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Pancreatic draining lymph nodes (PLNs) 
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Abstract 

Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self‑
tolerance and unrestrained β cell‑reactive immune response. Activation of immune cells is initiated in islet and ampli‑
fied in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub 
of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN‑centered view 
of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or periph‑
eral circulation, undergo immune remodeling within the local microenvironment and export effector cell compo‑
nents into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented 
by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integ‑
rity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the out‑
puts of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding 
intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.

Keywords Type 1 diabetes (T1D), Pancreatic draining lymph nodes (PLNs), Signal inputs, PLN remodeling, Signal 
outputs

Introduction
As a prototypical autoimmune disease, type 1 diabetes 
(T1D) stems from the breakdown of self-tolerance and 
subsequent relentless immune attack which destroys pan-
creatic islet β cells, thereby leading to insulin deficiency 
[1–5]. The etiologies underlying T1D are yet to be fully 
addressed, but are associated with genetic predisposi-
tion, epigenetic reprogramming and environmental cues 
including diet, lifestyle change, microbiota alteration and 
infection of specific viral strains [6–9]. All these intrinsic 
abnormalities and extrinsic insults are deemed to initiate 
islet autoreactive immune responses. Damage associated 
molecular patterns (DAMPs) along with autoantigens 
released from dying β cells are the major drivers of auto-
immune priming [10, 11]. On the other hand, disrupted 
integrity of the intestinal barrier allows translocation of 
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microbial components to the remote area, which then 
act as immunostimulatory adjuvants to exacerbate β cell 
destruction [12, 13]. In particular, viral infections could 
directly interfere with β cell function, but the deteriora-
tive effect largely comes from infection-induced inter-
feronopathy, a “spillover effect” of the anti-viral response 
[14, 15].

Single-cell techniques applied in peripheral blood, pan-
creatic draining lymph nodes (PLNs) and pancreas have 
greatly advanced our understanding of cell components 
involved in T1D development [16]. Strikingly, single-cell 
RNA sequencing (scRNA-seq) with 4-week, 8-week and 
15-week old non-obese diabetic (NOD) mice found that 
the immune infiltration is already identifiable as early as 
4-week of age, rapidly progresses at around 8-week old 
and peaks at 15-week old [17]. T1D is therefore acknowl-
edged as a chronic progressive inflammatory disorder. In 
this case, the breakdown of immune tolerance is a gradu-
ally occurring process, but most critically, our body could 
exploit versatile approaches to counterbalance the over-
active autoimmune responses to protect the residual β 
cell mass. ScRNA-seq of human pancreas revealed the 
unexpected immune regulatory function of ductal epi-
thelial cells [18, 19], and upon IFN-γ stimulation, β cells 
actively upregulate PD-L1 expression to resist autoin-
flammatory assault [20]. Additional immunological self-
limiting mechanisms are also found including regulatory 
T cell (Treg) adaptation, activation-induced cell death 
(AICD) and the exhaustion of effector T cells (Teff), 
which collectively put a brake on the derailed immune 
responses [21, 22].

Given that T1D is resulted from autoimmune destruc-
tion of islet β cells, the crosstalk between β cells and islet 
resident immune cells plays an initiative part and deter-
mines the tissue specificity of T1D, but the destructive 
autoimmune response is owing to the signaling amplified 
in organized lymphoid structures. Mounting studies have 
demonstrated the presence of tertiary lymphoid organs 
(TLOs) in the peri-islet milieu [23]. TLOs are formed 
in response to lymphotoxin signaling, and therefore, the 
removal of PLNs in NOD mice cannot entirely prevent 
T1D development [17, 24, 25]. In general, TLOs are nor-
mally visible at 14–20 weeks of age in NOD mice [24, 26]. 
As a result, it is very unlikely that TLOs could replace the 
role of PLNs in T1D pathogenesis, especially at the early 
stage of disease development. Indeed, excision of PLNs 
at 3  weeks almost completely protects NOD mice from 
insulitis and diabetes, but the goal cannot be achieved 
once it is conducted at 10 weeks of age [17]. The knowl-
edge of PLNs as a place of aberrant immune response is 
continuously being replenished and renewed, and what 
we presented here aims to piece together those valuable 
up-to-date findings, and to delineate the comprehensive 

landscape of T1D pathogenesis from a PLN-centered 
perspective.

