13, examples in Fig.  7b–e and 
Additional file  1: Figure S7). These candidate regula-
tory SNPs were identified in specific cell subtypes. Many 
of the SNPs were identified in Exc1 (Fig.  7a, Additional 
file  2: Table  S13), and presumably affect expression of 
genes including CUTA , a negative regulator of beta-amy-
loid generation [57], TFEB, a TF regulator of autophagic 
dysfunction associated with neurodegenerative pathol-
ogy [58], FZR1, an adapter protein involved in cell cycle 
regulation that may suppress Cyclin B levels affecting 
AD-associated aberrant cell cycle re-entry [59], GNA11, 
associated with hypocaliciuric hypercalcemia type II 
[60], RPS15, a structural ribosome component linked to 
Parkinson’s disease [61] (Fig. 7b, Additional file 1: Figure 
S7a-b, Additional file 2: Tables S13 and S14), and MBD3, 
a neuropathy-associated chromatin remodeling complex 
component [62]. In Micro1, DEGs affected by the cata-
logued candidate regulatory SNPs included MYO1E, an 
actin-based molecular motor protein previously found 
to be differentially expressed in a microglial model of AD 
[63, 64] (Fig. 7c, Additional file 1: Figure S7c-f, Additional 
file  2: Tables S13 and S14) and APOE [14, 15] (Fig.  7d, 
Additional file  1: Figure S7g–i, Additional file  2: Tables 
S13 and S14). In Oligo4 we identified SNPs affecting 
BIN1 (Fig. 7e, Additional file 1: Figure S7j–l, Additional 
file 2: Tables S13 and S14), a major risk for LOAD sug-
gested to have a role in regulating postsynaptic traf-
ficking, and to accelerate beta-amyloid levels and tau 
accumulations in the context of LOAD [65–68]. Consist-
ently, Morabito et al. [43] also suggested the potential cell 
type-specific cis-regulatory networks disrupted by causal 
disease variants in LOAD-GWAS risk loci including both 
APOE and BIN1 in the microglia and oligodendrocytes, 
respectively. Our data provided additional insights into 
the candidate regulatory SNPs and the trans-interaction 
with putative TFs. Other DEGs affected by the identi-
fied candidate SNPs included NDUFS7, a mitochondrial 
respiratory complex component associated with several 
neurological disorders [69], PTBP1, a regulator of neu-
ronal pre-mRNA splicing associated with frontotempo-
ral dementia and amyotrophic lateral sclerosis [70, 71], 
and SC5D, a cholesterol biosynthesis enzyme associated 
with lathosterolosis, a congenital disorder affecting cen-
tral nervous system development [72], all in Oligo4, and 
RPS15 [61] in Oligo6 (Additional file  2: Table  S13). 
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Overall, many DEGs for which expression was predicted 
to be influenced by these identified SNPs were implicated 
in LOAD and other neurodegenerative disorders. Only 4 
DEGs did not have previous evidence related to neuro-
logical phenotypes: EFHD1, TAPBP and TCAF1 in Exc1, 
and LST1 in Micro1. These findings support the bio-
logical relevance of this methodology in identifying cell 
subtype-specific variants with putative roles in LOAD 
pathogenesis. Noteworthily, many of the candidate regu-
latory SNPs changed the binding affinities of several TF 
motifs and each of the 16 cCRE-linked DEGs was asso-
ciated with multiple SNP-TF interactions (Fig. 7a, Addi-
tional file 2: Table S13). However, some of these TFs may 
not be of biological relevance. Thus, the subsequent anal-
ysis was restricted to TFs that were expressed in ≥ 10% of 
the corresponding cell subtype. In addition, to prioritize 
the top candidate regulatory SNPs we considered the 
affected genes and therefore narrowed down to cCRE- 
linked  DEGs with |log2FC|≥ 0.15. After applying these 
criteria, the analysis revealed a total of 20 candidate regu-
latory SNPs and 5 candidate dysregulated genes including 
10 SNPs in Micro1 that presumably exert their effects on 
MYO1E or APOE, 7 SNPs in Oligo4 potentially affecting 
BIN1, and 3 SNPs in Exc1 for RPS15 or TCAF1 (Fig. 7b-e, 
Additional file 1: Figure S7, Additional file 2: Table S14). 
Collectively, these outcomes provide a high priority list 
of candidate regulatory SNPs, TFs and target genes for 
experimental validation studies using model systems that 
facilitate investigations in the specific relevant brain cell 
subtype.

Discussion
In this study, we performed parallel snATAC-seq and 
snRNA-seq using brain samples from European ancestry 
subjects and identified LOAD-associated transcriptome 
and chromatin accessibility signatures and their cross-
talk at a cell subtype-level resolution. To our knowledge, 
this is the first study that identified candidate noncoding 
regulatory variants and their interacting TFs in LOAD 
by integration of single-nuclei multi-omics datasets, and 
provided evidence suggesting that LOAD genetic vari-
ants exert their putative pathogenic effects in a brain cell 
subtype-specific manner.

Previously, we applied ATAC-seq on NeuN sorted 
nuclei and identified multiple LOAD specific neu-
ronal (NeuN +) and non-neuronal (NeuN−) chroma-
tin accessibility sites, several of which overlapped with 
LOAD-GWAS regions [39]. Furthermore, we identified 
sex-dependent LOAD changes in chromatin accessibil-
ity, particularly  that  glia-specific sites were found only 
in females. Last, by integrative analysis of the LOAD-
GWAS regions, ATAC-seq on sorted nuclei, and snRNA-
seq, we functionally characterized the impact of these 

chromatin accessibility differences on gene expression 
within LOAD loci [73]. The current study extends our 
previous work in several ways. We now provide granu-
lar insight into  molecular changes within cell subtypes. 
Furthermore, we uncovered the crosstalk between epi-
genetic, genomic, and transcriptomic determinants of 
LOAD pathogenesis. Our outcomes provide catalogues 
of candidate genes, cCREs, and variants involved in 
LOAD genetic etiology and the cell subtypes in which 
they act to exert their pathogenic effects.

