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reversible permeabilization for enhanced drug 
delivery into the brain
Amit Sharma1  , Diogo C. Fernandes2,3, Rui L. Reis2,3, Dominika Gołubczyk4,5, Silke Neumann6  , 
Barbara Lukomska7, Miroslaw Janowski8, Marcin Kortylewski9, Piotr Walczak8, J. Miguel Oliveira2,3* and 
Jarek Maciaczyk1,10* 

Abstract 

The blood–brain barrier (BBB) is a sophisticated structure whose full functionality is required for maintaining the exec-
utive functions of the central nervous system (CNS). Tight control of transport across the barrier means that most 
drugs, particularly large size, which includes powerful biologicals, cannot reach their targets in the brain. Notwith-
standing the remarkable advances in characterizing the cellular nature of the BBB and consequences of BBB dysfunc-
tion in pathology (brain metastasis, neurological diseases), it remains challenging to deliver drugs to the CNS. Herein, 
we outline the basic architecture and key molecular constituents of the BBB. In addition, we review the current status 
of approaches that are being explored to temporarily open the BBB in order to allow accumulation of therapeutics 
in the CNS. Undoubtedly, the major concern in field is whether it is possible to open the BBB in a meaningful way 
without causing negative consequences. In this context, we have also listed few other important key considerations 
that can improve our understanding about the dynamics of the BBB.
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Basic architecture and key molecular constituents 
of the blood–brain barrier
The complex organization of the blood–brain barrier 
(BBB) is not only attributed for the exchange of passive 
diffusion/efflux of solutes in the blood or for the active 
transport of nutrients to the brain, but also for regulat-
ing the migration of circulating immune cells. Of inter-
est, the dynamic association of microvascular endothelial 
cells (ECs) with pericytes, astrocytes and microglia, 
together with their specialized structural composition 
of tight junctions (TJs)/adherens junction (Ajs) form the 
main interface for intracellular signaling. A wealth of lit-
erature published during the last decades has evidenced 
a strong correlation between BBB dysfunction, altera-
tion of TJ complexes and progression of multiple CNS 
diseases (e.g., stroke, multiple sclerosis, brain tumors, 
neuroinflammatory and neurodegenerative diseases). 
Given that BBB alterations have been identified in major 
depressive disorder, bipolar disorder and schizophre-
nia, a recent study discussed that gender differences 
exist in inflammation-induced loss of BBB integrity and 
that BBB-related transcriptional changes occur differ-
ently in men and women [1]. Under certain conditions, 
the BBB appears to adapt to the needs of the CNS, spe-
cifically relating to the passage of relevant proteins. For 
instance, an interesting study showed that radiolabeled 
alpha-synuclein (a small protein in Lewy bodies, linked 
to Parkinson’s disease) traverses the BBB bidirectionally, 
i.e., toward both brain-blood and blood–brain at rates 
consistent with saturable mechanisms [2]. Besides alpha-
synuclein, amyloid beta-peptides and prion proteins have 
also been discussed for crossing the BBB, whereas the 
possibilities of tau proteins to bidirectionally cross the 
BBB have been discussed [3, 4].

Similarly, it has been shown that a possible trans-
port of activated protein C across the mouse blood–
brain barrier requires an efficient Endothelial protein 
C receptor [5].There have been continuous efforts to 
establish the causal relationship between disease-
related mutations and BBB impairment. For instance, 
a recent study demonstrated that mutations associated 
with neurodegenerative diseases can independently 
cause BBB dysfunction [6].It is an undeniable fact that 
the genomic mutation data from several models have 
enhanced the spectrum of BBB. For instance, the loss-
of-function mutations in the NIMA-Related Kinase 
1 (NEK1) gene, which encodes a serine/threonine 
kinase, are involved in human developmental disor-
ders and amyotrophic lateral sclerosis (ALS). A recent 
study showed that the metabolic dysfunction in Nek1 
deficient cells reduces the levels of A20 (an important 
ubiquitin editing enzyme) to promote the activation of 

RIPK1 (Receptor Interacting Serine/Threonine Kinase 
1), necroptosis of CD31+ endothelial cells and BBB 
damage [7]. There have also been indirect evidences, 
such as P-glycoprotein (Pgp), encoded in the ATP-
binding cassette B1 (ABCB1) gene expressed highly 
at BBB, and a study has shown that single nucleotide 
polymorphisms (SNPs) in ABCB1 may contribute to 
the progression of amyloid beta deposition in the brain 
[8]. In context to epigenetic mediators of BBB, there 
have been limited data. Among them, Kalani et al. put 
forward an interesting hypothesis about the miR29b-
induced mechanism of BBB dysfunction. The authors 
proposed that miR29b directly targets DNMT3b (DNA 
Methyltransferase 3 beta), which in turn regulates 
MMP9 (Matrix metallopeptidase 9) levels. Because 
MMP alters junctional proteins (e.g., occludens, clau-
dins, and cadherins), this leads to an impact on BBB 
permeability [9]. In fact, miRNAs (miR-150, miR-212, 
miR-132, miR-501-3p, miR-96, miR-424-5p, miR-101, 
miR-181a) have been found to modulate physiological 
and pathological processes by regulating TJs and ulti-
mately affecting the integrity/permeability of the BBB 
[10]. Besides DNMTs, histone deacetylases (HDACs), 
which catalyze the deacetylation of histone proteins 
and thus inhibit transcription and gene expression, 
have also been linked to the BBB. For example, histone 
deacetylase-6 inhibitors (HDAC6is) that penetrate the 
blood–brain barrier have been discussed as a potential 
strategy for the therapy of CNS disorders [11]. Here, 
it is also important to mention the role of caveolin-1, 
which can protect the integrity of the BBB by inhibiting 
matrix metalloproteinases (MMPs) that degrade TJ [12, 
13]. Recently, a study described that over-expression of 
Mfsd2a (major facilitator superfamily domain contain-
ing 2a) attenuates BBB dysfunction via the caveolin-1/
Nrf-2/HO-1 pathway [14].

