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obesity, which is three times higher than the rate in 1975. 
This estimation accounted for 11% of men and 15% of 
women [1].

While an imbalance of increased energy intake and 
reduced physical activity is considered the primary cause 
of obesity, research in this field has also highlighted 
genetics, disease, and environmental factors as significant 
contributors to its development [2–4]. Consequently, diet 
and exercise, although the most effective weight manage-
ment therapy, may not yield the same results for every-
one. Obesity is associated with an elevated risk of various 
health conditions such as heart disease, diabetes, depres-
sion, cancer, and reproductive impairment, leading to ris-
ing healthcare costs. In 2021 alone, the estimated cost of 
diabetes-related healthcare reached $966 billion, and it is 
projected to increase to $1,054 billion by 2045 [5].

In recent years, a new injectable glucagon-like pep-
tide 1 agonist called Semaglutide has emerged as a 
widely prevalent and popular therapy in the weight-loss 

Introduction
The global prevalence of obesity is steadily increasing, 
with a growing number of affected individuals world-
wide. According to the World Health Organization 
(WHO), obesity is defined as having a body mass index 
(BMI) greater than 30. In 2016, the WHO estimated that 
approximately 13% of the world’s adult population had 
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treatment industry. Clinical trials have demonstrated 
the effectiveness of Semaglutide in reducing BMI when 
combined with lifestyle intervention, with once-weekly 
treatment for adults and adolescents [6, 7]. However, it is 
important to note that Semaglutide, like any medication, 
carries associated side effects, including hypoglycemia, 
gastrointestinal, pancreatic, thyroid, gallbladder, and car-
diovascular effects, as well as acute kidney injury, compli-
cations related to diabetic retinopathy, and injection-site 
allergic reactions [8].

While weight-loss therapies have improved over 
time, serotonergic therapies remain among the leading 
approaches for effective weight management with new 
targets continually being discovered. This review focuses 
on the history of serotonin, the state of current cen-
tral serotonin research, previous serotonergic therapies, 
and the future of serotonin for treating individuals with 
obesity.

The discovery and diverse roles of serotonin
Serotonin, also known as 5-hydroxytryptamine (5-HT), 
was initially isolated in 1937 by an Italian pharmacologist 
named Vittorio Erspamer from the gastric mucosa of a 
rabbit. At that time, Erspamer referred to it as an “entera-
mine“[9]. Almost a decade later, in 1948, this enteramine 
was isolated from bovine serum and given the name 
“serotonin” due to its vasoconstrictive properties [10]. 
Serotonin is a highly conserved monoamine. Erspamer 
successfully identified 5-HT in the gut of various verte-
brate animals, including primates, pigeons, frogs, and 
fish. This finding demonstrated the widespread presence 
of 5-HT across varied species [11–17].

In mammals, serotonin plays multiple diverse roles. 
It is involved in regulating various physiological pro-
cesses, such as gut homeostasis, mood, body tempera-
ture, glucose homeostasis, feeding (both homeostatic and 
hedonic aspects), energy balance, locomotion, migraine, 
social behavior (including aggression), and circadian 
rhythm, among others [11–15].

Serotonin synthesis, storage, and metabolism
5-HT is synthesized from the essential amino acid tryp-
tophan, which is obtained from food. 5-HT is produced 
in both the peripheral and central nervous systems, and 
cannot cross the blood-brain barrier [18]. The conversion 
of tryptophan to 5-hydroxytryptophan is facilitated by 
the rate-limiting enzyme tryptophan hydroxylase (TPH) 
[19, 20]. TPH exists in two isoforms, TPH1, found in 
peripheral serotonin-producing tissues such as the gut, 
pineal gland, spleen, and thymus, and TPH2 is found 
in central serotonin-producing neurons like the raphe 
nuclei [21]. Subsequently, 5-hydroxytryptophan is con-
verted to 5-hydroxytryptamine (5-HT or sertonin) by 
aromatic l-amino acid decarboxylase [22].