To date, only a few other studies have profiled gene 
expression in cortex tissue of LOAD patients at single-
cell resolution [41–44, 74–76], out of which only two 
studies have characterized both the transcriptome and 
chromatin accessibility of LOAD [43, 44]. These pio-
neering studies of snRNA-seq from cortexes of LOAD 
patients found that the strongest LOAD-associated 
changes appeared early in pathological progression and 
were highly cell type-specific [41], and identified LOAD-
associated gene dysregulation in specific cell subpopu-
lations, particularly for APOE and transcription factor 
genes [42]. One study used these datasets to examine the 
sex-dependent effects of LOAD and found dispropor-
tionate representation in disease-associated cell subtype 
populations as well as differential LOAD expression pro-
files between the sexes [41], while another characterized 
markers of selectively vulnerable neuron populations 
in AD [75]. Nonetheless, these studies focused only on 
snRNA-seq data. More recently, an integrative multi-
omics framework of snRNA-seq and snATAC-seq in late-
stage LOAD nuclei identified disease-associated cCREs 
and analyzed gene coexpression networks [43]. Another 
study examined gene expression and chromatin acces-
sibility within the same nuclei and identified candidate 
transcription factors regulating LOAD-associated gene 
expression in neurons and microglia [44]. Altogether, our 
and others’ studies have demonstrated the importance of 
cell  type and subtype-specific omics profiling of human 
brain tissues to advance the understanding of the molec-
ular and cellular subtype-specific pathways underlying 
LOAD. Data sharing across groups will not only provide 
accessibility to replication cohorts but will also further 
genetic exploration using meta-analysis in larger sample 
size to validate discoveries and test different hypotheses.

While GWAS infer genes based on proximity to the 
most strongly associated SNP, identification of the actual 
genes and variants involved in disease risk has been 
a challenge. We examined 1  Mb regions surrounding 
LOAD tagging SNPs and provided multiple examples 
for DEGs, i.e. candidate genes involved in LOAD, that 
mapped within the LOAD-associated region but more 
distal from the tag SNP. Additionally, we performed the 
first step towards identification of candidate regulatory 
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SNPs and their linked genes. Using single-nucleus 
genomics integrative analysis focused on LOAD GWAS 
loci, we prioritized several SNPs for validation studies. 
Notably, the associations of these candidate SNPs with 
LOAD risk remain to be determined. In future studies, 
a larger sample size may allow conduction of transcrip-
tomic and chromatin accessibility QTL/eQTL mapping 
to determine colocalization with GWAS loci.

The importance of microglia in AD has been previously 
established [77–79]. Cells of this type may have a protec-
tive function in β-amyloid (Aβ) clearance via phagocy-
tosis and protease degradation in the early stages of the 
disease [80, 81], but may also contribute to Aβ plaque 
accumulation in later stages via seeding and proinflam-
matory cytokine production [82–85]. Microglia have also 
been shown to exacerbate neuronal synapse loss, neu-
rotoxic inflammation, and tau pathology in AD [86–89]. 
Furthermore, a high number of identified AD risk genes 
have been found to be preferentially expressed in micro-
glia [90]. Notably, 22% of AD GWAS loci-proximal genes 
identified by Bellenguez et  al. [15] were also microglial 
signature genes. It was further shown via ChIP-seq and 
ATAC-seq that AD-associated non-coding variants are 
specifically enriched in microglial enhancer regions 
over those of other brain cell types [19]. Both APOE and 
MYO1E expression have been previously associated with 
disease-associated microglia exhibiting neurodegener-
ation-specific gene expression profiles in mouse models 
of AD [63]. Expression of human APOEe4 also resulted 
in increased tau pathology and inflammatory microglial 
response in mice, and increased production of TNFα by 
microglia in vitro [91]. APOE has been further implicated 
in conjunction with the microglia-associated receptor 
protein TREM2 in driving the conversion of microglia 
to a neurodegenerative phenotype [92]. In this regard 
we would like to highlight our findings with APOE and 
MYO1E. We identified both APOE and MYO1E as key 
LOAD-associated genetic factors within microglia in 
several distinct analyses. First, these genes were the most 
strongly LOAD-upregulated GWAS DEGs in multiple 
microglial subtypes (Fig. 3c) as well as microglia overall 
(Fig. 3e), while genes associated with mediation of synap-
tic processes were strongly downregulated among micro-
glia generally (Fig. 3f ). Furthermore, APOE and MYO1E 
were also both linked to cCREs within LOAD CCANs of 
the Micro1 cluster (Fig. 5b, d), and moreover atSNP anal-
ysis revealed multiple SNPs predicted to impact TF bind-
ing affinity within cCREs potentially regulating both of 
these genes within this same cell subtype. Taken together, 
these findings serve to further underscore the impor-
tance of APOE and MYO1E as LOAD risk factors that 
exert their pathogenesis in microglia, and also suggest 

potential molecular mechanisms for dysregulation in 
LOAD.

Over the last decade, LOAD GWAS have confirmed 
strong associations with the APOE LD genomic region, 
and no other LOAD-association remotely approached 
the same level of significance [8, 10, 14, 93–97]. However, 
whether the strongest signal is attributed to additional 
variants and haplotypes within this LD region jointly 
with e4, as well as the molecular mechanisms underly-
ing the LOAD-association with the APOE LD region, is 
largely unknown. While APOEe4 is the first and strong-
est genetic risk factor for LOAD, accumulating evidence 
has suggested that the increased overall expression of 
APOE plays an important role in the etiology of LOAD 
(reviewed by Gottschalk et al. [98] and Yang et al. [99]). 
Foremost, previously we found significantly higher lev-
els of APOE-mRNA in brain tissues obtained from e3/3 
LOAD patients compared to e3/3 healthy donors, con-
sistent with other reports showing elevated levels of 
APOE-mRNA in LOAD brains [21–23, 100]. In addi-
tion, new snRNA-seq datasets showed LOAD changes in 
APOE expression in glial cell types, in particular upregu-
lation in microglial subpopulations [41, 42, 101]. Moreo-
ver, studies using APP/PS1 transgenic mice showed that 
lowering the ApoE protein levels ameliorated cognitive 
dysfunctions and Aβ pathology [102] independent of the 
APOE allele [103–105]. Lastly, studies showed LOAD-
associated differential DNA  methylation [36, 106–109], 
further supporting a role for dysregulation of APOE 
expression in the genetic etiology of LOAD. Here, to 
circumvent the confounding effect of APOEe4, we con-
strained the analysis to APOEe3 only. We observed both 
increased expression and increased chromatin accessibil-
ity of APOE among microglial populations. Additionally, 
we identified multiple cCREs linked to both the promoter 
and intron 1 sequences of APOE in the Micro1 subtype 
cluster, as well as multiple SNPs potentially influencing 
TF binding to the APOE promoter in this same cluster, 
suggesting a possible mechanism for microglial APOE 
dysregulation in LOAD. Our results thus provide further 
evidence that there are clear changes in APOE expression 
associated with LOAD and independent of the e4 allele 
[103], suggesting that regulation of APOE expression 
in specific cell subtypes may impact the risk to develop 
LOAD, making the modulation of the overall ApoE pro-
tein levels useful as a future therapeutic target.