Recently, a study unraveled a number of key players 
involved in the interaction between breast cancer cells 
(BCCs) and BBB endothelial cells that underlie BBB 
alterations and transendothelial migration of malig-
nant cells [15]. Over the past decade, studies have 
shown several signaling pathways required not only 
for BBB formation but also for BBB integrity and func-
tion, among them Wnt/β-catenin, retinoic acid and 
sonic hedgehog pathways emerged as the focus of BBB 
research [16, 17]. A recent study demonstrated that 
the endothelial transmembrane receptor Unc5B and 
its ligand netrin-1 regulate BBB integrity by maintain-
ing Wnt/β-catenin signaling [18]. Despite decades of 
research, the complete picture of the dynamic mecha-
nism or regulators that play a competitive (protective 
or disruptive) role for BBB integrity remains elusive.
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In vitro BBB modeling and drug studies
The concept of in vitro models is born with the surge of 
tissue engineering, despite the previous use of cells onto 
plastic surfaces for early cytotoxicity testing of com-
pounds of interest. Modelling is the ability to mirror the 
characteristics of a complex system, with the purpose of 
extracting information from it. In health sciences there 
are four main types of models: in vivo (live animals), ex 
vivo (lab cultured resected tissue), in silico (computer 
models) and, in vitro. In vitro models are a bioengineer-
ing effort to mimic the tissue of interest based on the 
triad stem cells, extracellular matrix, and soluble factors. 
Applied to the development of in vitro neurovascularity 
unit, this concept has resulted in several models that can 
recapitulate main features of BBB, with the most recent 
advances and developments being reviewed in the fol-
lowing sub-section.

BBB in vitro models
In recent years, the interest in the development of in vitro 
models to recapitulate the human BBB has increased. 
The search for models that can reduce the number of 
animals used for research has led to the development of 
new techniques and contributed to the growth of the bio-
technology industry, particularly the industry of micro-
physiological models (MPS). The main application of 
MPS is in the development of new drugs or new drug 
delivery strategies. Following this trend, several high-
profile investigators have pushed the use of these mod-
els and proposed a roadmap for the integration of MPS 
in the drug development industry [19]. The creation of 
BBB models is imperative when considering targeting 
drug delivery to the CNS and has led to the development 
of several models over the recent years. Fernandes et al. 
have recently reviewed these advances and some of the 
controversial standards used in the field [20]. In neuro-
vascular models, and almost every other model, there 
are undoubtedly game changers that have led to the 
implementation of standards for new models. The drug 
delivery field has been developing for 3 decades but has 
fallen short of its potential. This shortcoming can be 
explained by the duality faced by this field: when the tis-
sue is available, the conservative approach works and the 
motivation for innovative systems is null; if the tissue is 
unavailable, the task of directional and localized delivery 
is complex. The development of an effective drug deliv-
ery system has been halted by the absence of testing plat-
forms that presented an in  vivo-like challenge [21]. The 
use of in vitro BBB models has become widespread and 
new drug delivery systems targeting the brain are cur-
rently tested in in vitro models. However, the validity of 
these models is often questioned, raising doubts about 
the translation of the results. Some of those doubts have 

been dissipated, since a monolayer of brain endothelial 
cells has been shown to have a similar permeability for 
positron-emitting tomography (PET) radioligands as the 
BBB in human patients [22]. In vitro BBB models consist 
of differentiated or primary cells assembled in a prede-
fined ratio to create a functional liquid-tissue barrier. The 
presence of astrocytes and pericytes is crucial for obtain-
ing an impermeable in vitro BBB model [23].

Organoid‑based BBB models
Organoids are self-organized cellular structures that can 
be derived directly from patient tissue or through the 
use of developmental biology. Organoids exhibit char-
acteristics of several organs such as the pancreas, gut, 
retina, and brain [24]. Researchers have aimed to stand-
ardize procedures while pushing for an increased diver-
sity of tissues within each organ, particularly the brain. 
Models of different brain areas exist, namely the cortex 
[25], choroid plexus [26], and thalamus [27]. In the lat-
ter model [27], organoids from the thalamus and cortex 
are fused, mimicking the in vivo interplay between these 
two brain areas. CNS-based organoids show native tis-
sue-like features, such as complex electrical activity [28], 
selective transport of molecules across the liquid-tissue 
barrier [26] and production of cerebrospinal fluid (CSF). 
However, despite these interesting advances, the absence 
of vascularization in these brain organoids limits their 
potential as drug testing platforms. In  situ drug admin-
istration in the CNS, particularly in the brain, is a chal-
lenging procedure, mostly destined to require surgery 
[29, 30]. Systemic administration is the most widely used 
drug administration technique, despite intranasal [31] 
and intrathecal [32] administration having shown prom-
ise for spinal cord related treatments.

The presence of a BBB in organoids is crucial for the 
design of a fully biomimetic drug or disease testing plat-
form. The need for these features has been recognised by 
the leaders in the field and was reviewed extensively in 
2018 [30]. Vascular structures that allow perfusion are 
essential to represent a blood-tissue interface. Thus, the 
logical step using organoids was to develop BBB orga-
noids that could be integrated into brain organoids. Sim-
moneau et al. developed a new high-throughput method 
to produce homogeneous and precisely characterized 
BBB organoids [33]. The scale-up was achieved using a 
Gri3D, a micropatterned hydrogel well plate that allows 
rapid and consistent organoid formation and growth with 
low heterogeneity. Meant to keep the organoid in sus-
pension within microcavities, this system relies on the 
absence of an adhesive matrix to achieve highly homo-
geneous organoids [34]. High precision image acquisi-
tion and processing are implemented to characterize 
the BBB organoids. Functional BBB organoids have to 
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exhibit three cell layers—endothelial cells, pericytes and 
astrocytes to ensure highly selective permeability of sub-
stances across this membrane. Showing impermeability 
to dextran particles ranging from 4 to 70  kDa and with 
values of transendothelial electrical resistance (TEER) 
over 2000  cm2, these organoids are comparable to other 
BBB models [20]. The 3 layers can be visualized using 
immunocytochemistry and show astrocytes at the core, 
a pericyte shell and an outward layer of brain endothelial 
cells. The organoid diameter is approximately 200  mm 
for 24-wells and 96-wells Gri3D, showing consistency 
in the formed organoids. The functionality of the BBB 
organoids was assessed by measuring transferrin-specific 
transcytosis. The authors use anti-transferrin recep-
tor antibodies to cross the BBB-organoids, showing that 
transferrin-mediated transport is clathrin- dependent, 
which can help develop new drugs to target this crossing 
[33].

BBB organoids can be fused with cerebral organoids 
to form neurovascular structures. These structures 
exhibit BBB features such as basement membrane spe-
cific proteins and vessel-like morphology whilst cerebral 
organoids express standard neuronal markers [35]. Neu-
rovascular organoids can be prepared without a previous 
separate and independent differentiation [36, 37]. How-
ever, the limitation of these systems as compared to the 
simpler BBB organoids is the absence of a blood-tissue 
barrier, since the vasculature still does not allow perfu-
sion. The employment of microfluidic or rapid manu-
facturing in combination with knowledge from the field 
of biomaterials can provide solutions to the problem of 
absence of a functional vasculature. By means of using 
microfluidics, cerebral organoids can be integrated in a 
microvasculature of human umbilical vein endothelial 
cells (HUVECs), allowing vasculature-based perfusion 
through the organoid [38]. The robust and reproducible 
integration of organoids into functional vascular struc-
tures is a major step towards a platform that allows per-
sonalized drug testing for neurodegenerative diseases 
(Fig. 1).