PLNs integrate priming signals from diverse 
sources of input
Pancreas is the primary source of input signals for effi-
cient triggering of immunological events within PLNs. 
Recurrent exposure to islet-specific antigens is deemed 
to contribute to the early initiation of T1D [27]. Pan-
creatic islet β cell-derived granules containing catabo-
lized insulin peptide fragments (e.g., insulin B:12-20) are 
released into circulation or near the neighborhood, taken 
up, and presented by antigen-presenting cells (APCs), 
which ultimately enhances  CD4+ T cell diabetogenicity in 
various lymphoid tissues, especially PLNs, as evidenced 
by the presence of insulin specific germinal centers 
(GCs) [28]. Dendritic cells (DCs) serve as a bridge link-
ing β cell damage to the activation of adaptive immune 
system [29]. Defects in NOD DCs has been ascribed to 
the Idd10/17/18 region, which hinders the generation of 
tolerogenic DCs and arrests DCs in a maturing phase, 
thereby producing more IL-12 but less IL-10 [30]. Prior 
to overt lymphocytic insulitis,  CD8a+ DCs accumulate at 
the edge of islet. The frequency of  CD8a+ DCs reduces 
in the pre-diabetic pancreas rather than in the PLNs, 
and the expression of tolerogenic markers such as CCR5, 
CLEC9A, and IL-10, is down-regulated. These data indi-
cate that alteration of DC state and loss of peri-islet tol-
erance might precede the breakdown of tolerance in 
PLNs [31]. There are two major subsets of islet resident 
DCs:  CD103+ DCs derived from pre-DCs, and  CD11b+ 
DCs originated from circulating monocytes.  CD103+ 
DCs are adept at cross-presenting islet autoantigens by 
migrating towards PLNs, while  CD11b+ DCs are more 
phagocytic and preferentially stay in the islet [32]. Physi-
ological β cell death, occurring around 2 weeks of age in 
all mouse strains, goes awry in NOD mice, which pro-
vides primordial diabetogenic antigen to  CD11b+ DCs 
and provokes T cell activation in PLNs [33]. In contrast, 
BATF3-dependent  CD103+ DCs make up a minor popu-
lation of islet APCs in newborn NOD mice; however, by 
4  weeks of age, the proportion of  CD103+ DCs surges 
in concomitant with the accession of T cells into islets. 
Ablation of BATF3 results in a lack of  CD103+ DCs in 
both pancreas and PLNs, thereby preventing autoreactive 
T cell activation and T1D development [34]. An ampli-
fication loop is also identified between T cells and DCs, 
as islet infiltrating T cells are able to further upregulate 
the expression of CD40, CD80 and CCR7 on DC surface, 
which augments their potency to prime more autoreac-
tive T cells in PLNs [35]. In addition to DCs, B cells par-
tially contribute to T1D pathogenesis by immunoglobulin 
(Ig)-mediated antigen capture and the priming effect on 
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diabetogenic T cell response [36]. Therefore, although 
the pathogenic role of B cell-secreted autoantibodies 
(Ab) is an issue under debate, autoreactive B cells may act 
as APCs necessary for the initial activation of β cell reac-
tive CD4 T cells [37].

Notably, intra-islet APCs capture antigenic peptides, 
get matured and obtain the migratory capacity towards 
PLNs via the afferent lymphatic vessels [38]. Lymph-
angiogenesis represents a pathological feature com-
monly observed in chronic inflammatory disorders, 
particularly in the case of insulitis in T1D setting. Vas-
cular endothelial growth factors receptor 3 (VEGFR3) 
is critically involved in the above process, and VEGFR3 
blockade reduces multiple low dose streptozotocin 
(MLDS)-induced immune responses in PLNs [39]. By 
injecting indocyanine green (ICG) into parenchyma in 
the anterior or posterior surface of the pancreas head, 
seven main pancreatic lymphatic drainage pathways 
were identified [40]. A similar technique may be applied 
to NOD mice to reveal the lymphatic draining pathways, 
given lymphatic system is tightly associated with the ini-
tiation or resolution of pancreatitis [41]. Unfortunately, 
relevant studies on whether targeting lymph-angiogene-
sis is a feasible approach for T1D treatment are lacking 
thus far.

Specific strains of viral infections also contribute to the 
motivation of PLNs and the priming of autoinflammatory 
reactions. Orally infected rhesus monkey rotavirus (RRV) 
makes its presence in PLNs by extra-intestinal spread, 
which activates regional APCs and elicits a Th1 biased 
adaptive immune response. Rotavirus infection in at-risk 
children positively correlates with T1D progression and 
accelerates T1D onset in a mouse model [42]. Mecha-
nistically, rotavirus infection of NOD mice enhances the 
expression of MHC-I molecule on PLN B cells and pro-
motes the proliferation of autoreactive T cells possibly 
through bystander activation [43]. In rats, Kilham rat 
virus (KRV) infection reproducibly induces acute T1D in 
genetically predisposed BB/Wor strain. By in situ hybrid-
ization, the tissue tropism of KRV infection was unrave-
led. Interestingly, KRV mRNA and DNA were readily 
detected in peripancreatic lymphoid tissues while were 
hardly seen in the pancreas following 5 days of infection 
[44]. Consistently, the T1D-inducing effect of KRV infec-
tion is attributed to B cell and plasmacytoid DC (pDC) 
activation in PLNs. Microarray analysis revealed that the 
upregulated genes elicited by KRV infection were pre-
dominantly IFN-γ-induced chemokines and genes asso-
ciated with IL-1 pathways, interferon production, and 
downstream signaling molecules [45]. On the contrary, 
certain viral inputs may alleviate the progression of T1D. 
For instance, intraperitoneal or intranasal infection of 
murine gammaherpesvirus-68 (MHV-68) delays T1D 

onset by reducing dendritic cell antigen presentation and 
rendering PLN autoreactive T cells at a naïve state [46]. 
Therefore, the immune regulatory role of viral infections 
may vary under the context of T1D.