Despite major advances in genome technology and our 
innovative experimental approach and analytical strat-
egy, there are still a number of limitations associated 
with the analysis of single cell data. In this study, for cell 
type annotation and subtype clustering, variance stabiliz-
ing transformation (SCT) [110] of the snRNA-seq count 
data was employed. While SCT offers improvement over 
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log normalization by regularizing the effect of sequenc-
ing depth on transcript counts, it results in data too 
computationally intensive to use for differential expres-
sion analysis. Likewise, the term frequency-inverse docu-
ment frequency (TF-IDF) normalization [111] used in 
snATAC-seq clustering addresses some of the pitfalls of 
log-normalization, but in some cases these corrections 
may be too harsh. A regularized regression framework 
may offer more reproducible results, but again would 
require prohibitively intensive processing power. These 
methods should be possible in future work with greater 
computational resources. Another limitation involves the 
accuracy of cluster linking. Thus, to test the accuracy we 
applied the pipeline developed for this manuscript using 
publicly available multiome data and found for each 
matching snATAC-seq and snRNA-seq cluster an over-
all 75.6% Jaccard index, where the most accurate cluster 
in the test dataset had a Jaccard index of 0.95, while the 
least accurate cluster had a Jaccard index of 0.32 (Meth-
ods, Additional file 2: Table S6). Despite this limitation, in 
all clusters, the cell type of the closest matching snRNA 
cluster was concordant with the initially predicted cell 
type of the snATAC cluster. Moreso, the intrinsic struc-
ture of the snATAC clusters was not lost. Thus, the 
downstream analysis remained unaffected while provid-
ing loosely informative insight towards epigenetic and 
transcriptomic interplay. Finally, previous research has 
estimated that a high proportion of predicted TF bind-
ing sites are false positives [112–114]. Raising the strin-
gency of p-value thresholds decreases the rate of false 
positive motif matches, but increases the rate of false 
negative matches even more strongly, thus limiting the 
value of this approach [115]. We attempted to address 
this limitation by restricting the analysis to TFs that were 
expressed in ≥ 10% of the corresponding cell subtype, so 
that our findings were more likely of biological relevance. 
Currently, single cell methods such as ChIP-seq or ChIA-
PET-seq [116] are not available to validate our findings 
experimentally. Similarly, chromatin confirmation cap-
ture (3C) or chromatin confirmation capture carbon 
copy (5C) datasets on temporal cortex or analogous tis-
sue regions in a single cell-type resolution would provide 
the most direct evidence for the cCRE-DEG interactions 
identified in our study, as they become available.

Single cell analyses specifically for disease-involved 
heterogenous organs such as the brain are imperative. 
Molecular changes are cell subtype  specific, meaning 
that a particular gene and/or variant may exert its effect 
on a certain cell subtype but can be neutral in another 
cell subtype. LOAD exemplifies a genetically complex 
disease affecting a heterogenous tissue and therefore 
requires granularity in research approaches to facilitate 
advancements and new discoveries in the field. Our study 

has pioneered the powerful strategy of integration of 
cell type-specific multi-omics datasets collected from the 
same sample in parallel to describe cis–trans regulatory 
networks disrupted in LOAD, validate known LOAD loci, 
and identify new candidate genes. We have furthermore 
presented the most comprehensive interrogation to date 
of genetic variants potentially impacting gene regulatory 
networks in LOAD. Further investigations including sex 
and ancestry-stratified studies using integrative single 
cell multi-omics data will advance our understanding of 
the genetics underpinning LOAD in specific populations. 
Collectively, our findings provide a rich dataset for future 
mechanistic experiments, confirm known LOAD-GWAS 
loci while also identifying novel loci, and highlight the 
disease-relevant cell types and subtypes for follow-up 
validation studies in model disease systems and for devel-
opment of future therapeutic interventions.

Conclusions
Profiling the chromatin accessibility and transcriptomic 
landscapes from the same pool of nuclei and at the same 
time is a well-controlled approach to facilitate multi-omic 
integrative analyses and advance new genetic discoveries 
in complex disorders such as LOAD. Our study has seven 
major findings for the field of LOAD genetics. First, we 
have generated cell subtype-specific profiles of LOAD-
associated chromatin accessibility signatures and maps 
of LOAD cCREs. Second, we leveraged the LOAD-acces-
sible peaks dataset to identify candidate co-accessible 
networks in each cell subtype. Third, we provided a cata-
logue of candidate LOAD-associated cell subtype-spe-
cific DEGs. Fourth, we identified TFs relevant to LOAD 
and the cell subtype in which they act. Fifth, we cata-
logued candidate SNPs involved in dysregulation of key 
genes in LOAD in a cell subtype-specific manner. Sixth, 
we have demonstrated that LOAD associations may not 
be interpreted by the most proximate gene. Seventh, we 
provided evidence that the genetics underpinning LOAD 
risk mediates its pathogenic effects in various glial and 
neuronal cell subtypes. Overall, these results suggest that 
cell subtype-specific cis–trans interactions between reg-
ulatory elements, noncoding variants and TFs, and the 
genes dysregulated by these networks contribute, at least 
in part, to the development of LOAD.

Methods
Human post‑mortem brain tissue samples
Frozen human temporal cortex tissue of LOAD samples 
(n = 12) and neurologically healthy control samples (Nor-
mal) (n = 12) was obtained from the Kathleen Price Bryan 
Brain Bank (KPBBB) at Duke University. The demograph-
ics for this cohort are included in Table 1 and detailed in 
Additional file  2: Table  S1. Clinical diagnosis of LOAD 
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was pathologically confirmed using Braak staging (AT8 
immunostaining) and amyloid deposition assessment 
(4G8 immunostaining) for all LOAD samples. All tissue 
donors were Caucasians with the APOE e3/e3 genotype 
and Braak & Braak Stage III-V. The project was approved 
for exemption by the Duke University Health System 
Institutional Review Board. The methods described were 
conducted in accordance with the relevant guidelines and 
regulations.

Cohort statistics
For comparisons of demographic variables, R statistical 
programming language was used. Age and post-mortem 
interval (PMI) of female LOAD was compared to female 
Normal, and age and PMI of male LOAD was compared 
to male Normal. The Shapiro–Wilk test was used for 
normality, Bartlett’s test for equal variance of normally 
distributed data, and Levene’s test for equal variance 
of non-normally distributed data. If groups were nor-
mal and had equal variance, two sample t-tests assum-
ing equal variances were used to determine differences 
between group means. If groups were not normal, a 
Mann–Whitney’s U test was run. No groups had unequal 
variances.