In the brain, 5-HT is stored in vesicles until exocy-
tosis is triggered, leading to its release into the synap-
tic cleft. In the periphery, the gut is the primary site of 
5-HT synthesis; however, platelets will uptake 5-HT 
from the plasma via the serotonin transporter (SERT), 
making platelets the fundamental regulators of plasma 
5-HT concentration [23]. Platelets store 5-HT in dense 
granules and release 5-HT into circulation upon stimula-
tion. Once 5-HT is no longer bound to one of its recep-
tors, it is transported back into cells via SERT [24]. 
Following reuptake, 5-HT is rapidly metabolized by 
monoamine oxidase into 5-hydroxyindole acetaldehyde, 
which is further broken down into 5-hydroxindile acetic 
acid (5-HIAA). The measurement of 5-HIAA, the major 
metabolite of 5-HT, in urine is a commone and non-inva-
sive method for determining 5-HT levels [25].

Central serotonin and the raphe nuclei: a complex network
In the brain, the synthesis of 5-HT primarily occurs 
in the raphe nuclei, which were initially classified into 
nine nuclei (named B1-B9) in the 1960s [26]. Neurons 
involved in 5-HT synthesis are present in both the mid-
brain and hindbrain. The dorsal raphe nucleus (B7 or 
DRN) located in the midbrain is the main producer of 
central 5-HT. Interestingly, the DRN has also been impli-
cated as a significant regulator of body weight and feed-
ing [27].

The 5-HT cell groups are numbered in a caudal-to-
rostral direction, starting with B1-3 in the medulla, fol-
lowed by B4-9 in the pons and midbrain. Each number 
corresponds to a specific nucleus, such as B1 (raphe palli-
dus), B2 (raphe obscurus), B3 (raphe magnus), B4 (dorsal 
to prepositus hypoglossi), B5 (raphe pontis), B6 (caudal 
part of raphe dorsalis), B7 (raphe dorsalis), B8 (centralis), 
and B9 (supralemniscal nucleus). However, it is worth 
noting that these nuclei also produce other neurotrans-
mitters, such as Gamma-aminobutyric acid (GABA) and 
glutamate [28]. Additionally, even within the primary 
site of central serotonin production, the DRN, there are 
approximately twice as many non-5-HT neurons as there 
are neurons that synthesize 5-HT [29, 30].

Serotonin beyond the blood-brain barrier
Due to its size, serotonin (5-HT) faces difficulty cross-
ing the blood-brain barrier, and therefore its functions 
in the central nervous system and peripheral tissues are 
generally considered separate [31]. However, it is impor-
tant to note that precursors and metabolites of 5-HT may 
have an easier time crossing the blood-brain barrier [32] 
and 5-HT can also influence the barrier’s permeability 
[33–35].

The majority of 5-HT in the body (~ 95%) is produced 
in the periphery [9, 16, 17, 36]. It is primarily synthesized 
in enterochromaffin cells of the gut mucosa located in the 
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stomach, and to a lesser extent in the pineal gland and 
other tissues [37]. In the 1960s, Gershon et al. conducted 
radioautography experiments using mice and identified 
that several peripheral tissues, including the adrenal, 
gastric, thyroid, pancreas, lung, liver, splenic tissues, and 
blood platelets, take up and store 5-HT [38].

The roles of peripheral 5-HT are diverse, but it pri-
marily regulates gut motility and plays a role in hemo-
dynamics and vasoconstriction [20]. Interestingly, 
individuals taking Selective Serotonin Reuptake Inhibitor 
(SSRI) medication commonly prescribed for the treat-
ment of depression, experience gut irregularities such as 
nausea, constipation, and diarrhea, which can be attrib-
uted to the alteration in the gut microbiome caused by 
the imbalance of 5-HT [39].