Gut-derived signals are another important source 
of input that affects the immune status of PLNs. From 
the perspective of development, a preferential traffick-
ing route exists from the gut to PLNs, and PLN resi-
dent T cells can also be activated by antigens drained 
from the peritoneum and the gastrointestinal tract [47]. 
An appealing hypothesis proposed that dietary intake 
of wheat gluten triggers T1D pathogenesis by releasing 
dipeptidyl peptidase IV (DPP4)-cleaved X-pro peptides. 
Gluten-derived peptides would be ingested by intestinal 
DCs, which are then recruited into PLNs by chemokines 
CCL19/CCL21 to activate β cell reactive lymphocytes 
[48]. A similar antigen mimicry approach is adopted 
by pathogenic gut microbiome. The hprt4-18 peptide 
derived from the human gut commensal Parabacteroides 
distasonis activates T cell clones of T1D patients that are 
specifically directed at an epitope in the B-chain of insu-
lin (insB:9-23), and as a result, the seroconversion rates 
are consistently higher in children whose microbiome 
harbors sequences capable of producing the hprt4-18 
peptide [49]. Moreover, the dysbiosis of gut microbiota, 
disruption of the intestinal barrier integrity and micro-
bial translocation are construed as the key pathological 
events in T1D pathogenesis as well [50, 51]. For example, 
streptozotocin (STZ) treatment would cause a “leaky gut” 
permitting the translocation of microbial products into 
PLNs, where they are probed by the nucleotide-binding 
oligomerization domain containing 2 (NOD2), inducing 
pathogenic Th1 and Th17 response [52]. Additionally, 
functional and metabolic alterations of gut microbiome, 
featured by the decreased butyrate production and bile 
acid metabolism along with increased lipopolysaccha-
ride biosynthesis,  are observed in T1D children [53]. 
Particularly, the combination of 18 bacterial species and 
fecal metabolites provides prognostic value for T1D 
[53], which lays the foundation for microbiota-based 
T1D therapies including fecal microbiota transfer (FMT) 
[54] and the supplementation of beneficial bacterial spe-
cies [55]. Taken together, although gut-associated lymph 
nodes are sources of intermediate diabetogenic lympho-
cytes, they are likely engaged in the early phase of T1D 
initiation [56].

PLNs constantly exchange cell components with the 
peripheral blood and circulating diabetogenic T cells 
tend to choose PLNs as the priority to habitat. Circu-
lating B cells access into PLNs mainly by their surface 
expression of mucosal addressin cell adhesion molecule 1 
(MAdCAM-1) and α4β7 integrin, and partly by the pres-
ence of L-selectin or LFA-1. Upon their arrival in PLNs, 
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they sense, capture and present the drained autoantigens 
to T cells [57]. Using a T1D adoptive transfer model in 
NOD mice, by analysis of the transferred T cells in the 
pancreas and lymphoid organs including thymus, spleen, 
and lymph nodes from pancreatic, mesenteric, axillary, 
inguinal and combo-aortic areas, it was interestingly dis-
covered that the transferred T cells are readily and pre-
dominantly infiltrated into PLNs, where they undergo the 
process of activation and acquisition of diabetogenicity 
[58]. This phenomenon is corroborated by the adoptive 
transfer of antigen-specific BDC2.5T cells. Before insu-
litis is detectable, the transferred T cells are found to 
only proliferate in PLNs, indicating that β cell-derived 
antigens are similarly and predominantly transported 
into PLNs, although small amounts of antigens could be 
spread into remote areas [59]. Altogether, PLNs receive 
signals from the pancreas, gut, viral infection, and cir-
culation (Fig.  1). These diverse external inputs are inte-
grated in PLNs and finally transformed into abnormal 
islet autoreactive immune responses, which would be 
discussed in the following sections.

PLN remodeling is featured by the perturbation 
of immune microenvironment
In recent-onset T1D patients, histological examination 
revealed decreased primary B cell follicle frequency, 
fewer follicular dendritic cell (FDC, CD21, and CD35 
positive) networks, and accumulation of extracellular 
matrix glycosaminoglycan hyaluronan (HA) and HA 
binding proteins in PLNs [60, 61]. By classifying 5-week 
old NOD mice into insulin autoantibody  (IAA+) group 
and  IAA− group along with comparative analysis, it was 
found that the differentially expressed genes (DEGs) are 

enriched in tissue reconfiguration and Th1 immunity, 
suggesting an early immunological rewiring in PLNs [62]. 
PLN remodeling is accompanied by a shift from immune 
tolerance to the state of immune activation. Breakdown 
of self-tolerance is a prerequisite for the autoreactive 
response, and anomalies in tolerizing mechanisms take 
the principal responsibility.