Organoid‑absent BBB models
Innovations in the biomedical field that do not follow 
the state-of-art biological standards, usually showcase a 
technological progress or methodology that makes them 
more translatable, due to the robustness of the process, 
a monitoring capacity or the relevance of the application 
of the model itself. Since the organoids’ field is still young 
and requires maturation, applied works often follow sim-
pler biological approaches to hint at new models, from 
which straightforward outcomes can be extracted. Exam-
ples of this paradigm are models that test glioblastoma’s 
drug sensitivity and therapy strategies [39] or Sars-Cov-2 

infection effects over brain’s permeability and physiol-
ogy [40]. These models contribute with hints at the con-
sequences and possible therapies for the health problem 
working as magnifying lenses on the tissue of interest. 
Whilst the modeling the brain’s infection by Sars-Cov-2 
virus hints that BBB disruption can be one cause for the 
neurologic symptoms felt by several COVID-19 patients 
[40], in the assembling of the glioblastoma neurovascu-
lar model, it is possible to observe an increased aggres-
siveness of the model implanted tumor in the presence 
of the BBB. This way, it shows the significance of having 
neurovascular models even for the in vivo-like behavior 
of an in vitro grown tumor. However, more importantly, 
this model proposes a new method for improved glio-
blastoma treatment using conventional chemotherapy, by 
using transferrin-modified porous silicon nanoparticles 
as BBB transposing drug carriers. Using doxorubicin, it 
allows the use of conventional chemotherapy for effective 
glioblastoma multiforme treatment, alternatively, the use 
of a therapeutic drug that can simultaneous cross BBB 
and treat the tumor [39]. The potential use of conven-
tional chemotherapy for the treatment of brain tumors 
can revolutionize a field that has felt a halt for nearly 
20 years.

However, most drug tests performed using BBB plat-
forms focus on advanced drug delivery strategies, such 
as summarized in Table  1. These are often centered on 
transcytosis, or shuttling, through the BBB, ignoring 
biophysical factors that can lead to more effective drug 
delivery. Interestingly, the shape of the nanoparticles 
significantly influences the crossing of the endothelial 
barrier. Despite being in a brain endothelial monolayer, 
rod-shaped particles permeate through it 1.5 times more 
than isotropically shaped particles, showing another 
angle to enhance drug delivery through highly imper-
meable endothelial barriers [41]. Even though testing of 
external agents, such as tumors, viruses or bacteria are of 
profound interest, BBB disruptions are by itself a pathol-
ogy with severe consequences on the neurologic state of 
individuals [42]. Therefore, modeling of BBB pathologies 
and disruptions is a priority in the field. Brain ischemia 
is one of the two main concerns regarding BBB disrup-
tions, particularly considering brain-related vascular 
problems are a main health concern worldwide [43]. 
Modeling of brain ischemia in  vitro shows increased 
permeability of endothelial cells due to oxygen depriva-
tion with astrocytes and pericytes potentiating the leak-
age of vessels upon ischemia-derived oxygen deprivation. 
This increased leakage can cause more systemic neuro-
logic consequences than the localized oxygen depriva-
tion [43]. Disruptions of the BBB have also been closely 
linked to aging-related diseases such as neurodegenera-
tive diseases. Despite the ignorance about whether it is a 
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Fig. 1 In vitro BBB models’ permeability translation and drug testing future perspective. I-a Permeability measurements measurement techniques 
can allow a profiling of the permeability of a library of drugs which can be compared to in vivo values, and b correlated, showing the validity 
of these models. II Possible future drug testing hybrid platforms, using assembled vascular networks and brain organoids. III is adapted from [55], 
respectively
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cause or a consequence, disruption of the BBB is a hall-
mark of degeneration [44]. Alzheimer’s disease, one of 
the most concerning forms of dementia, can currently 
be modeled using a microfluidic chip, recapitulating the 
neurovascular hallmarks of this disease and allowing a 
complete molecular characterization of the key players in 
the degeneration process [45]. Building on this model, if 
a complete BBB instead of a simple endothelial barrier is 
used, this platform can potentially become a highly rele-
vant tool in the search for innovative Alzheimer’s disease 
therapies, and drug development and testing. Simpler 
models have been used for such purposes, but transla-
tion to a diseased tissue seems an uncertain extrapolation 
without the presence of a complete and fully character-
ized BBB [46]. The absence of organoids does not imply 
a disregard for developmental biology, nor that the 
intrinsic biology of BBB or neurovascularity is second-
ary to the technological advances. Using a hypoxia-based 
differentiation step, human induced pluripotent stem 
cells (hIPSC)-derived brain endothelial cells assem-
bled together with primary astrocytes and pericytes in a 
microfluidic chip have comparable permeability of BBB-
crossing drugs to the ones measured in vivo [47]. There 
is an urgent need for neurovascular models, recapitu-
lating the main features of the BBB, that can bypass the 
problem of the drug delivery to the CNS and the brain. 
The combination of advanced assembling strategies of 
organoid-absent models with the biological accuracy of 
neurovascular organoids can create complex yet effec-
tive drug testing platforms. Considering the resemblance 
with human native tissue and the level of complexity, 
these models have the potential to revitalize the drug dis-
covery process unlike what the use of animal models was 
able to accomplish in recent decades.

Animal studies on BBB permeability
In vivo models and optimal techniques
In vitro BBB modeling has clear advantages such as cost 
effectiveness and high throughput, but due to the com-
plexity of the BBB, the available models are far from 
perfect and thus animal models are still a mainstay of 
research into the physiology, pathology and controlled 
manipulation of the BBB. In vivo models provide unique 
insight into the cellular, morphological and functional 
properties and barrier permeability in healthy and dis-
ease-damaged brains. Of note is that some evidence sug-
gests functional differences between human and rodent 
BBB with the latter characterized by lower threshold for 
disruption [60]. Numerous strategies aiming at controlled 
and transient permeabilization of the BBB are currently 
being developed to intensify drug or therapeutic cell 
transport across the BBB for their effective accumulation 
in the brain. Several techniques have been developed for 

opening the BBB, ranging from the use of chemical and 
biological substances, osmotic opening, to physical stim-
uli such as focused ultrasound with systemically admin-
istered microbubbles. Below we present characterization 
and preclinical applications of the most commonly used 
techniques (Table 2).