The diverse landscape of 5-HT receptors
There are seven classes of 5-HT receptors, with a cur-
rent consensus of 14 receptor subtypes in total (Table 1) 
[40]. The first family of 5-HT receptors consists of five 
subclasses: 5-HT1A, 1B, 1D, 1E, and 1F. These receptors 
are Gi-coupled receptors, and binding of 5-HT to these 
receptors inhibits adenylate cyclase and reduces cyclic 
adenosine monophosphate (cAMP) [40, 41]. Additionally, 
they can indirectly regulate G-protein inwardly rectifying 
potassium channels, resulting in neuronal hyperpolariza-
tion and reduced neuronal activity [40]. Agonism of these 
receptors leads to anxiolytic and anti-depressant effects.

The 5-HT type 2 receptors consise of three subclasses: 
5-HT2A, 2B, and 2C. These are primarily Gq/11-coupled 
receptors, and their activation increases inositol 

phosphate and intracellular calcium concentration. 
Agonism of 5-HT type 2 receptors exhibits anti-obesity 
(anorexigenic) and some anti-depressant and anti-phy-
scotic effects [12, 42]. Of note, the 5-HT2C receptor was 
originally classified as 5-HT1C, however it was reclassi-
fied due a shared pharmacological profile with the type 2 
receptors [43, 44].

The 5-HT type 3 receptor is typically a ligand-gated 
ion channel, and binding of 5-HT to this receptor rap-
idly depolarizes neurons through non-selective influx of 
sodium and calcium [44]. Agonists of the 5-HT 3 recep-
tor remain largely unexplored, but may have anti-psy-
chotic and anti-anxiety properties. Antagonists of the 
5-HT 3 receptor are more widely used as an anti-emetic 
[45].

The 5-HT type 4, 6, and 7 receptors preferentially cou-
ple with Gs receptors, triggering a second messenger cas-
cade mediated by protein kinase A and increasing cAMP 
[41, 44]. Agonism of these receptors range from a gastro-
prokinetic to increase gut motility (5-HT type 4) to anx-
iolytic and anti-depressant (5-HT type 6) and a potential 
analgesic (5-HT type 7). Less is known about 5-HT type 5 
receptors. There are two subtypes, 5-HT 5A and 5B. They 
have generally been found to be Gi/o coupled, resulting in 
decreased cAMP. Agonism of 5-HT type 5 receptors may 
have anxiolytic and anti-depressant effects [41].

Serotonin and appetite: implications for obesity and eating 
disorders
While 5-HT in the brain only accounts for about 3–5% of 
the body’s serotonin, it plays a crucial role in regulating 
appetite [46, 47]. Generally, an increase in 5-HT reduces 
food intake, while a reduction in 5-HT increases food 
intake [47, 48]. In fact, after a meal, extracellular 5-HT 
levels increase in the medial hypothalamus of rats [49]. 
Notably, 5-HT neurons in the DRN project to the arcuate 
nucleus of the hypothalamus (ARH), a region well known 
for its involvement in regulating food intake, energy 
homeostasis, and body weight [50, 51]. 5-HT agonists 
provided directly into the brains of rats suppresses food 
intake and body weight [52]. On the contrary, deplet-
ing central 5-HT in rodents leads to a reduction in ther-
moregulation, a marked decrease in uncoupling protein 
1 expression in brown and white adipose tissue, and a 
sharp increase in blood glucose, free fatty acids and tri-
glycerides [53]. Furthermore, central 5-HT depletion 
results in increased hyperphagia and body weight gain, 
eventually leading to obesity [46, 47].

Several investigators have identified neural circuits 
that may explain the link between psychiatric illness and 
eating disorders [54, 55]. One of these circuits involves 
a dysregulated 5-HT system, which is accompanied not 
only by symptoms of common mood disorders, like 
depression, but also disordered eating [56]. In fact, mice 

Table 1 5-HT Receptor Summary
5-HT 
Receptor

Receptor 
Subtypes

Receptor 
Type

Mecha-
nism of 
Action

Agonist Effect

5-HT 1 1A, 1B, 1D, 
1E, 1F

Gi-coupled Decreases 
cAMP

Anxiolytic and 
anti-depressant

5-HT 2 2A, 2B, 2C Gq/11-coupled Increases 
inositol 
phosphate 
and intra-
cellular 
calcium