Generally, PLN remodeling is characterized by the 
alteration of stromal cells. Fibroblastic reticular cells 
(FRCs) form the scaffold to support the PLN architecture 
and physiologically present self-antigens to induce T cell 
tolerance. FRC networks in NOD PLNs display larger 
reticular pores than non-obese diabetes-resistant (NOR) 
controls, and thus engage with more T cells, which pos-
sibly serves as a compensatory anti-inflammatory mech-
anism [63]. Lymph node stromal cells (LNSCs) are also 
physiologically involved in T cell tolerance induction in 
human T1D patients, and similarly, NOD mice PLN-
derived LNSCs display enhanced tolerogenic phenotype 
along with increased antigen-presenting potential to off-
set DC-induced T cell activation [64]. Deformed epider-
mal autoregulatory factor 1 (DEAF1) is a transcription 
regulator that promotes the expression of peripheral tis-
sue antigens (PTA) in LNSCs. As forward of T1D pro-
gression, the alternatively spliced dominant-negative 
isoform DEAF1-Var1 is upregulated in PLNs (through 
splicing factor Srsf10 and Ptbp2), which reduces PTA 
expression and possibly promotes the loss of peripheral 
tolerance [65]. Reduction of DEAF1 function downregu-
lates the expression of eukaryotic translation initiation 
factor 4 gamma 3 (Eif4g3), which modulates the trans-
lation of various genes involved in PTA presentation 
(such as aminopeptidase N), as revealed by the polysome 
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profiling [66]. The expression of tissue-specific antigens 
(TSAs) mediated by the autoimmune regulator (AIRE) 
in the thymus is essential for central tolerance induction, 
while DEAF1 may serve as a master regulator manipu-
lating the expression of PTAs and peripheral tolerance 
induction [67, 68]. Therefore, PTA-mediated peripheral 
tolerance induction plays an instructive role in T1D ini-
tiation [69].

It is worthy of note that PLN resident and immigra-
tory APCs are decisive for the ultimate tolerance break-
down and priming of autoimmune reactions. Compared 
to DCs isolated from PLNs of control mice or axillary/
inguinal (A/I) LN of NOD mice, DCs from NOD PLNs 
form larger clusters with T cells (increase with age) 
which comprise a major source of proliferating T cells. 
The cluster formation is specific, as NOD PLN DCs fail 
to cluster with A/I T cells and in turn A/I DCs fail to 
cluster with PLN T cells [70]. The DNAX-activating pro-
tein of 12 kDa (DAP12) is an adaptor molecule expressed 
on lymphoid and myeloid cells. DAP12 in DCs facilitates 
the activation of PLN Treg cells and serves as a toler-
ance mechanism to β cell-derived antigens. DAP12 defi-
ciency in BDC2.5/B6g7 TCR transgenic mice manifests 
higher activation of PLN T cells and more rapid T1D 
onset, implying the critical role of DC in dictating the 
direction of tolerance or immunity of PLNs [71]. B cells 
play an elusive part in T1D pathogenesis regarding the 
production of autoantibodies [72]. Eight-hundred sixty-
three human IgG antibodies were cloned from 4092 sin-
gle B cells from PLNs and peripheral blood. Surprisingly, 
only 2 clones showed reactivity to insulinoma-associated 
antigen 2 (IA-2), while the rest of them were negative for 
commonly known autoantigens including IA-2, GAD65 
and zinc transporter 8 (ZnT8), indicating an infrequent 
presence of autoantigen-specific  IgG+ B lymphocytes in 
PLNs from IAA-positive individuals [73]. Marginal zone 
B (MZB) cells are detected in almost 80% of NOD mice 
by 16-week old and the population expands along with 
T1D progression. These MZB cells are hyperrespon-
sive to TLR, CD40 and S1P, and express MHC-II, CD80 
and CD86, by which they serve as potent APCs to prime 
diabetogenic T cells within PLNs [74]. Therefore, B cells 
would probably assist DCs in the transition of PLN state 
from tolerance to immunity.

The breakdown of self-tolerance is followed by unre-
strained autoreactive T cell response, which contributes 
to the long-lasting and unresolved T1D progression [75, 
76]. PLN memory  CD4+ T cells and pancreatic memory 
 CD4+ T cells share restricted TCRβ usage, and the major-
ity of public clonotypes express TRBV13-2 (Vβ8.2) gene 
segment. Further analysis of CDR3β sequences revealed 
rare clones of well-identified diabetes-related clono-
types, including those recognizing IGRP, insulin B:9–23 

and chromogranin, which reflects the potential occur-
rence of intra- or inter-molecular epitope spreading and 
the hypermutation nature of TCR [77]. A high degree of 
clonal expansion was observed in PLNs from long-term 
diabetic patients [78]. However, despite the promiscuous 
TCR clones within PLNs, the disease-causing clonotypes 
may be limited [79]. In NOD mice, T cells specifically 
recognizing HIP2.5 epitope (a fusion of insulin C-peptide 
and chromogranin A fragment) account for around 40% 
of islet-infiltrating T cells at both prediabetic and diabetic 
stages [80]. In humans, GAD65 reactive TCR is present 
in 38.9% of examined patients, which contributes > 25% 
reactive TCRβ (TRB) within the conventional T cells iso-
lated from PLNs [81].