Osmotic BBB opening (OBBBO)
Rapoport first described in the early 1970s that infu-
sion of hypertonic substances such as arabinose, urea 
or mannitol causes endothelial cells to contract, thereby 
increasing vascular permeability, effectively resulting in 
transient opening of the BBB [89]. Since then, the tech-
nique has been widely utilized in animals and in patients 
suffering from brain cancer. The method in small animals 
(mice, rats) is relatively invasive as it requires gaining 
surgical access to the internal carotid artery. Procedure 
starts with skin incision in the area of muscle triangle on 
the neck of the animal to expose carotid arteries. Extrac-
ranial branches (external carotid artery, occipital artery 
and the pterygopalatine artery) are ligated to route the 
entire flow into cerebral arteries. Then a small arteriot-
omy is made for catheter placement either into the com-
mon carotid artery (CCA) with permanently disrupted 
perfusion of the ipsilateral CCA, or into the external 
carotid artery and with preserved perfusion of the CCA. 
With vascular access to cerebral arteries a short bolus 
(40–60 s) of hyperosmotic mannitol (25%) is infused, dis-
placing the blood and leading to BBB opening in brain 
regions supplied by the catheter infusion. Early work by 
Rapoport et  al. showed that OBBBO can be used with 
success in various species including rats [61] rabbits [62] 
and primates [63].

BBB breach was assessed by intravenous injection 
of  Evans blue in Ringer solution immediately after 
OBBBO and demonstrated cerebral accumulation of the 
blue dye. In 1973 Brightman et al. used electron micros-
copy to show that 3 M urea led to opening of endothelial 
tight junctions [90]. Burks et al. demonstrated that BBB 
disruption with mannitol can be exploited for immu-
nomodulation as it results in increased production of 
cell-signaling proteins [91]. However, the main motiva-
tion for BBB opening has been to improve accumulation 
of drugs in the brain that would otherwise have no access 
to their targets behind the BBB. The OBBBO method was 
applied to enhance penetration of systemically injected 
methotrexate in dogs and indeed, drug accumulation 
improved tenfold [65]. Significant advancements with 
mannitol-based osmotic techniques have been made 
by the group of Dr. Neuwelt, developing protocols for 
intra-arterial administration of chemotherapeutics, 
viral vectors or nanoparticles [66]. Dr. Neuwelt’s group 
reported in 1999 that reliability of the OBBBO is affected 
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by multiple factors such as the partial pressure of CO2 
(PaCO2) in the blood, the choice of anesthetic and other 
factors [67]. Indeed, one of the major disadvantages of 
the OBBBO and the reason why it has not found broad 
clinical adaptation is the high variability of the area of 
BBB disruption [68]. This high variability was the main 
motivation for developing imaging technology that would 
allow performing BBB opening with high precision and 
reproducibility. Progress in magnetic resonance imaging 
(MRI) technology with MRI-compatible interventional 
instrumentation and particularly improved temporal 

resolution has enabled MRI-guided neurointerventions 
that have proved particularly useful for improving reli-
ability of osmotic BBB opening (OBBBO). Other imag-
ing modalities such as intravital two photon microscopy 
(2 PM) or positron emission tomography (PET) imaging 
have also helped to guide intra-arterial drug delivery. 
Foley et al. used dynamic contrast enhanced (DCE)-MRI 
to verify the territory of OBBBO after mannitol infu-
sion followed by intra-arterial injection of adeno-associ-
ated virus (AAV) vectors. They showed for the first time 
that a single administration of AAV vectors provides 

Table 2 Animal models of BBB

Method Species Number of animals Molecule type BBBO Readout

Osmotic Rat [61] Not specified Evans blue Evans blue

Rabbit [62] n = 65 Evans blue Evans blue

Monkey [63] n = 28 Evans blue Evans blue

Rabbit [64] Not specified Evans blue Evans blue

Dog [65] n = 38 Methotrexate Evans blue

Rat [66] n = 64 Herpes simplex virus, (HSV), and para-
magnetic monocrystalline iron, oxide 
nanoparticles (MION)

MRI

Rat [67] n = 152 Methotrexate Evans blue albumin and quantitatively 
by measuring, delivery of the low 
molecular weight marker [3H]-metho-
trexate

Rabbit [68] n = 23 Evan’s Blue Evan’s Blue

Rabbit [69] n = 8 Evan’s Blue MRI

Mouse [70] n = 38 Monoclonal antibody MRI, microscopy

Mouse [71] n = 12 Monoclonal antibody (89Zr-BVDFO) PET/CT Imaging

Mouse [72] n = 32 Rhesus, macaque derived adeno-associ-
ated viral (AAV) vector

MRI

MAP Mice [73] Not specified Beta-galactosidase Histology

Mouse [74] Not specified Cisplatin, methotrexate Evans blue/Crocein Scarlet/Light Green 
SF

Mouse [75] n = 43 Melittin MRI and Evans blue staining

VEGF Rat [76] n = 25 FITC-dextran

Mouse [77] n = 27 Evans blue MRI, Evans blue staining

VEGF 
intraspinal 
injection

Rat [78] n = 9 Evans blue Evans blue staining

Rat [79] n = 25 MOG1-125 peptide MRI, IHC

FUS Rabbit [80] n = 22 Albumin coated microbubbles MRI

Rat [81] n = 47 5 Different magnetic resonance contrast 
agents

MRI

Mouse [82] n = 15 A rabbit anti-human, dopamine D4 
receptor antibody

MRI, Trypan Blue

Rat [83] n = 83 Doxorubicin MRI

Mouse [84] n = 44 MGPP3 cells MRI

Mouse [85] n = 28 Monoclonal antibody (mCD47) PET/CT imaging

Mouse [86] n = 52 Anti-pGlu3 Aβ mAb fluorescent images of Trypan blue 
delivery

Rat and Mouse [87] n = 42 and n = 16, respectively Doxorubicin/Evans Blue MRI, Evans Blue injection

Rat [88] n = 4–6 per group Polymeric nanoparticles Evans blue, MRI
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widespread transgene production in brain tissue [72]. 
Progress in interventional neuroradiology has resulted in 
renewed interest in intra-arterial drug delivery and more 
advanced imaging protocols are being developed to pre-
dict territory of OBBBO as shown by Janowski et  al. in 
a rabbit model [69]. Chu et  al., introduced a reproduc-
ible method of BBB opening in mice under the guidance 
of both, MRI and multi-photon microscopy. With this 
dynamic multi-modality imaging, intra-arterially admin-
istered antibodies were shown to cross the osmotically 
opened BBB and accumulate in the brain [70]. Moreover, 
Lesniak et  al. showed with dynamic PET imaging that 
OBBBO strongly enhanced uptake of an intra-arterially 
administered imaging agent (89Zr-BVDFO) in naïve 
mice while intravenous administration resulted in negli-
gible brain accumulation of the imaging agent regardless 
of the BBB status [71]. The same phenomenon was also 
observed for nanobodies, while dendrimers failed to ben-
efit from intra-arterial delivery following OBBBO [92].