Anorexigenic and 
anti-psychotic

5-HT 3 Ligand-gated 
ion channels

Non-
selective 
influx of so-
dium and 
calcium

Anti-psychotic

5-HT 4 Gs receptors Increases 
cAMP

Gastroprokinetic

5-HT 5 5A, 5B Gi-coupled Decreases 
cAMP

Anti-migraine and 
sleep promotion

5-HT 6 Gs receptors Increases 
cAMP

Anxiolytic and 
anti-depressant

5-HT 7 Gs receptors Increases 
cAMP

Anxiolytic and po-
tential analgesic
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with mutated or ablated 5-HT2C receptors commonly 
exhibit hyperphagia, type 2 diabetes, and seizures [57, 
58]. For example, patients prescribed atypical antipsy-
chotics, such as olanzapine, often experience noticeable 
weight gain. Further investigation into olanzapine found 
that it acts through the 5-HT2C receptor and is suspected 
to act as an antagonist. Adding Lorcaserin, a high-affinity 
5-HT2C receptor agonist mitigates weight gain effect of 
olanzapine in a mouse model [59]. Karth et al., found that 
reduced brain 5-HT alters responses to a high-fat diet, 
such as reduced depression-like behavior and increased 
anxiety-like behavior, which could explain the correlation 
between obesity and some mental illnesses [60]. Dieting 
and malnutrition can reduce the intake of diet-derived 
tryptophan, leading to reduced serotonin production and 
availability [61]. In fact, in the 1970s, Breisch and Staller 
demonstrated that reducing 5-HT synthesis in the brain 
promotes weight gain and eventually leads to obesity [46, 
62]. Furthermore, a reduction or mutation in the 5-HT2C 
receptor can lead to binge eating behaviors that perpetu-
ate the restricting and binging cycle commonly observed 
in patients with anorexia nervosa and bulimia [58]. Con-
versely, overconsumption and obesity can also contribute 
to a dysregulated 5-HT system. Changes in 5-HT signal-
ing often occur prior to the development of obesity. Mice 
on a high-fat diet were observed to have an increase in 
central 5-HT, which may partially contribute to the faster 
satiating effect of a calorie-dense diet [63]. Additionally, 
in a study of rats with obesity, 5-HT neurons in the DRN 
exhibited elevated excitability and had a greater feeding 
response compared to lean rats [49]. Infusing these rats 
with 5-HT directly to the ventromedial nucleus of the 

hypothalamus (VMH), a known feeding-control center 
of the brain, reduced food intake, but only in lean rats, 
not obese rats [49, 64]. Furthermore, 5-HT neurons in 
the DRN (5-HTDRN) projecting to the ventral tegmental 
area (VTA) inhibit hedonic feeding via 5-HT2C receptor 
and reduced potassium channel currents [51]. Additional 
studies have also shown that in rats made obese by feed-
ing a high-fat diet exhibit an increase in 5-HT transporter 
binding in the DRN, ultimately reducing 5-HT avail-
ability in the brain [65, 66], which may contribute to an 
increased feeling of hunger. All of this research demon-
strates that obesity can dysregulate the 5-HT pathways in 
the brain, therefore, making 5-HT an excellent candidate 
target for anti-obesity treatment. Furthermore, evidence 
that 5-HT2C receptor agonists have therapeutic potential 
as a type 2 diabetes medication due to their ability to pro-
duce effects on blood glucose and insulin sensitivity inde-
pendent of weight loss [67, 68].