Nuclei isolation from post‑mortem human brain tissue
The nuclei isolation procedure was based on previous 
studies [117, 118], but has been optimized for single-cell 
experiments. 100–200 mg of post-mortem human brain 
tissue samples (gray matter) was thawed over ice in Lysis 
Buffer (0.32 M Sucrose, 5 mM  CaCl2, 3 mM Magnesium 
Acetate, 0.1 mM EDTA, 10 mM Tris–HCl pH 7.4, 1 mM 
DTT, 0.1% Triton X-100) and homogenized using a 7 ml 
dounce tissue homogenizer (Corning) with pestle A. The 
homogenate was filtered through a 100 μm cell strainer, 
transferred to a 14 × 89  mm polypropylene ultracentri-
fuge tube, and carefully underlain with sucrose solution 
(1.8 M Sucrose, 3 mM Magnesium Acetate, 1 mM DTT, 
10 mM Tris–HCl, pH 7.4). The nuclei were separated by 
ultracentrifugation at 4 °C at 107,000 RCF for 15 min. The 
supernatant was removed by aspiration, and the remain-
ing nuclei were washed with 1  ml Nuclei Wash Buffer 
(10  mM Tris–HCl pH 7.4, 10  mM NaCl, 3  mM  MgCl2, 
0.1% Tween-20, 1% BSA, 0.2 U/μL RNase Inhibitor) and 
incubated on ice for 5 min. The nuclei were gently resus-
pended, and 800 μL was transferred to a microcentrifuge 
tube designated for the 10X Genomics single-cell ATAC 
assay while 200 μL was transferred to a microcentrifuge 
tube designated for the 10X Genomics single-cell gene 
expression assay. The nuclei were centrifuged at 300 RCF 
for 5  min at 4  °C, and the supernatant was again aspi-
rated. For the ATAC assay, the pellet was resuspended 
in Diluted Nuclei Buffer (10X Genomics). For the gene 

expression assay, the pellet was resuspended in Wash and 
Resuspension Buffer (1X PBS, 1% BSA, 0.2 U/μL RNase 
Inhibitor). After a 1-min incubation on ice, the nuclei 
were filtered through a 35  μm strainer. Nuclei concen-
trations were determined using a Countess™ II Auto-
mated Cell Counter (ThermoFisher) and nuclei quality 
was assessed at 10X and 40X magnification using an Evos 
XL Core Cell Imager (ThermoFisher) prior to library 
construction.

Parallel snATAC‑seq/snRNA‑seq library preparation 
and sequencing
Single-nucleus (sn)ATAC-seq libraries were constructed 
using the Chromium Next GEM Single Cell ATAC 
Library and Gel Bead v1.1 kit, Chip H Single Cell kit, and 
Single Index Kit N Set A (10X Genomics) according to 
manufacturer’s instructions. In parallel, from the same 
pool of nuclei from each sample, single-nucleus (sn)RNA-
seq libraries were constructed using the Chromium Next 
GEM Single Cell 3’ GEM, Library, and Gel Bead v3.1 kit, 
Chip G Single Cell kit, and i7 Multiplex kit (10X Genom-
ics) according to manufacturer’s instructions. For each 
sample, 10,000 nuclei were targeted for both the ATAC 
and 3’ assays. Library quality control was performed on 
a Bioanalyzer (Agilent) with the High Sensitivity DNA 
Kit (Agilent) according to manufacturer’s instructions 
and the 10X Genomics protocols. Libraries were submit-
ted to the Sequencing and Genomic Technologies Shared 
Resource at Duke University for quantification using the 
KAPA Library Quantification Kit for Illumina® Platforms 
and sequencing. Groups of four snATAC-seq libraries 
from 1 LOAD female, 1 LOAD male, 1 Normal female, 
and 1 Normal male were pooled on a NovaSeq 6000 S1 
100  bp PE full flow cell to target a sequencing depth of 
400 million reads per sample (Read 1N = 50, i7 index = 8, 
i5 index = 16, and Read 2N = 50 cycles). Groups of four 
snRNA-seq libraries from 1 LOAD female, 1 LOAD 
male, 1 Normal female, and 1 Normal male were pooled 
on a NovaSeq 6000 S1 50 bp PE full flow cell to target a 
sequencing depth of 400 million reads per sample (Read 
1 = 28, i7 index = 8, and Read 2 = 91 cycles). Sequencing 
was performed blinded to diagnosis, age, and sex.

snRNA‑seq data processing
Raw sequencing data from snRNA-seq experiments was 
converted to fastq format, aligned to a GRCh38 pre-
mRNA reference, filtered, and counted using CellRanger 
4.0.0 (10X Genomics). Subsequent processing was done 
using Seurat 4.0.1 [119]. Filtered feature-barcode matri-
ces were used to generate Seurat objects for the 24 sam-
ples. For quality control filtering, nuclei with less than 
200 or greater than 10,000 features were excluded. Nuclei 
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with greater than 17.4% mitochondrial gene expression 
were found to cluster together on a uniform manifold 
approximation and projection (UMAP) feature plot and 
were also excluded. Because experiments were conducted 
in nuclei rather than cells, mitochondrial genes were sub-
sequently removed. The 24 Seurat objects were merged 
into one, and were iteratively normalized using SCTrans-
form [120] with glmGamPoi, which alleviates bias from 
lowly expressed genes [121]. Batch correction was per-
formed using reference-based integration [45] on the 24 
normalized datasets, which improves computational effi-
ciency for integration.

Cell type annotation was conducted using a label trans-
fer method [45] and a previously annotated reference 
dataset from human M1 (see below). Batch corrected 
data from both our dataset and the human M1 dataset 
were used for label transfer. Nuclei with maximum pre-
diction scores of less than 0.5 were filtered out. Nuclei 
with a percent difference of less than 20% between their 
first and second highest cell type prediction scores 
were termed “hybrid” and subsequently removed [42]. 
Endothelial cells and VLMCs were in low abundance (465 
total) and did not form distinct clusters in UMAP analy-
sis and were therefore filtered out of the final dataset. 
After running a Principal Component Analysis (PCA), 
dimensionality was examined using an Elbow plot and by 
calculating the variance explained by each principal com-
ponent (PC). UMAP analysis was then run with the first 
30 PCs, and nuclei were clustered based on the UMAP 
reduction at a resolution of 0.1. Counts of predicted cell 
types based on the label transfer were examined for each 
of the 33 clusters (Additional file 2: Table S4), and clus-
ters were manually annotated based on the majority cell 
type for each cluster (e.g., ‘Exc1’, ‘Exc2’, etc.). Cell type 
annotations were further validated by label transfer from 
snRNA-seq data reported by Morabito et  al. [43] pro-
cessed using the same methodology described below for 
human M1 primary motor cortex reference data, which 
did not alter cluster annotations (Additional file 1: Figure 
S1b).

Human M1 reference data processing
A recent snRNA-seq study on human primary motor 
cortex (M1) used 10X Genomics technology to char-
acterize 127 transcriptomic cell types [40]. To opti-
mize label transfer, we re-processed the data to map it 
to GRCh38 Ensembl 80 as we did with our data. Fastq 
files were obtained from the Neuroscience Multi-omic 
Data Archive (NeMO: https:// nemoa rchive. org/) and 
were aligned to the same GRCh38 pre-mRNA reference 
used for our data, filtered, and counted using CellRanger 
4.0.0 (10X Genomics). Filtered feature-barcode matri-
ces were used to generate 14 Seurat objects, and nuclei 

that were absent from the annotated metadata from the 
study were filtered out, leaving 76,519 nuclei in the final 
re-processed dataset. The Seurat objects were merged 
and iteratively normalized using SCTransform [120] with 
glmGamPoi. Batch correction was performed using ref-
erence-based integration [45] on the 14 normalized data-
sets. The 127 transcriptomic cell types were grouped into 
8 broad cell types including astrocytes, endothelial cells, 
excitatory neurons, inhibitory neurons, microglia, oligo-
dendrocytes, OPCs, and VLMCs.