Membrane active peptides
Membrane active molecules are a group of substances 
that interact with cell membranes leading to their desta-
bilization and increased permeability [93]. Sarkar et  al. 
have recently reported a carrier peptide (K16ApoE) that 
facilitates transport of various proteins and immunoglob-
ulins across the BBB in a non-covalent manner [73]. This 
study was followed by a report showing that K16ApoE 
led to transient BBB disruption and enabling passive 
transport of other (non-ligand) molecules [74]. Another 
membrane active peptide naturally occurring in honey-
bee venom is melittin. It has been shown that melittin 
triggers reversible destabilization of cell–cell junctions 
and disruption of barrier function in in vitro BBB model. 
In mice, intra-arterial injection of 3 μM melittin resulted 
in robust and reversible BBB opening. Of note, injec-
tion of 5 μM peptide led to neurological deficits indicat-
ing a narrow therapeutic window [75]. Recently cyclic 
guanosine monophosphate–quality version of the natural 
monoterpene perillyl alcohol (NEO100) studied as anti-
glioma agent has been shown to effectively disrupt blood 
brain barrier [94]. Intra-arterially injected NEO100 inter-
calates into cell membranes of endothelial cells causing 
their transient destabilization and resulting BBBO lasting 
several hours.

Vascular endothelial growth factor
Vascular endothelial growth factor (VEGF), also known 
as vascular permeability factor, is a signaling polypeptide 
produced by many cells that regulates function of blood 
vessels and is best known for stimulating the formation 
of blood vessels [95]. VEGF, when applied topically to 
the cerebral microcirculation, triggers an increase in the 

permeability of the BBB to FITC-dextran-10K and dilates 
cerebral arterioles [76]. Changes in BBB permeability 
were also observed after intravenous injection of VEGF 
[77]. VEGF-based opening of the BBB through stereo-
taxic injection into the spinal cord parenchyma has been 
used as a method to induce focal demyelination in rats 
immunized against myelin antigens [78]. A similar strat-
egy has been used to model multiple sclerosis in the rat 
brain [79].

Focus ultrasound
One of the recent advances in BBB opening is the 
mechanical destabilization of tight junctions within the 
cerebral endothelium. The technique uses low-frequency 
ultrasound waves in combination with intravenously 
injected microbubbles. Microbubbles in cerebral vascu-
lature amplify local cavitation resulting in BBB breach. 
This method is spatially selective, relatively straight for-
ward and non-invasive. The first reports of the use of this 
method date back to the beginning of the twenty-first 
century. In a study by Hynynen et al. in 2005, the feasi-
bility of transmitting focused ultrasound (FUS) energy 
across the intact rabbit skull was assessed [80]. The group 
showed that FUS with frequency of 0.69  MHz resulted 
in BBB disruption in the sonicated brain area. However, 
observation with an electron microscope showed a few 
cases of subtle endothelial damage. A study by Marty 
et  al. focused on dynamic imaging of BBB closure after 
FUS and assessed the size of the pores resulting from 
standard FUS procedure. Molecules with an average size 
of about 1 nm were able to pass freely through the barrier 
for more than 10 h, whereas larger iron oxide nanoparti-
cles (> 25 nm) were able to do so for only a few minutes 
after sonication [81]. One of the prime applications for 
FUS BBB opening is to improve brain accumulation of 
therapeutics for treatment of neurological brain tumors. 
Doxorubicin, an anti-cancer agent, was shown to accu-
mulate in the sonicated hemisphere and remained sig-
nificantly higher than in the contralateral non-treated 
area [83]. Another report indicates that FUS BBB open-
ing facilitated brain accumulation of systemic etoposide 
with improved therapeutic effect [84]. While improved 
brain accumulation of small molecules is significant and 
encouraging, the delivery of larger biological drugs such 
as monoclonal antibodies is more challenging. In a recent 
study by Sheybani et  al. CD47 blocking antibody was 
radio-labeled with 89Zr and injected systemically either 
before or immediately following FUS BBBO in mice. 
Accumulation of the antibody in the brain improved 
modestly when injected after FUS but did not change 
when it was injected prior to FUS [85].

While brain cancer is the most frequent application 
for FUS BBBO it has been used to enhance drug delivery 
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in other models of neurological diseases. Kinoshita 
et al. used FUS to target delivery of polyclonal antibod-
ies against the extracellular domain of the dopamine D4 
receptor to the brain. Immunohistochemistry confirmed 
a positive signal of anti-rabbit IgG in the sonicated area 
in the ipsilateral hemisphere [82]. Alzheimer’s disease 
is another application where opening of the blood brain 
barrier can be exploited for either drug delivery or to 
enhance clearance of beta amyloid [86, 96]. A compre-
hensive review of applications for FUS BBBO in neuro-
degenerative diseases has been recently published [97]. 
An important tool available for achieving high precision 
of FUS BBBO is implementation of MRI-guidance (MRg-
FUS). FUS systems integrated with pre-clinical MRI are 
available and allow for excellent control and planning 
of the brain territory targeted for BBBO with subse-
quent immediate verification of its effect with contrast-
enhanced T1 MRI. Indeed, MRgFUS has been widely 
used to enhance anti-cancer drug delivery to pediatric 
brain tumors in mice [87] or polymeric nanoparticles in 
healthy rats [35, 88]. One concern with FUS BBB open-
ing is the need to titrate the energy of FUS and the dose 
of microbubbles to achieve optimal BBB opening but 
without causing damage. Indeed, complications of FUS 
BBBO have been reported including microhemorrhages 
and neuroinflammation [35]. There are several safe and 
effective blood brain barriers opening techniques and 
the choice of the optimal technique will depend on the 
specific application. Endovascular techniques, such as 
intra-arterial mannitol-based BBB opening, are ideal 
when relatively large brain volumes are targeted. They 
offer the unique advantage of local intra-arterial admin-
istration of the drug as the catheter is already in place. 
Another important feature of osmotic techniques is that 
the BBB opening half time is rather short in the range of 
10–15 min. FUS has the main advantage of outstanding 
spatial control over the BBB opening area. However, tar-
geting larger volumes of the brain is time-consuming and 
complex as the dosing of microbubbles has to be adjusted 
continuously to avoid damage to the endothelium. BBB 
opening half-time for FUS-based technique varies in 
published reports from several hours to days but is cer-
tainly longer than osmotic techniques thus may be suit-
able for systemic drug administration to smaller targets 
in the brain.