Regulation of serotonin, satiation, and the network of 
feeding control
Satiation triggers increases 5-HT activity in both the 
gut and brain [51, 69]. However, the activation of 5-HT 
neurons begins long before satiation, likely starting with 
the smell and anticipation of food. For instance, in dro-
sophila, serotonergic neurons respond to the gustatory 
detection of food, which then signals to downstream 
insulin-producing cells and enteric neurons (Fig. 1) [70]. 
This 5-HT activity also communicates with enteric neu-
rons in the gut, promoting gastric motility and initiat-
ing the digestion process [70]. It is speculated that this 
mechanism serves to communicate potential nutrient 

Fig. 1 Projections to and from 5-HT ORN neurons. Projections to the DRN are illustrated with a green arrow and from the DRN are red. Reciprocal 
projections are purple. Abbreviations are as follows: ARH, Arcuate Nucleus of the Hypothalamus, BNST, Bed nucleus of the stria terminalis, DRN, Dorsal 
Raphe Nucleus, LHb, Lateral Habenula, LH, Lateral Hypothalamus, NTS, nucleus tractus solitarius, STR, Striatum.Globus pallidus and substantia nigra are 
not pictured. Created with BioRender.com
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availability or intake. The signaling of 5-HT continues 
during the mastication process leading to the increase in 
5-HT spike activity [71].

In addition to the 5-HTDRN neurons, dopaminergic 
neurons in the VTA (DAVTA), also receive dense projec-
tions from orexin neurons originating from the lateral 
hypothalamus (LH) and dorsal medial hypothalamus. 
Orexin neurons, also known as hypocretin neurons, con-
tribute to feeding behavior and body weight homeosta-
sis. In models of orexin deficiency, mice become obese 
despite consuming fewer calories compared to their lean 
counterparts [72]. 5-HTDRN neurons receive some of 
densest projections from orexin neurons (Fig. 1) [73] and 
are known to project to and inhibit orexin neuronal activ-
ity [74]. Additionally, in rats, 5-HTDRN neurons express 
orexin receptors, OX1R and OX2R [75–77]. In response 
to orexin, 5-HTDRN neurons exhibit increased inhibitory 
post-synaptic currents via GABADRN neurons [78, 79]. 
Orexin-A and B also inhibit depolarization-stimulated 
5-HT release [80]. Moreover, the medial prefrontal cor-
tex has been shown to project to 5-HTDRN neurons, and 
stimulation of this circuit using optogenetics in rats has 
a profound effect on depression-like behavior [81]. The 
DRN also receives input from the lateral habenula which 
is implicated psychiatric disorders, motivation behav-
ior and depression (Fig. 1) [82, 83]. Viral tracing studies 
indicate that the DRN is innervated by the striatum, glo-
bus pallidus, and substantia nigra [84–87], which regu-
late autonomic, emotional, aversion and reward-related 
information. Other inputs to the DRN include the ante-
rior cortex and cerebellar nuclei, which play roles in coor-
dinating sensation, motor control, and cognitive function 
[88]. Another important player in feeding regulation is 
the GABALH neurons that project to the paraventricular 
hypothalamic nucleus (PVH). Optogenetic stimulation of 
PVH-projecting GABALH neurons increases inhibitory 
post-synaptic current (IPSC) in PVH neurons, leading to 
increased feeding, while disruption of GABA receptors 
in the PVH reduced feeding [89]. Notably, GABALH neu-
rons simultaneously project to 5-HTDRN neurons (Fig. 1) 
[28], which also increases feeding [51], suggesting a par-
allel pathway for feeding regulation.

Although this list is not exhaustive, it highlights the 
regulation of the central serotonergic system by various 
brain regions and the crucial role played by the 5-HTDRN 
neurons in controlling and coordinating multiple physi-
ological functions. Notably, while several of these cir-
cuits have been studied, few have examined their impact 
on feeding behavior and body weight, creating an unad-
dressed gap in knowledge in the field.