Cell type proportion comparisons
To compare proportions of cell types and subtypes 
between LOAD and Normal control groups, nuclei of 
each cell type and subtype were counted and divided by 
the total nuclei for each sample. Then, a bootstrapped 
two-sided Wilcoxon rank-sum test was performed in R 
(v4.0.2) using the wilcox.test function with default param-
eters and Benjamini–Hochberg correction for multiple 
testing. 20% of nuclei were randomly selected from all 
samples under comparison in each of 30 iterations [43].

snATAC‑seq data processing
DNA fragments acquired from our snATAC-seq experi-
ments were sequenced and converted to fastq format, 
from which they were mapped to GENCODE’s human 
release 32 reference [122] and counted using CellRanger-
ATAC 1.2.0 (10X Genomics). We screened the remaining 
nuclei using the following quality control metrics:

a) Nucleosome signal: defined as the ratio of mononu-
cleosome fragments (147 to 294  bp) to nucleosome 
free fragments (< 147  bp). Nuclei having a nucleo-
some signal of greater than 4 were removed [123].

b) Transcription start site (TSS) enrichment: the ratio of 
aggregated, normalized read signal centered around a 
reference set of TSS’s compared to the signal in the 
TSS flanking regions. Nuclei with a TSS enrichment 
score of less than 2 were removed [123].

c) Percent reads in peaks: the proportion of fragments 
in the cell that map to peak regions. Cells with less 
than 15% of reads in peaks were removed [123].

d) Total peak region fragments: cells with less than 1000 
peak region fragments were discarded due to low 
sequencing depth. Additionally, cells in the upper 1% 
in each sample distribution were removed as a pre-
caution against multiplets [123].

e) Blacklist ratio: the proportion of fragments that map 
to sequences associated with technical artifacts. Cells 
with greater than 5% of fragments mapping to black-
listed regions were removed [124].

https://nemoarchive.org/
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The remaining preprocessing steps were conducted 
using R packages Seurat 4.0.1 [45], Signac 1.3.0 [123], 
and Harmony 0.1.0 [125]. Latent semantic indexing (LSI) 
was used to create a low-rank approximation of the data 
[126]. The 24 datasets were term frequency-inverse doc-
ument frequency (TF-IDF) normalized and aggregated 
to form a joint peak by cell count matrix. Then, singular 
value decomposition (SVD) was performed on the joint 
cell by peak dataset, after which the left singular vectors 
were standardized, representing the LSI components. 
Then, the correlation of each component with sequenc-
ing depth was measured. Due to high correlation with 
sequencing depth, the first dimension was removed from 
downstream analysis (rho = 0.7) [123]. The remaining LSI 
components were then adjusted with the function Run-
Harmony to remove batch effects before clustering the 
data. In alignment with snRNA dimensionality reduction 
methods, we used dimensions 2 through 30 for clustering 
and downstream analysis.

Clusters were constructed from the adjusted LSI 
embeddings of the integrated dataset using the Seurat 
functions FindNeighbors and FindClusters, with k-near-
est neighbors set to 20, and a cluster resolution of 1. The 
data was then projected onto a 2D surface using the uni-
form manifold approximation (UMAP) algorithm and 
inspected to ensure ample cluster resolution.

Cell type annotation of snATAC‑seq nuclei
Cell type annotation of the snATAC cells was done using 
the integrated snRNA dataset as a reference [45]. First, 
“gene activity” matrices were constructed from each snA-
TAC sample by counting the fragments mapping to pro-
moter regions (between 2000  bp upstream and 200  bp 
downstream of TSS) of each cell. After quantifying pro-
moter region fragments, the matrices were log-normal-
ized using Seurat.

The Seurat function FindTransferAnchors was used 
to annotate the snATAC data against our snRNA data, 
utilizing canonical correlation analysis as the reduction 
method. Seurat computes the cross correlation between 
variable features of snATAC and snRNA cells. After L2 
normalization, the left and right singular vectors from 
the SVD of this matrix are taken as the canonical correla-
tion vectors. Seurat then uses a mutual nearest neighbor 
approach to find anchors between the datasets, repre-
senting biologically similar cell states across modalities. 
For each cell, the weighted combination of the k-nearest 
anchors was used to calculate prediction scores for each 
of the major cell types. For each cell, the predicted cell 
identity was the cell type with the maximum prediction 
score. Nuclei with maximum prediction scores of less 
than 0.5 were filtered out. “Hybrid” nuclei were identified 

using the same metric as for snRNA-seq data above, and 
subsequently removed.

Doublet/Multiplet detection in snRNA‑seq and snATAC‑seq 
data
“Heterotypic” multiplets (i.e. composed of different cell 
types) were removed from snRNA and snATAC data 
by considering the “hybrid score”. The score metric was 
originally used by Grubman et al. [42] to identify inter-
mediate cell states, and defined as  (x1–x2)/x1, where 
 x1 is the highest prediction score, and  x2 is the second 
highest prediction score. We reasoned that heterotypic 
multiplets would have a transcriptomic/epigenomic 
profile from multiple cell types and thus exhibit com-
peting cell type prediction scores. “Homotypic” mul-
tiplets (i.e. composed of one cell type) were removed 
by considering the number of features detected in 
cells (snRNA multiplets) and the total number of frag-
ments in peaks (snATAC multiplets). snRNA cells 
with > 10,000 features and snATAC cells with total frag-
ments in peaks above the  95th percentile were removed. 
Methods for removing homotypic multiplets that are 
based on fragment/UMI-counts also help to filter out 
heterotypic multiplets.

Linking snATAC and snRNA datasets
The Seurat functions FindTransferAnchors and Trans-
ferData were used in a comparable manner to link 
snATAC clusters to snRNA clusters. As in cell type 
annotation, the anchors were used to transfer the 
snRNA cluster information to the snATAC cells. Each 
cell in the snATAC data was given 33 prediction scores, 
corresponding to each of the snRNA clusters. Directly 
clustering snATAC cells by using the snRNA cluster 
prediction scores did not fully align with the intrin-
sic structure of the snATAC data found from the ini-
tial Louvain clustering. As such, the original snATAC 
clusters were left unchanged, and the snRNA cluster 
prediction scores in each cell were summed across 
all nuclei belonging to the same snATAC cluster. The 
maximum prediction score in each snATAC cluster 
was used to designate a closest matching snRNA clus-
ter. Lastly, the cell type of the linked snRNA cluster was 
matched against the original cell type of the snATAC 
cluster to ensure concordance.