Crosstalk between APCs and T cells is indispensable 
for efficient T cell priming. NOD mice harbor a unique 
MHC-II genotype (I-Ag7), which presents β cell-derived 
naturally processed peptides mainly coming from pro-
teins associated with neuronal or neuro-endocrine cell 
types (e.g. synaptotagmin, neuromodulin, and amyloid 
β) or proteins associated with secretory granules (e.g. 
secretogranin and chromogranin) to  CD4+ T cells [82]. 
Replacement of I-Ag7 by I-E on DCs of NOD mice pro-
motes the differentiation of autoreactive  CD4+ T cells 
into antidiabetogenic autoregulatory T cells and protects 
against T1D progression [83]. Among different effector 
 CD4+ T cell (Teff) subsets, Th1 is the most pathogenic 
one. Adoptive transfer of Th1 cells from BDC2.5 trans-
genic mice induces T1D in NOD/SCID mice. However, 
the transferred Th17 cells readily upregulate T-bet and 
secret IFN-γ upon exposure to IL-12, and neutraliza-
tion of IFN-γ instead of IL-17 prevents T1D induced 
by the transfer of purified Th17 cells [84]. On the other 
hand, priming of diabetogenic  CD8+ T cells requires the 
cross-presentation activity of DCs. Cross-presentation of 
islet antigens is inactive during neonatal life and gradu-
ally available when the inflammatory response becomes 
obvious [85]. NOD BMDCs pulsed with freeze-thawed 
insulinoma cells activate diabetogenic  CD8+ T cells in 
the presence of TLR9 agonist and anti-CD40. Specifi-
cally, TLR9 affects the function of pDCs in PLNs, which 
produce type 1 interferons to participate in  CD8+ T cell 
activation [86]. Notably, adoptive transfer of autoreactive 
 CD8+ T cells alone results in clonal deletion in draining 
lymph nodes [87, 88], while co-delivery of autoreactive 
 CD4+ T cells is required to provide essential help for the 
optimal activation of  CD8+ T cells [89].

Immune regulatory cells are also present in PLNs to 
serve as a homeostatic mechanism to put a brake on the 
overactive immune response. Teff cells play a double-
faceted role in T1D development. Teff cells other than 
induce islet destruction, they also boost Treg cell expan-
sion to enhance their suppressive function in PLNs 
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[90]. The number of PLN Tregs dramatically drops in 
NOD mice due to the impaired retention caused by the 
downregulation of SDF-1/CXCR4 axis [91]. Similarly, 
the frequency of T follicular regulatory (Tfr) cells, a spe-
cialized regulatory counterpart of T follicular helper 
(Tfh) cells, is reduced in PLNs of T1D patients, and re-
supplementation of Tfr cells delays T1D development 
in mice [92]. The unbalanced immune status of human 
T1D is featured by functional defects in  CD4+CD25+ 
Tregs in PLNs but not in peripheral blood [93, 94]. PLN 
Tregs inhibit in situ differentiation of islet-reactive  CD8+ 
T cells, and the suppression is mediated by the TGF-β/
TGF-βRII axis, as Treg cells could not control naïve or 
activated islet-reactive  CD8+ T cells bearing a dominant-
negative TGF-βRII genotype following adoptive transfer 
[95]. Likewise, a study argued that Treg function is not 
compromised during T1D initiation, rather conventional 
T cells showed reduced susceptibility to Treg-mediated 
suppression [96]. Such resistance of Teff cells to Tregs 
is mediated by the elevated IL-21 levels in PLNs, which 
probably contributes to the enhanced DC migratory 
capacity [97]. In addition to Treg cells, other regulatory 
cells are also involved in the modulation of PLN immune 
activation state. For instance, mice deficient in mast cells 
are more prone to multiple low dose STZ-induced insuli-
tis, and adoptive transfer of mast cells confers resistance 
to T1D by promoting Treg cells and suppressing Th17 
cells in PLNs [98]. NKT cells activated by alpha-galacto-
syl ceramide (alpha-GalCer) could induce the maturation 
of disease-protective DCs, which tolerizes pathogenic T 
cells in the PLNs. As a result, alpha-GalCer pretreatment 
reduces T1D incidence in mice [99, 100].

In brief, intrinsic defects along with external inputs 
synergistically contribute to tolerance breakdown and 
immune activation in PLNs. The co-existence of both 
effector and regulatory mechanisms suggests that T1D 
pathogenesis is an outcome of immune imbalance gam-
bled by the promiscuous immunological events, which 
explain the chronic and relapsing nature of the disease 
(Fig. 2).