Clinical implementation and theranostic strategies 
for BBB modulation
Multiple methods for BBB opening have been explored, 
however, all of them showed limitations in terms of 
their successful implementation in the clinical context 
[98–100]. Among these methods, sufficient information 
regarding the mechanism of action and safety aspects 

have been gained for the use of FUS and intra-arterial 
infusion. In particular, FUS has emerged as a promising 
non-invasive approach with proven success in preclini-
cal models and encouraging results in clinical scenarios 
(Fig.  2, adapted from [101, 102]). FUS harnesses the 
thermal and mechanical effects of ultrasound focused 
on a specific area by a lens or transducer with the aim to 
minimize off-target effects. Application of FUS causes 
oscillation of bubbles in response to ultrasound waves, 
facilitating the mechanical opening of the BBB without 
injury to the vessels or brain tissue. A tentative two-dec-
ade long standardization process involving small (mice, 
rats) and larger preclinical model organisms (rabbits, 
sheep, swine, non-human primates) has led to the trans-
lation of FUS into the clinical use, including neurological 
(glioblastoma, Alzheimer’s disease, Parkinson’s disease) 
and other pathologies (metastatic melanoma, amyloid 
leukemia). The suitability of FUS technology to tran-
siently increase BBB permeability and to increase pass-
ing of anticancer drugs [103], antibodies [104], neural 
stem cells [105], AAV-based vectors [106], nanoparticles 
[107], and chemotherapeutics [108] has been confirmed. 
In preclinical glioblastoma (GBM) models, FUS slowed 
tumor growth and improved survival rates [109–113]. 
Furthermore, chemotherapeutic agents such as carmus-
tine, doxorubicin, and carboplatin have been tested in 
animal models of gliomas with FUS disruption of the 
BBB [109]. FUS has been demonstrated as a reliable 
approach to improve local chemotherapy and antitumor 
immune response in gliomas [114]. As a methodological 
advancement, both safety and feasibility of MRgFUS with 
intravenously injected microbubbles have been consid-
ered in patients with gliomas [115] and Alzheimer’s dis-
ease [116]. A recent single-center study using repeated 
MRgFUS treatment for malignant brain tumors with a 
standard chemotherapy protocol showed no significant 
adverse effects (clinicaltrials.gov, NCT03712293) [117]. 
Similarly encouraging results were obtained in a recent 
clinical trial involving six patients with early Alzheimer’s 
disease (AD) who tolerated a total of 17 FUS treatments 
with no adverse events and no cognitive or neurological 
deterioration [118]. Though FUS holds the potential to 
play a central role in non-invasive delivery of therapeu-
tics, most clinical data come from trials with small patient 
numbers, which lack a prolonged follow-up period. The 
results of ongoing clinical trials will be critical for deter-
mining the suitability of FUS in humans. Compared to 
FUS, intra-arterial infusion for drug delivery is a rela-
tively old approach, first described in the 1950s for the 
treatment of brain tumors [119]. Intra-arterial infusion of 
therapeutics increases the concentration of drugs deliv-
ered to the brain whilst minimizing systemic side effects. 
For this technique, a small catheter is inserted into the 
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femoral artery in the leg, threaded through the body and 
into the brain where the drug is released.

Interestingly, intra-arterial administration is still con-
sidered far superior compared to other contemporary 
methods (e.g., oral or intranasal administration, intrave-
nous or intracerebral injection), especially from a physio-
logical perspective. Considering the preferential retention 
of administered substances in brain tissue, pharmacoki-
netic optimizations have favored intra-arterial over intra-
venous delivery approaches [120, 121]. A recent phase 
1 study of intra-arterial administration of bevacizumab 
and cetuximab with BBB interruption in 13 children with 
high-grade glioma and diffuse intrinsic pontine glioma 
showed encouraging results [122]. Similarly, a phase I 
trial of intra-arterial administration of autologous bone 
marrow-derived mesenchymal stem cells in patients with 
multiple system atrophy appeared to be a safe and prom-
ising neuroprotective strategy [123]. Likewise, the results 
of a phase I/II clinical trial using repeated administra-
tion of intra-arterial bevacizumab after BBB disruption 
in newly diagnosed glioblastoma patients showed better 

progression-free survival and overall survival [124]. An 
interesting study addressing technological advances to 
improve delivery of AAV vectors to the brain suggests 
that intra-arterial delivery routes specifically with manni-
tol may provide significant advantage [125]. Rechberger 
et  al. analyzed preclinical and clinical research findings 
on intra-arterial drug therapy for brain tumors and found 
that most studies were clinical in nature, with chemo-
therapy being the most common therapeutic modality 
and transient BBB disruption using mannitol was the 
most frequently investigated [126]. Based on this knowl-
edge, clinicians are currently engaged in optimizing strat-
egies to improve intra-arterial treatment for brain tumors 
and patient survival [127, 128]. This is further evidenced 
by the fact that intra-arterial delivery has been combined 
with imaging modalities (X-ray, CT scan, PET, SPECT, 
MRI, DC-EEG, etc.) to guide drug perfusion and to pre-
dict therapeutic effects [127, 129]. Despite this long his-
tory of intra-arterial infusion, its limitations, such as the 
risk of microembolisms, reactive immune responses, 
neurotoxicity and vascular toxicity remain a challenge. 

Fig. 2 Clinical implementation and theranostic strategies for BBB modulation. Intra-arterial administration (upper section), preclinical and clinical 
trials using Focused Ultrasound (lower section) are illustrated
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Furthermore, brain tumors are heterogeneous and highly 
vascularized near the periphery, limiting the delivery 
of drugs to certain regions of the tumor. Surprisingly, 
despite sufficient knowledge of intra-arterial infusion 
with FUS, their combination to improve the drug deliv-
ery across BBB has not yet been explored.