Downstream of 5-HT neurons
Numerous studies have focused on the role of 5-HTDRN 
neurons projecting to the ARH in inhibiting homeostatic 

food intake and regulating body weight. Specifically, the 
innervation of ARH proopiomelanocortin (POMC) and 
Agouti-related Protein (AgRP) neurons by upstream 
5-HTDRN neurons has been extensively studied (Fig.  1) 
[12, 50, 90, 91]. It has been established that 5-HT2C and 
5-HT1B receptors mediate this inhibitory activity [51, 
92]. Interestingly, feeding reduces 5-HT responsiveness 
to GABA inhibitory input, resulting in increased activ-
ity of 5-HT neurons [51]. The release of GABA from 
neurons expressing leptin receptor (LepR) has also been 
implicated in body weight regulation. Disrupted GABA 
release from LepR-expressing neurons has been shown to 
contribute to mild obesity and sensitivity to diet-induced 
obesity in mice [93]. This mechanism may also play a role 
in the regulation of 5-HT, but further studies are required 
to make this determination.

Within the DRN itself, a local circuit has been identi-
fied as a regulator of feeding behavior. Neurons express-
ing vesicular GABA and glutamate transporters (Vgat 
and VGLUT3) have opposing effects on food consump-
tion, with VgatDRN neurons increasing and VGLUT3DRN 
neurons suppressing food intake [27]. Additionally, 
VgatDRN neurons inhibit VGLUT3DRN neurons, and 
5-HT1A receptor agonist can inhibit TPH2-expressing 
VGLUT3DRN neurons [27].

The interaction between 5-HT and dopamine activ-
ity is also important for feeding regulation. Activation 
of 5-HT2C receptor stimulates dopamine neural activ-
ity and effectively inhibits binge-like eating behavior in 
mice [94]. Moreover, 5-HT has been shown to control 
reward processing in the brain through dopamine regula-
tion [95]. The nucleus of the solitary tract (NTS), which 
expresses 5-HT2C receptors and may receive projections 
from 5-HTDRN neurons, is involved in feeding behavior 
(Fig. 1). Activation of POMC neurons via 5-HT2C recep-
tors, in the NTS decreases feeding and mediates acute 
reduced food intake in response to the selective 5-HT2C 
receptor agonists, like lorcaserin [96].

Furthermore, selective activation of 5-HTDRN projec-
tions to the LH and bed nucleus of the stria terminalis 
(BNST) triggered by food access and satiety hormones 
suppresses feeding by increasing extracellular 5-HT 
(Fig. 1) [97], suggesting redundant circuits mediating the 
suppression of food intake by 5-HT. In addition, studies 
have explored the diverse projections of 5-HTDRN neu-
rons to different brain regions, with individual neurons 
responding to different cues and displaying distinct ana-
tomical subpopulations projecting to reward-related or 
anxiety-related structures [98–101].

Exploring serotonergic therapies for weight-loss: progress, 
challenges, and future directions
Given the extensive communications of the neural 5-HT 
system with brain regions involved in regulating feeding 
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behavior and body weight homeostasis, it represents a 
promising target for therapeutic interventions aimed at 
alleviating obesity. To improve current serotonergic ther-
apies, it is crucial to gain a deeper understanding of their 
development and current usage [102–104].

SSRIs are commonly used to increase 5-HT avail-
ability in the brain by blocking the reuptake of sero-
tonin through SERT. These medications are primarily 
employed for the treatment of depression. Interestingly, 
mice deficient in SERT expression develop characteris-
tics such as glucose intolerance, insulin resistance, and 
obesity, despite reduced food intake [24]. Serotonin reup-
take inhibitors, like sibutramine and fluoxetine, as well as 
monoamine oxidase inhibitors like clorgyline and pargy-
line, have demonstrated effectiveness in reducing food 
intake [105–107]. This highlights serotonin as a potential 
candidate for weight-loss therapies, particularly for indi-
viduals who do not respond adequately to diet and exer-
cise alone.

However, it is important to note that many of these 
serotonin-targeted weight-loss therapies require an intact 
melanocortin system in order to be effective [108]. There-
fore individuals with mutations or deficits in melano-
cortin receptor expression may not respond favorably to 
these treatments.