Autoreactive lymphocytes are exported from PLNs 
and infiltrate into the islet
After remodeling, PLNs become a formidable “mili-
tary base” to store arsenal of weapons for β cell killing. 
Translocation of lymphocytes from PLNs to pancreatic 
islets (consisting of PLN egress, lymphocyte traffick-
ing and islet infiltration) is crucial for T1D initiation. 
The BDC-Idd9 mice harbor BDC2.5 TCR transgenic 
T cells containing the Idd9 genomic region originated 
from diabetes-resistant B10 mice. Unlike BDC T cells 
that predominantly accumulate in PLNs and pan-
creas, BDC-Idd9 T cells gather in splenic periarteriolar 

lymphatic sheaths, but both of them are comparable in 
terms of development, functional activation and prolif-
eration [101]. Similarly, the NOD-Idd22 mice carry the 
diabetes-resistant ALR strain-derived Idd22 genomic 
region (Chromosome8: D8Mit293-D8Mit137). This 
ALR-derived Idd22 locus does not affect immune cell 
diabetogenicity, β cell resistance to cytotoxicity or pro-
liferation of transferred CTLs in PLNs. However, β 
cell autoreactive T cells accumulate less in pancreatic 
islets due to the lower adhesion molecule expression on 
vascular endothelial cells and the consequent weaker 
adherence of T cells [102]. Vasculature abnormalities 
are indeed essentially implicated in T1D pathogenesis. 
Through contrast-enhanced ultrasound measurement, 
researchers found that islet microvasculature reorgani-
zation and blood flow dynamics precede T1D onset in 
various pre-clinical models, and islets have a denser 
microvasculature during diabetes progression [103]. 
Comparative microarray analysis revealed that genes 
involved in angiogenesis are specifically activated in 
NOD islets of 2–4  weeks of age [104]. In particularly, 
VEGFR2 is upregulated in inflamed islets and, as a 
result, inhibition of VEGFR2 ameliorates T1D progres-
sion, which supports that VEGFR2 is likely responsible 
for the enhanced vascularity and lymphocyte infiltra-
tion [105].

Adhesion molecules and chemokine–chemokine 
receptors, which are present on activated PLN-derived 
lymphocytes, are indispensable for the development of 
lymphocytic insulitis [106]. Mucosal addressin cell adhe-
sion molecule-1 (MAdCAM-1) is expressed on islet 
vessels of NOD mice early during lymphocyte accumu-
lation in islets. Integrin α4β7hi T cells in NOD mice are 
mainly come from PLNs or spleen, rather than mucosal 
lymphoid tissue, which infiltrate into islet through bind-
ing to MAdCAM-1 [107]. Alternatively, high endothelial 
venules (HEVs) in inflamed islets co-express CCL21 and 
CCL19, which recruit  CCR7+ T cells from bloodstream 
into islets. Blockade of CCR7 abolishes 70% of T cell infil-
tration while not affecting B cells [108]. Intravital two-
photon imaging demonstrated that peri-vascular  CD11c+ 
cells govern T cell extravasation by secreting plentiful 
and redundant chemokines. For this reason, depletion 
of peri-vascular  CD11c+ cells, instead of blocking lim-
ited chemokine–chemokine receptor signaling pathways, 
is more efficient in preventing the entrance of lympho-
cytes into islets [109]. Intriguingly, activated T cells could 
upregulate the expression of insulin receptors (IRs). IR 
positivity not only helps sense insulin for enhanced met-
abolic activity but also serves as an atypical chemokine 
receptor that directs the migration of T cells towards 
islets following the concentration gradient of insulin 
[110].
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The stepwise, continuous spectrum of immune cell 
infiltration is best exemplified by  CD8+ T cells, which 
experience distinct states of naïve, effector, memory, 
stem-like memory, or exhaustion. After leaving PLNs 
and arriving at islets,  CD8+ T cells gradually gain higher 
expression of the cytotoxic effector markers, granzyme 
B, IFN-γ, and CD107a [111]. Activated  CD8+ T cells face 
up with the fate of either becoming exhausted or dead 

after killing [21, 112].  TCF1hi stem-like memory  CD8+ 
T cells are a minor but unique cell population that pos-
sesses the characteristics of both memory cells and stem 
cells [113]. They reside in PLN and provide a persistent 
output of autoreactive  CD8+ T cells that enter the islet 
and replenish the depleted mission-completed ones [113, 
114]. The presence of  TCF1hi stem-like  CD8+ T cells is 
also confirmed in conditions like tumors, and cDC1 is 
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required for their maintenance [115]. Therefore, it is not 
surprising to observe decreased PLN cellularity and T 
cell number in NOD mice after disease onset [116], and 
the turnover of autoreactive lymphocytes may contrib-
ute to the remission-relapsing phases of T1D progression 
(Fig. 3).