To assess the accuracy of cluster linking, we used 
PBMC granulocyte multiome data, freely available on the 
10X Genomics website. The snATAC and snRNA assays 
were processed separately using the same pipelines out-
lined in this manuscript (quality control, normalization, 
and community detection). Each snATAC cluster was 
designated a closest matching snRNA cluster by summing 
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prediction scores of each cell as described previously. 
For each matching snATAC and snRNA cluster pair, the 
Jaccard index of the cluster barcode compositions was 
calculated. Across all clusters the average Jaccard index 
was 0.756 (Additional file 2: Table S6). Additionally, the 
hybrid score for each snATAC cluster was calculated as 
described in cell type annotation, using the overall clus-
ter prediction scores as input. Cluster hybrid scores pro-
vided a measure of the consensus amongst cells in each 
snATAC cluster. The overall cluster concordance hybrid 
score was 88.56% (Additional file 2: Table S6).

Peak calling
As different cell types exhibit epigenetic heterogeneity, 
it was necessary to perform peak calling on each cluster 
before differential accessibility analysis to reduce noise 
and computational burden. Peak regions were predicted 
empirically using the MACS2 algorithm on each cluster 
within each sample separately [127]. MACS2 assumes a 
dynamic Poisson distribution, with λ dependent on the 
read signal of the surrounding genomic region and is 
robust to technical and biological bias. Peaks were desig-
nated as regions having a p value of ≤ 10e-5. To combine 
peaks into a consensus set for each cluster, Multi Sample 
Peak Calling (MSPC) software package was used [128], 
which employs Fisher’s method to evaluate overlapping 
peaks across samples. Peaks that occurred in at least 2 
samples, with an FDR of ≤ 0.05 from Fisher’s combined 
probability test were used as the consensus set for down-
stream analysis.

Covariate selection for differential analyses
Prior to differential analysis, we assessed the potential 
impact of several technical variables from each of the 
snRNA-seq and snATAC-seq experiments separately 
such as number of nuclei, sequencing saturation, and 
reads mapped to the genome, as well as donor-level char-
acteristics such as age, sex, and PMI. Several process-
ing steps were taken prior to association testing on the 
snRNA-seq and snATAC-seq data separately. For each 
experiment, read counts were summed for all nuclei per 
donor sample, resulting in only one expression or acces-
sibility peak value per donor sample per gene or chroma-
tin peak, respectively. This down-coding was done for 
the covariate selection analysis to address the fact that 
all nuclei from each donor would have identical donor 
characteristics. Subsequently, genes with no expression 
or peaks with zero accessibility for > 20% of samples were 
removed, and all values were mean centered and scaled 
prior to analysis.

Principal component (PC) analysis was performed 
using prcomp in R for all genes and peaks passing our 

pre-processing steps, separately. We then performed lin-
ear regression using glm in R of PCs explaining > 10% of 
the variability in global expression or chromatin acces-
sibility on both nuclei- and donor-specific metadata 
variables to identify factors that should be included as 
covariates in differential analysis. Specifically, we selected 
the variable most associated (surpassing Bonferroni cor-
rection for multiple testing, q < 0.05) with PC1 (or alter-
natively, the PC explaining the most variability) and 
regressed all genes or peaks on the associated variable 
to obtain gene or peak residuals that are adjusted for its 
effect. We then performed PC analysis on the gene or 
peak residuals, and in an iterative process, repeating the 
above steps until no additional metadata variables were 
associated with global expression or chromatin acces-
sibility (q < 0.05). For the snRNA-seq analysis, sex, age, 
PMI, sequencing saturation, and cluster proportions (cal-
culated for each donor by dividing the number of nuclei 
of each cell type or subtype by the donor’s total nuclei 
count) were selected as covariates for the differential 
analysis, and for the snATAC-seq analysis, sex, age, PMI, 
peak region fragments, cluster proportions, and percent 
fragments overlapping any targeted region were selected.

Differential expression analysis
To avoid pseudoreplication bias, we used MAST [129] 
with a random effect for donor, as in a recent publica-
tion [52]. For each cell type and cluster, raw counts from 
the snRNA-seq assay were  log2(x + 1) transformed, and 
genes expressed in less than 10% of cells in either group 
(LOAD or Normal) were filtered out. For differential 
expression testing, a two-part hurdle model was run, 
consisting of a zero-inflated regression fitting a general-
ized linear mixed-effects model followed by a likelihood 
ratio test comparing the model with and without the 
group factor. The reference level was set to ‘Normal’ such 
that the results for  log2FC coefficients would be posi-
tive if up-regulated in LOAD and negative if down-reg-
ulated in LOAD. Cellular detection rate (number of genes 
expressed) was calculated for each nucleus, centered, and 
scaled, and added to the model as a covariate to control 
for nucleus size. The proportion of nuclei for each cell 
type and cluster was calculated for each donor (e.g., for a 
given cell type, the number of nuclei for a donor divided 
by that donor’s total nuclei count) and added to the 
model to control for sample-to-sample variation in cell 
type composition. P values were adjusted for FDR to cor-
rect for multiple comparisons. The percentage of nuclei 
expressing each gene was calculated for both groups and 
added to the results.
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Differential accessibility analysis
Seurat’s “LR” test was used for differential accessibility 
testing between LOAD and normal samples was per-
formed on each cell type and each cluster [123, 130]. The 
model predicted diagnosis using a binomial regression, 
with peak region fragments, percent fragments overlap-
ping any targeted region, nuclei proportion, age, sex, 
PMI, and fragment counts as the predictors. A likelihood 
ratio test was conducted to compare the null and experi-
mental models, using fragment counts as the parameter 
of interest. Corresponding p values for each peak were 
adjusted for FDR on a per cluster basis. As with snRNA-
seq data, positive  log2 fold change corresponded to 
increased accessibility, and vice versa.

Cell‑type‑specific DEG/DAP comparative analysis 
across studies
To quantify the consensus DEGs across studies, for each 
study [43, 44] we counted (a) the total number of DEGs 
(|Log2FC|> 0.2), (b) the total number of DEGs found in 
1 other study and (c) the total number of DEGs found 
across all three studies. Consensus DEGs perturbed in 
different directions (opposite sign  log2 fold change) were 
not counted as part of the consensus sets.