Fenfluramine and d-fenfluramine, which are deriva-
tives of amphetamine, elevate extracellular 5-HT levels 
by disrupting the vesicular storage of 5-HT, leading to 
increased release. Unlike amphetamines, which increase 
multiple monoamines like dopamine and norepineph-
rine, fenfluramine exhibits greater selectivity in increas-
ing 5-HT and has shown lower addictive potential [109, 
110]. Fenfluramine was approved as a weight loss treat-
ment in 1973, followed by the approval of dexfenflura-
mine (d-fen) in 1996. These drugs exert their effects by 
increasing energy expenditure and reducing body weight, 
by targeting the lateral hypothalamus [52, 111–114]. In 
addition, they also target POMCARH 5-HT2C receptors 
and downstream melanocortin 4 receptors (Mc4R) in 
PVH neurons, which are responsible for the appetite-
suppressing effects of d-fen [115]. In mouse studies, d-fen 
dose-dependently reduced the consumption of palat-
able food, and mice lacking 5-HT2C receptor were less 
sensitive to these effects [116]. However, chronic treat-
ment with d-fen becomes less effective over time due 
to a reduction of 5-HT uptake [117–119]. Interestingly, 
baboons administered repeated fenfluramine did not 
develop tolerance to its effects on food intake [120]. As 
a result, these drugs were commonly prescribed in com-
bination with phentermine, an amphetamine, referred to 
as fen-phen, for short-term weight loss. In human stud-
ies, meal microstructure differed between fenfluramine 
and amphetamine treatments. Both treatments reduce 
food intake, but fenfluramine specifically reduces the rate 

of feeding, while amphetamine increases the latency to 
consume [121, 122]. This study emphasizes the impor-
tance of meal microstructure as an often-overlooked 
aspect of studying appetite in humans. This combination 
of amphetamine and fenfluramine posed an increased 
risk for developing pulmonary hypertension and heart 
disease [123–125]. Consequently, the Food and Drug 
Administration (FDA) withdrew both fenfluramine and 
dexfenfluramine from the market in 1997 (Table  2) [42, 
115, 125].

Sibutramine, which gained approval as an obesity 
treatment in 1997, replaced fenfluramine, but was sub-
sequently withdrawn in 2010 due to an elevated risk for 
cardiovascular complications. This drug is a monoamine 
reuptake inhibitor, primarily used for the treatment of 
depression. By inhibiting the reuptake of monoamines, 
such as dopamine, norepinephrine, and serotonin in 
the central nervous system, Sibutramine increases their 
concentration [106, 126–128]. While Sibutramine is 
less effective for depression treatment, it is effective in 
reducing food intake and increasing energy expenditure, 
resulting in sustained weight loss [129–131]. However, 
alongside weight loss, Sibutramine also raises heart rate 
and blood pressure, thereby increasing the cardiovascu-
lar risk for individuals with obesity [132, 133]. Despite an 
effective reduction in body weight, the associated 16% 
increase in cardiovascular events prompted its with-
drawal (Table 2) [129].

After the withdrawal of Sibutramine, a very promising 
weight-loss therapeutic called Lorcaserin, emerged as a 
replacement. Lorcaserin is a high-affinity 5-HT2C recep-
tor agonist [134], offering more specific actions com-
pared to the previous serotonin-targeting drugs. The 
use of a more selective drug aims to minimize off-target 
side effects associated with non-specific action, such as 
those observed with Sibutramine. Lorcaserin has shown 
improvements in glucose tolerance, insulin sensitivity, 
reduced food intake, and weight loss in obese mouse 
models, positioning it as a potential candidate for weight-
loss therapy [135]. Its mechanism of action involves the 
downstream Mc4R [68]. Mice lacking Mc4R are not 
responsive to lorcaserin-induced hypophagia, indicating 
that melanocortins acting on Mc4R are essential for alter-
ing food intake in response to 5-HT2C receptor agonists 
[14, 134]. Additionally, Lorcaserin has been found to rely 
on preproglucagon (PPG) neurons in the NTS (PPGNTS) 
to mediate its therapeutic effects on reducing food intake 
as demonstrated by the lack of response in mice in which 
PPGNTS neurons are ablated [136].