As part of the compensatory protective mechanism, 
Treg cells also migrate from PLNs to the pancreas. In 
response to IFN-γ produced by Teff cells, antigen-spe-
cific  ICOS+ Treg cells preferentially express CXCR3 in 
PLNs and are chemoattracted by CXCL9, CXCL10, and 
CXCL11 derived from intra-pancreatic APC populations 
and β cells, serving as a homeostatic mechanism to slow 
down T1D progression [117]. Upon arrival at pancreas, 
it is possible that Treg cells further undergo phenotypic 
and functional adaptations in the new microenviron-
ment. By crossing Foxp3 scurfy mice with BDC2.5 mice, 
it is found that the absence of Treg does not affect T1D 
initiation but accelerates T1D progression. Additionally, 

the transcriptome profiling between PLN Treg and intra-
islet Treg is different, suggesting that Treg cells primarily 
impinge on autoimmune diabetes by restraining destruc-
tive T cells inside the islets [118]. PLN-derived Treg cells 
are extremely potent and a mere 2,000 cells are capable of 
preventing diabetes development [119]. However, a study 
showed that miR-125a-5p is specifically hyper-expressed 
in Treg cells isolated from PLNs of donors with T1D. 
Upregulated miR-125a-5p is associated with reduced 
CCR2 level, which hinders the attraction of  CCR2+ Treg 
cells by islet-derived CCL2 [120]. For the therapeutic 
purpose, butyrate administration induces colonic Treg 
cells and upregulates their surface expression of α4β7, 
CCR9, and GPR15, thereby directing their migration to 
PLNs and then pancreas [121]. The direct transfer of Treg 
cells suppresses the function of macrophages and inhib-
its effector T cell function in islets in a TGF-β-dependent 
manner, which lays the rational foundation of Treg-based 
T1D therapies [122].
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The intervention of T1D development by strategies 
targeting PLNs
From a PLN-centered view, T1D intervention strategy 
can be implemented by three major ways: cutting off the 
signal inputs into PLNs (reduce inflammatory β cell dam-
age, enhance gut integrity and get rid of pathogenic viral 
infections), modulating the immune activation status of 
PLNs, and blocking the outputs of PLNs towards pancre-
atic islets.

Cell-based therapies: transfusion of tolerance-inducing 
cells is a feasible approach to restoring immune balance 
in PLNs. Apart from Treg cell transfer mentioned above, 
infused double-negative (DN) T cells preferentially home 
to PLNs, where they could suppress the function of  CD4+ 
T cells and reverse new-onset T1D once applied in com-
bination with anti-thymocyte serum (ATS) [123]. Simi-
larly, intraperitoneal administration of IDO (indoleamine 
2,3-dioxygenase) overexpressed fibroblasts manifested 
potency to attenuate islet inflammation by inducing Treg 
cells and decreasing autoreactive  CD8+ T cells follow-
ing migrating to local lymph nodes [124]. Moreover, DCs 
delivered by intravenous and/or intraperitoneal injection 
are predominantly drained to PLNs [125, 126]. Adop-
tively transferred IL-4 overexpressing BMDCs accumu-
late in PLNs, normalize the abnormal gene expression 
profile, and delay T1D progression [127]. 1,25-Dihydrox-
yvitamin D3 (1,25(OH)2D3) treatment induces tolero-
genic dendritic cells (TolDCs) in both diabetes-prone 
NOD mice and diabetes-resistant C57BL/6 mice. Once 
the induced TolDCs are co-transferred with activated 
 CD4+ T cells into NOD/SCID recipients, they dampen 
the proliferation of autoreactive T cells in PLNs [128].

Chemical-based therapies: small chemical compounds 
can be applied to T1D treatment and their action modes 
vary. One class of drugs works by disrupting the pro-
cess of islet lymphocytic infiltration. Tellurium com-
pounds, including AS101 and SAS, inhibit the activity 
of α4β7 integrin, thereby preventing autoreactive lym-
phocytes from migrating to the pancreas [129]. Tested 
in LEW.1AR1-IDDM spontaneous rat T1D model, S1P1 
agonist FTY720 (fingolimod) promotes the retention of 
activated T cells in PLNs and hinders their islet infiltra-
tion [130]. By blocking the egress of lymphocytes and 
maintaining the integrity of peri-islet TLSs, FTY720 
prevents diabetes development even at a time of signifi-
cant insulitis in the spontaneous T1D model of NOD 
mice [24]. Alternative S1P1 receptor (S1P1R) modula-
tor, ponesimod, inhibits the spreading of T cell responses 
and demonstrates a potential therapeutic effect when 
combined with an anti-CD3 antibody [131]. The other 
set of chemicals works by inducing tolerance in PLNs. 
Cytopiloyne from the plant Bidens Pilosa causes T cell 
apoptosis and elevates the Th2/Th1 ratio in PLNs [132]. 