Additional metrics for consensus DAPs were needed 
because there was not a guaranteed 1 to 1 matching of 
DAPs between datasets. This is due to differences in peak 
calling across the datasets and the level of noise present 
in snATAC-seq data. To link DAPs across this study and 
Morabito et  al. [43], for all pairs of overlapping peaks, 
we first considered the width of the intersecting region 
in base pairs. To limit size discrepancy between over-
lapping peaks, we also considered the jaccard similarity 
index. For any two overlapping peaks, the jaccard similar-
ity was calculated as the width of the intersection divided 
by the width of the merged regions. Overlapping peaks 
with < 200 base pair overlap and a jaccard index of < 0.25 
were removed. A DAP was deemed consensus if it had at 
least one overlap meeting the previous criteria, and the 
same sign  log2 fold change with the overlapped DAP.

Assessment of cis co‑accessibility networks
Next, we sought to characterize chromatin interactions 
in the data using the R package Cicero [53]. The Cic-
ero pipeline was conducted on a per-cluster basis using 
LOAD cells only. We passed our integrated LSI embed-
dings to Cicero’s bootstrap aggregation procedure, in 
which highly similar cells are aggregated by summing the 
raw counts in groups of 50 k-nearest neighbors. The frag-
ment sums are then normalized to account for within-
group sequencing depth. Cicero then uses a graphical 
LASSO to estimate the partial correlation structure of 
each peak with its neighboring peaks. A penalty term 

dependent on the genomic distance between peak pairs 
is used in GLASSO, and the resulting regularized correla-
tions derived from the precision matrix are termed “co-
accessibility scores.” We defined the maximum peak-peak 
distance, at which regularized correlations are assigned 
0, as 500 Kbp. We then specified a minimum co-acces-
sibility score of 0.2 before extracting cis co-accessibility 
networks (CCANs) from the resulting data using Louvain 
community detection.

LOAD cCRE’s and GO analysis
To probe candidate cis-regulatory elements within 
CCANs, we first isolated CCANs that (a) contained ≥ 1 
DAP and (b) contained ≥ 1 peak that overlaps the pro-
moter or intron1 of a DEG in the closest matching 
snRNA cluster. An additional factor to consider was 
whether the direction (i.e., the sign of DAP and DEG log 
fold change) aligned within DAP-DEG pairs. This assess-
ment was done on each CCAN individually. First, all 
DAPs in the CCAN were extracted. Second, all DEGs in 
which the promoter or intron 1 was located within a peak 
belonging to the CCAN were extracted. Third, all pairs of 
DAPs and DEGs were screened as to whether they were 
perturbed in the same direction. Based on this screening, 
the CCANs were then given the following designations:

a) Unidirectional: Of all possible DAP-DEG pairs in the 
CCAN, all had the same sign for  log2 fold change.

b) Mixed: Of all possible DAP-DEG pairs in the CCAN, 
there was ≥ 1 pair that had the same sign for  log2 fold 
change, but not all pairs had the same sign for  log2 
fold change.

c) Bidirectional: of all possible DAP-DEG pairs in the 
CCAN, there were no pairs that had the same sign 
for  log2 fold change.

As we were primarily interested in enhancer promoter 
interactions, only unidirectional and mixed CCANs were 
considered. Within unidirectional and mixed CCANs 
separately, we looked for DAP-DEG overlap peak pairs 
that met the following criteria:

a) DAP was highly coaccessible (coaccessibility score 
of ≥ 0.2) with a peak overlapping the promoter or 
intron 1 of a DEG.

b) The peak overlapping the promoter or intron 1 of a 
DEG was also a DAP.

c) Both DAPs and the overlapping DEG had the same 
direction of effect.

d) DEG  log2 fold change ≥ 0.15.
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For each cluster, we pooled the overlapping DEGs from 
both unidirectional and mixed CCANs that met these 
criteria and performed GO analyses with the R package 
topGO [131]. Genes expressed in at least 10% of cells in 
their corresponding cluster were used as the background 
gene sets. We used Fisher’s hypergeometric test statistic 
in evaluating enrichment of GO terms. Terms of interest 
were defined as having a p ≤ 0.05 and mapping to at least 
3 genes in the test gene set.

Motif detection and enrichment analysis
To detect transcription factor binding sites (TFBS) in the 
data, position weight matrices (PWMs) from JASPAR 
2020 were used to scan the genome for motifs within the 
CCANs of each cluster [132, 133]. The p value thresh-
old for a motif match was 5e-5. For overlapping motif 
matches of the same transcription factor, only the high-
est scoring match was used. Given the high rate of type I 
error associated with in silico motif discovery algorithms, 
motif enrichment was also performed to rule out unlikely 
candidates. We used HOMER to detect motif enrichment 
in CCANs [134]. HOMER first quantifies the GC con-
tent and n-mer composition of both the background and 
target regions and applies weights to eliminate sequence 
bias before using a binomial test to compute enrich-
ment p values. Peaks within CCANs were used as target 
sequences, whereas all other cluster-specific peaks were 
used as background regions. For downstream analysis, 
we took motifs that were enriched with FDR ≤ 0.05 and 
fold enrichment ≥ 1.2.

In silico identification of regulatory variants
The R package atSNP was used to quantify potential reg-
ulatory variants in silico [56]. atSNP takes as input a list 
of position probability matrices and a list of SNP loci and 
uses importance sampling to detect motif positions and 
to assess the significance of an observed TFBS affinity 
change when the SNP allele is introduced. To strengthen 
the reliability and to ensure the tested motifs were real 
TFBSs, we modified the atSNP pipeline as follows: Posi-
tion weight matrices using a  log2 probability ratio were 
created, assuming empirical base frequencies from the 
regions tested as background.  Then, the regions were 
scanned, and TFMPvalue R package was used to gener-
ate an exact score threshold from which to detect TFBSs 
to be tested. Our input set of TFBSs and SNPs passed to 
atSNP was based on the following criteria:

Open chromatin region criteria:

a) TFBS-SNP pair was located within a DAP.
b) TFBS-SNP pair was located within a unidirectional 

or mixed CCAN.

c) CCAN contained ≥ 1 peak that was within 500 Kbp 
from a GWAS SNP.

d) DAP containing the TFBS was highly coaccessible 
(coaccessibility score of ≥ 0.2) with a peak overlap-
ping the promoter or intron 1 of a DEG in the closest 
matching snRNA cluster.

e) DAP and associated DEG had the same sign  log2 fold 
change.

TFBS criteria:

f ) Motif p value at the TFBS was ≤ 5E-5 (for major or 
minor allele sequence).

g) TFBS overlapped ≥ 1 SNP.