In human clinical trials, Lorcaserin treatment resulted 
in modest weight loss and fewer cardiovascular events 
compared to previous 5-HT-targeted therapies [137, 
138], leading to its approval by the FDA as a weight-loss 
therapeutic [139]. However, rodent toxicology studies 
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revealed abnormal tissue masses in mammary and brain 
tissues of rats treated with remarkably high doses of Lor-
caserin (30 and 100 mg/kg) [140]. At a low dose (3 mg/
kg), Lorcaserin was effective in inducing hypophagia and 
weight loss with minimal side effects [141, 142]. Due to 
the modest and unsustainable weight loss outcomes 
and potential carcinogenicity concerns, the FDA ulti-
mately withdrew its approval as a weight-loss aid in 2020 
(Table  2) [143–145]. However, Lorcaserin is currently 
showing potential for treating Dravet Syndrome due to 
its anti-seizure effects, and clinical trials in this context 
are ongoing [146].

Further studies have found that the rebound weight 
gain in individuals taking Lorcaserin is in part attributed 
to internalization of the 5-HT2C receptor, a common 
mechanism of G-protein coupled receptors, which results 
in reduced sensitivity to the effects of Lorcaserin [141]. 
The reduced sensitivity can potentially be mitigated 
by adding a β-arrestin inhibitor, although its efficacy in 
human clinical trials requires further investigation.

Conclusions and exploring potential therapeutic avenues: 
innovative approaches in weight-loss
There are several avenues for further research in the field 
of 5-HT and weight-loss therapies. Exploring upstream 
signals to 5-HTDRN neurons, such as GABA and dopa-
mine, could provide additional therapeutic targets for 
alleviating obesity. While 5-HT2C receptor is the most 
targeted 5-HT receptor for weight-loss, other recep-
tor subtypes remain largely unexplored in the context of 
body weight and feeding behavior. The 5-HT1B receptor 
is one such receptor with exciting potential as a future 
target for the development of obesity therapeutics. Stud-
ies have indicated that co-administration of a 5-HT1B 
receptor agonist enhances the anorectic effect of 5-HT2C 
receptor compounds by increasing the number of acti-
vated POMCARH neurons, although not their magnitude, 
as observed in electrophysiology studies [147]. Recent 
research further supports the importance of 5-HT1B 
receptor activation in mediating the hypophagic effects 
of 5-HT, particularly in AgRPARH neurons expressing 
5-HT1B receptor, which project to the PVH [148].

In the realm of migraine treatment, there have been 
notable developments with a nasal spray which delivers 
a highly selective 5-HT1F receptor agonist called lasmidi-
tan. Lasmiditan is the first member of a new drug cat-
egory of neural acting anti-migraine agents [149]. This 
therapeutic shows promise as a potential replacement for 
previous therapies targeting 5-HT1B/1D receptors, which 
are commonly prescribed for acute migraine attacks. The 
selective nature, direct nasal delivery, ease of administra-
tion for long-term use, and minimal interactions with 
other 5-HT receptor subtypes makes this type of progres-
sive therapy a potential future approach for weight-loss 
medications, offering the advantages of targeted efficacy 
and reduced side effects.
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Table 2 5-HT Targeted therapies for weight-loss
5-HT-Targeted 
Therapy

FDA 
Approval

FDA 
Withdrawal

Mechanism of Action Reason for Withdrawal

Fenfluramine 1973 1997 Increase energy expenditure and reduce rate of feeding Risk for pulmonary hyper-
tension and heart disease

Dexfenfluramine 1996 1997 Reduce consumption of palatable food and increase latency to 
consume

Risk for pulmonary hyper-
tension and heart disease

Sibutramine 1997 2010 Inhibit reuptake of 5-HT, reduce food intake, and increase energy 
expenditure

Increased cardiovascular 
risk

Lorcaserin 2012 2020 5-HT2C receptor agonist, restore glucose tolerance, insulin sensitivity, 
and reduce food intake

Weight loss unsustainable, 
potential carcinogenicity
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