Additionally, treatment with AHR ligand, 2,3,7,8-Tet-
rachlorodibenzo-p-dioxin (TCDD), expands Treg 
population and reduces pancreatic islet insulitis [133]. 
Administration of complete Freund’s adjuvant (CFA) 
alone increases Treg percentage in PLNs and reverses 
new-onset T1D in 38% of NOD mice. The therapeutic 
effect is further boosted to 86% once it combines with the 
glucagon-like peptide-1 (GLP-1) analog exendin-4, which 
potently stimulates β cell replication [134]. Sulfatide reac-
tive type II NKT cells (sulfatide/CD1d-tetramer+) are 
an anti-inflammatory subset differing from type I NKT 
cells. Administration of sulfatide C24:0 enlarges the type 
II NKT cell population, educates DCs to secrete more 
IL-10 and suppresses the activation of diabetogenic T 
cells [135]. Capsaicin, through binding to vanilloid recep-
tor 1 (VR1), promotes anti-inflammatory macrophages 
in PLNs, which express IL-10 and PD-L1, and suppresses 
the activation of autoreactive T cells [136].

Vaccination-based therapies: vaccination has the 
advantage of inducing antigen-specific immune toler-
ance. Oral administration of recombinant insulin induces 
Treg cells in PLNs and shifts the Th1 response to Th2 by 
promoting the expression of IL-4 [137]. In addition, oral 
vaccination with live attenuated Salmonella that simulta-
neously delivers autoantigens and TGF-β induces tolero-
genic DC throughout secondary lymphoid tissues and 
suppresses autoreactive T cell proliferation [138]. Moreo-
ver, delivery of microparticle formulation of RA (retinoic 
acid) plus TGF-β1 with the presence of islet autoantigen 
on the surface could induce tolerogenic DCs in PLNs, 
thereby preventing the progression of mid-stage autoim-
munity to overt T1D [139]. Zymosan, the immunoregu-
latory adjuvant, bolsters the generation of tolerogenic 
DC subset via binding to TLR2 and Dectin1. Injection of 
NOD mice with β cell autoantigen and zymosan protects 
against T1D by facilitating the production of antigen-
specific PLN Treg cells [140]. Moreover, intra-lymphatic 
administration of GAD-alum together with oral intake 
of vitamin D results in partial T1D remission in human 
patients, an effect ascribed to the elevated IL-10 secre-
tion and reduced  CD8+ T cell activation [141]. Autoan-
tigen vaccination combined with nanotechnology and 
other immunoregulatory agents, therefore, represents a 
promising direction in the field of T1D treatment.

Conclusions and perspectives
Finally, we conclude that PLNs serve as a pivotal hub 
linking various pathogenic inputs to islet β cell autoin-
flammatory damage. T1D intervention can be achieved 
by reducing pathogenic inputs/outputs and restoring the 
immune tolerant microenvironment of PLNs. Immuno-
therapies based on cell adoptive transfer, autoantigen 
vaccination, or chemical compounds should be combined 
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with other therapeutic approaches, including probiot-
ics that enhance gut integrity, β cell-protective agents 
(GLP-1) and those regulating vascular or lymphatic func-
tion. Regarding the dynamic and complex nature of T1D 
pathogenesis, the corresponding intervention strategy is 
better to be comprehensive.

To further extend the above-mentioned concept, T1D 
should be regarded as a systemic disease when organ/
tissue communications are considered. Firstly, patients 
with T1D suffer from subclinical exocrine insufficiency 
and acinar atrophy although they are not as apparent as 
endocrine impairment [142]. A high degree of fibrosis is 
detected in the exocrine part while the precise mecha-
nism is elusive, but suggested to be associated with global 
pancreatic inflammation, autoimmunity targeting the 
exocrine pancreas, vascular and neural anomalies, and 
the putative involvement of pancreatic stellate cells [143, 
144]. Pancreatic exocrine function decreases in a major-
ity of young at-risk children and precedes the onset of 
islet autoimmunity, as indicated by the measurement of 
exocrine biomarker, fecal elastase-1 (FE-1) [145]. Sec-
ondly, except for PLNs, spontaneous anti-insulin germi-
nal centers (GC) are formed throughout lymphoid tissues 
[146]. Before the clinical onset of T1D, autoreactive T 
cells accumulate in the bone marrow and can respond to 
islet-derived antigen stimulation. Adoptively transferred 
bone marrow autoreactive T cells home back to PLNs 
and pancreas, which implies the complex systemic recy-
cling of islet autoreactive T cells [147]. Thirdly, T1D is 
also subjected to neuronal regulation. Vagal nerves pro-
ject to PLNs and pancreas and impact immune response. 
Pancreatic nerve electrical stimulation (PNES) retains 
T/B cells in PLNs and down-regulates the pro-inflam-
matory reaction to halt T1D progression in diabetic mice 
[148, 149]. Lastly, lymph node sharing accomplished by 
co-drainage of pancreas, liver and the upper small intes-
tine (duodenum) has perplexed the regulation of pancre-
atic autoimmunity at the organismal level [150], and on 
the other way round, the involvement of PLNs in type 
2 diabetes (T2D) associated hepatic/intestinal pathol-
ogy should not be negated. Collectively, these lines of 
evidence bring about novel insights and remind a con-
ceptual update on our current understanding of T1D 
pathogenesis.
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