Drug formulations to increase their BBB 
permeability
Small molecule modifications
Substantial efforts have been made to tune properties of 
therapeutic agents to facilitate their penetration across 
the BBB. Approaches used to breach the BBB strongly 
depend on the size of the molecule to be delivered. 
Some small molecules are capable of passively diffusing 
through the BBB, and there is intensive work to improve 
their properties in this regard. Other small molecules use 
active systems in order to pass through the BBB. Large 
molecules are not able to passively cross the BBB, thus 
approaches have been made to fit large molecules into 
existing transport systems. Cellular therapeutics require 
diapedesis to extravasate to the brain parenchyma, and 
there are several ways to achieve this: through genetic, 
epigenetic, chemical and physical engineering and pre-
conditioning of potential cellular products. Noteworthy, 
the penetrating therapeutic agents also need to avoid 
being actively effluxed back to the circulation by a guard-
ing system of pumps and transporters. Thus, the bio-
logical, chemical and physical barriers are complex and 
delivery of a wide range of therapeutic agents to the brain 
remains difficult. Efforts towards increasing penetration 
of small molecules are centered around three mecha-
nisms: increased diffusion, decreased efflux and better 
exploitation of transporters [99]. The lipophilicity is a 
critical property of small molecules, which make them 
amenable to passive transport through diffusion [130]. 
Additionally, molecular weight up to 400–600  Da and 
up to 8 hydrogen bonds in a molecule are characteristics 
that allow passive diffusion [131]. Methods exist for cal-
culating the BBB permeability of small molecules [132] 
and artificial intelligence has been used to identify mol-
ecules able to cross the BBB [133]. The real-time feed-
back on small molecule biodistribution is an attractive 
but challenging strategy to better understand the dynam-
ics of drug penetration and clearance from the brain. 
Small molecule-based fluorophore-drug conjugates 
have been developed, which are currently used in small 
animal studies [134]. Radiolabeling of small molecules 
allows visualizing drug dynamics in large animals and 
patients. However, radiolabeling is quite cumbersome 
as it requires radiosynthesis and typically access to the 
cyclotron to detect the 11C radioisotope, thus its wide-
spread application is limited [135]. Some small molecules 

could be fluorinated thus presenting an opportunity for 
radioisotope with longer half-life. Detection of 18F iso-
topes can be achieved using commercial sources, which 
circumvents the need for an on-site cyclotron [136]. 
Overall, despite new directions, old challenges persist 
in small molecule delivery to the brain [137]. The small 
size of molecules also frequently limits their therapeutic 
potency, which prevents achieving a cure.  It is compel-
ling to continue research on small molecules penetration 
to the brain as they have an encouraging cost and access 
profile [138], however, we need to take into consideration 
the limitations of these small molecules. These include 
the types of drugs available and their therapeutic efficacy 
and specificity, thus small molecules will not be a stan-
dalone therapeutic solution for brain diseases. We will 
discuss other types of therapeutics to be considered in 
the following sections.

Macromolecule modifications
While drugs with a large molecular size are unable to 
cross the BBB, several potential strategies exist to facili-
tate their delivery into the brain. These include: (A) phar-
macologic formulation, such as exosomal encapsulation 
or cellular carriers for transcytotic transport across BBB; 
(B) conjugation with ligands for biological transporters 
and receptors in the BBB and (C) temporary disruption 
of BBB as discussed earlier. Transcytosis is a process of 
transport of large proteins, exosomes, microbes, viruses, 
bacteria or mammalian cells such as immune cells into 
the brain [139]. The efficiency of synthetic and biological 
drug carriers depends on their physico-chemical char-
acteristics, such as particle size, surface charge, hydro-
phobicity, shape and elasticity. In general, properties 
limiting kidney clearance and extending time spent in 
the systemic circulation benefit the uptake of drug car-
riers by various organs including the brain. However, 
likely due to the relatively thick vascular membrane, 
brain penetration favors particles with a diameter smaller 
than 100  nm and a rod-like rather than spherical shape 
[140, 141]. Synthetic formulations for drug delivery to 
the brain have been extensively reviewed elsewhere and 
include liposomes as well as lipid-nanoparticles often sta-
bilized using polyethylene glycol (PEG) or proteins such 
as albumin [142]. Exosomes are extracellular vesicles 
(40–160  nm in diameter) that are commonly produced 
by many cells and carry various nucleic acid, protein and 
lipid components of the cells of origin [143]. Exosomes 
gained attention as a potential vehicle for drug delivery 
to the brain after a breakthrough study demonstrated 
exosome-dependent and targeted delivery of therapeu-
tic siRNA into neurons, microglia and oligodendrocytes 
using intravenous administration [144]. Despite signifi-
cant progress in the characterization of exosomes the 
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application of exosomes in therapy of CNS diseases still 
faces considerable challenges. This is due to difficulties 
in manufacturing at larger scale and standardization of 
exosomes, low yield, complexity of drug loading and dif-
ficulty in targeting exosomes to cells of interest [145]. 
These challenges could be mitigated, at least partly, by 
the use of well-established cellular drug delivery sys-
tems such as mesenchymal or neural stem cells that are 
known to secrete large amounts of exosomes [146, 147]. 
Neural stem cells (NSCs) seem especially suited for the 
application in cancer therapy due to their tropism to 
hypoxic tumor areas. NSCs are capable of delivering 
chemotherapeutic prodrugs, oncolytic viruses and thera-
peutic antibodies into brain tumors [147]. A recent study 
demonstrated that NSCs loaded with immunothera-
peutic antisense oligonucleotides (ASO) accumulated 
in intracranial gliomas and delivered exosome-encap-
sulated cargo to tumor-associated immune cells [148]. 
Despite reports of certain ASOs crossing BBB using an 
unknown transporter, the majority of oligonucleotides 
undergo rapid kidney clearance and do not accumulate in 
the brain or brain tumors [149, 150]. The conjugation of 
oligonucleotides or carrier particles with ligands for BBB 
receptors or transporters has been widely explored. The 
transferrin receptor gained attention as it is expressed 
by brain endothelial cells. It was targeted using a vari-
ety of ligands including transferrin, ferritin, monoclonal 
antibodies and aptamers [151]. Low density lipoprotein 
(LDL) receptors have been targeted using lipid or silica 
nanoparticles modified with apolipoprotein E (APoE) 
or Angiopep-2 [152, 153]. Peptides such as rabies virus 
glycoprotein (RGD), TGN peptide and vascular cell 
adhesion molecule 1 (VCAM1) binding peptide were 
successfully used to deliver antibodies, nanoparticles, 
liposomes and exosomes into the brain in pre-clinical 
models and translated into several clinical studies [139]. 
Although none of these strategies has yet received FDA/
EMA approval, the broad spectrum of technologies being 
tested and the intensive interest of both, academic insti-
tutions and pharmaceutical companies, underscore the 
chances of clinical translation of BBB targeted drugs in 
the near future.