SNP criteria:

h) Overlapping SNP had a minor allele frequency ≥ 1%. 
For multiallelic SNPs, only alleles with fre-
quency ≥ 1% were included.

atSNP assumes the underlying nucleotide distribu-
tion follows a first order Markov model. The sequences 
in the proposal distribution are of length 2L-1, and 
contain a subsequence of length L, which matches the 
motif in question. The sequences are weighted based on 
the affinity score of the matching subsequence and the 
expected affinity change resulting from a single nucleo-
tide alteration at the SNP position, L. atSNP outputs a 
“1” in the event that a selected sequence has an expected 
affinity change greater than or equal to that which was 
observed, and a “0” otherwise. This number is multiplied 
by the sample weights, i.e. the null and proposal distri-
butions’ likelihood ratio. The mean value after N Monte 
Carlo samples is taken as the estimated p value, where 
N is determined by the length of the motif. In addition, 
we ran 1000 iterations of atSNP for every SNP-TFBS 
overlap to further reduce the variance estimate from the 
Monte-Carlo sampling procedure. We reported the mean 
p value, variance, minimum and maximum p value for 
each atSNP test across all 1000 iterations. In reporting 
key results, we controlled the FDR at 0.05 using the Ben-
jamini–Hochberg procedure.

Our flagship results included in the main/supplemental 
figures passed the following additional criteria:

a) Dysregulated TF showed expression in ≥ 10% of cells 
in the corresponding snRNA cluster

b) Target DEG associated with the regulatory SNP had 
log fold change magnitude of ≥ 0.15

c) FDR ≤ 0.01
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Additional file 1: Figure S1. Confirmation of cluster annotation. a, 
Feature plots of log‑normalized, corrected count data from SCTransform 
output showing cell type‑specific markers for astrocytes (SLC1A2, AQP4, 
GFAP), neurons (RBFOX3), excitatory neurons (SLC17A7), inhibitory neurons 
(GAD1, GAD2, SLC6A1), microglia (APBB1IP, C3, CD74, CSF1R), oligodendro‑
cytes (MOBP), and OPCs (MEGF11), and endothelial cell markers (FLT1, 
CLDN5) as negative controls. b, Chromatin accessibility tracks for gene 
promoter and coding regions for cell type markers for oligodendrocytes 
(MOBP), microglia (C3), astrocytes (AQP4), excitatory neurons (SLC17A7), 
OPCs (MEGF11), and inhibitory neurons (GAD2). c, UMAP plots show‑
ing cell type annotation based on snRNA‑seq of human primary motor 
cortex [33] (left) and snRNA‑seq of human prefrontal cortex [36] (right), 
d, UMAP plot of re‑annotated snRNA‑seq dataset with known excitatory 
and inhibitory neuron subtypes. e, Proportions of nuclei of each of the five 
subtypes of excitatory and inhibitory neurons for each sample. Average 
proportions for the 12 LOAD and 12 Normal samples are shown. Figure 
S2. Distribution of nuclei among cell subtype clusters by donor sample 
ID. a, UMAP dimensional reduction plots of cell subtype clusters for 
snRNA‑seq dataset split by donor sample ID. b, UMAP plots of cell subtype 
clusters for snATAC‑seq dataset split by donor sample ID. Cell subtype 
clusters are color coded. Figure S3. Correlation of metadata covariates in 
snRNA‑seq and snATAC‑seq data. Figure S4. Top differentially‑expressed 
genes (DEGs) upregulated and down‑regulated in LOAD by cluster. 
Unbiased volcano plots for all clusters containing DEGs not shown in 
Fig. 3, representing astrocyte (Astro), excitatory neuron (Exc), inhibitory 
neuron (Inh), microglia (Micro), oligodendrocyte (Oligo), and oligoden‑
drocyte precursor (OPC) cell types.  Log2 fold change (FC) between LOAD 
and normal control samples is plotted against –log10 p‑value (FDR). Points 
representing DEGs with statistically significant (p < 0.05) upregulation in 
LOAD are shown in green while DEGs with significant downregulation 
are shown in red. Genes without significantly differential expression are 
shown in blue. The proportion of DEGs to total genes examined is shown 
above each plot. The six DEGs with the highest absolute fold change  (log2 
FC > 0.2) in the up‑ and downregulated categories are labeled in green 
and red, respectively. The top up‑ and downregulated DEGs within 500 kb 
of disease‑associated SNPs previously identified in GWAS are labeled in 
teal and pink, respectively. The Inh8 and Inh9 clusters did not contain 
DEGs and are not shown. Figure S5. Gene ontology analysis of DEGs 
identified in snRNA‑seq data for cell types. Gene ontological analysis of 
biological processes, cellular components, and molecular functions for 
DEGs associated with the indicated cell types. Up to the top ten enriched 
terms involving a minimum of three DEGs are listed. Statistical significance 
threshold (p < 0.05) is indicated by vertical lines. Figure S6. Additional 
gene ontology analysis of cCRE‑linked DEGs. Gene ontological analysis 
of biological processes, molecular functions and cellular components for 
cCRE‑linked DEGs associated with CCANs in the indicated cell subtype 
clusters. Up to the top ten enriched terms involving a minimum of three 
DEGs are listed. Statistical significance threshold (p < 0.05) is indicated 
by vertical lines. Figure S7. Identification of SNPs predicted to influence 
TF binding affinity at GWAS loci in LOAD CCANs. a‑l, Diagrams of specific 
example SNP‑TFBS overlaps. The cell subtype, regulated DEG, TF and SNP 
ID are shown in bold. The log fold change (Log2FC) and significance value 
(FDR) are shown for each DEG and corresponding cCRE. Additionally, func‑
tional information for each DEG is provided. The effect of the SNP on the 
TFBS affinity change and corresponding FDR determined using atSNP (see 
Methods) are noted. CCAN stacked plots show peak coaccessibility scores, 
directionality of changes in DAP accessibility in LOAD (red = increased 
accessibility, blue = reduced accessibility), and degree of LOAD association 
for GWAS loci. All features are arranged along the same horizontal access 
to indicate chromosomal position. cCRE stacked plots are detailed from 
boxed area of CCAN plots and additionally indicate overlapped gene 
coding regions, with upregulated DEGs shown in red and downregulated 
DEGs shown in blue, as well as normalized chromatin accessibility of 
the genomic region in LOAD and Normal samples. TFBS activity stacked 
plots are detailed from boxed areas of cCRE plots and indicate aligned 

chromosomal positions of TFBSs (Ref and disrupted TFBS—dark and light 
gold horizontal bars, respectively—were determined based on position 
weight matrix as described in Methods) and SNPs (black lettering). TF 
Network plots illustrate potential regulatory networks between DEG‑
overlapping peaks (blue) and TFBS‑overlapping peaks (green), with those 
linkages predicted to be affected by LOAD SNPs shown in red.

Additional file 2: Table S1. Demographic information. Table S2. 
snRNA‑seq QC data. Table S3. Cluster markers. Table S4. Cluster cell 
types. Table S5. snATAC‑seq QC data. Table S6. Jaccard index. Table S7. 
DAP/DEG Summary—Cell Type. Table S8. DAP/DEG Summary – Cluster. 
Table S10. CCAN Summary. Table S11. Linked cCREs + DEGs. Table S12. 
Motif Enrichment Summary. Table S13. atSNP Summary. Table S14. 
atSNP Results Annotated
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