Cell modification to enhance their BBB crossing 
after grafting
Stem cell therapies for neurological diseases are challeng-
ing to deliver to the brain due to the barrier functions of 
the BBB. The poor transport of exogenous cells across 
the BBB limits the efficacy of  intravascular administra-
tion. How stem cells migrate across the BBB is a contro-
versial topic. Still, there are many reported similarities to 
immune cell infiltration, including rolling on and adhe-
sion to the endothelium and transmigration across the 

BBB. The BBB becomes compromised during brain 
inflammation and injury, and cellular trafficking through 
the BBB is significantly upregulated [154]. Circulating 
leukocyte extravasation through the BBB is character-
ized by a multistep adhesion/migration cascade [155]. 
We developed in  vitro microfluidic assays to analyze 
the interactions of flowing stem cells with a surface of 
endothelial cell-coated microfluidic channels. We noticed 
that human glial restricted progenitors (GRPs) or bone 
marrow mesenchymal stem cells (BM-MSCs) infused 
into microfluidic channels were simultaneously tracked, 
and the entire flow and docking phases were captured, 
including rolling, arrest, and crawling [156–158]. How-
ever, despite the observed process paralleling the mecha-
nism used by leukocytes, the number of stem cells that 
docked to the vessel wall in in  vitro microfluidic chan-
nels was limited. In this context, increasing diapedesis of 
transplanted cells is indispensable for cell transmigration 
in vivo and an important topic to study.

The adhesion molecule-dependent process of dia-
pedesis described in leukocytes has been long 
recognized. Leukocytes extravasate through the ligand-
receptor interactions. Among them, the very late antigen 
(VLA)-4–VCAM1 axis is a well-known contributor to 
the diapedesis of leukocytes. VLA-4 is expressed on the 
surface of cells, while VCAM1 is present on the endothe-
lium. The VLA-4/VCAM-1 axis and its role in the diape-
desis of transplanted stem cells have been described by 
Gavina et  al. [90]. They demonstrated that migration of 
intra-arterially infused human CD133b stem cells into 
the muscles of dystrophic mice was dramatically reduced 
by the VCAM-1 blocking antibody. Similarly, the involve-
ment of the VLA-4-VCAM-1 axis in the homing of stem 
cells was also reported by Brunner et  al. [159]. In line 
with this, blocking VCAM-1 molecules by neutralizing 
antibodies significantly reduced bone marrow stem cell 
migration to the diseased heart in virus-induced dilated 
cardiomyopathy (DCM). Likewise, Jin group has shown 
the role of VLA-4 molecules in cell transmigration from 
the vascular bed to the tissue. In their studies, the intra-
venous injection of VLA-4-expressing bone marrow 
progenitor cells CD34þ cells in tumor-bearing mice were 
effectively homed to the tumor and the antagonist of 
integrin a4/b1 reduced this homing [160]. The expression 
of VLA-4 receptors as docking molecules on the mem-
brane of intravascularly transplanted cells seems to be 
also crucial for crossing BBB. Indeed, it was shown that 
NSCs sorted for the high expression of VLA-4 adhesion 
molecules more effectively migrated to the area of stroke 
in mice after intra-arterial delivery [161]. A significantly 
higher number of NSCs were found in the ischemic hem-
isphere of animals receiving NSCs-VLA-4(+) compared 
with NSCs-VLA-4(−). In further studies, overexpression 
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of VLA-4 in human GRPs, obtained through DNA plas-
mid-based genetic engineering, increased the binding of 
transfected cells to cerebral endothelium after their infu-
sion into a carotid artery in a rat model of global inflam-
mation, compared to naive GRPs [156]. Jablonska et  al. 
confirmed these observations. The authors demonstrated 
the efficient adhesion of  transplanted, primaryVLA-
4þGRPs transplanted i.a. (intra-arterial) to the cerebral 
endothelium of ipsilateral hemisphere in a middle cer-
ebral artery occlusion (MCAO) rat model of stroke. The 
number of docked GRPs with high VLA-4þ expression 
was three-fold higher compared to naive GRPs with 
unmodified VLA-4þ expression. Moreover, the stud-
ies identified some infused VLA-4þ-GRPs extravasating 
through the blood vessel wall into the brain parenchyma 
whereas all naive GRPs remained inside the blood vessels 
[157]. Recently, it was shown that human BM-MSC trans-
fection with VLA-4 molecules improved cell docking to 
blood vessels in the brain after infusion of BM-MSCs into 
the carotid artery of rats with focal brain ischemia [162]. 
Overexpression of VLA-4 in human BM-MSCs has been 
established by mRNA-based cell engineering [163]. The 
presence of VLA-4 proteins in BM-MNCs was transient 
and lasted for up to 24 h after transfection. Membrane-
ous location of VLA-4 receptors on transfected MSCs 
improved the initial cell settlement to cerebral vessels in 
the injury area and increased their uptake into the brain 
visible in MRI scans (Fig. 3). However, MSCs with high 
VLA-4 expression remained inside the vascular lumen 
over the first two days. On the third day, nearly half of the 
MSCs present at the time extravasated from the cerebral 
vasculature to the perivascular space. Increasing VLA-4 
expression on the cell surface to improve diapedesis after 
intra-arterial transplantation is a promising strategy. 
However, the number of cells that migrate from the cer-
ebral vasculature to the brain parenchyma remain small 
and further studies on the recruitment of a higher num-
ber of transplanted cells are needed.

Another strategy to increase the transmigration of 
cells into brain tissue after intravascular infusion is to 
modify stem cells with factors that enhance chemokine 
receptor expression. Such a procedure has been shown 
to increase the number of cells homing to the brain. 
The critical role of the C–C chemokine ligand 2 (CCL2) 
and C–C chemokine receptor 2 (CCR2) in the targeted 
homing of stem cells was demonstrated by Guzman 
group [164]. After intracarotid delivery of NSCs in an 
experimental  model of brain hypoxia/ischemia in mice, 
the authors observed significantly higher numbers of 
CCR2+/+ transfected NSCs recruited to the ischemic 
brain areas as compared to CCR2−/− cells, proving 
the importance of CCR2 for active homing of NSCs 
across the BBB. Modulating the expression of CCR2 in 

transplanted cells may offer a new way to improve the 
efficiency of intra-arterial stem cell therapy in the future. 
However, further investigation is needed to facilitate 
therapy with intravascularly infused exogenous stem 
cells.

A few key considerations about the dynamics 
of the BBB
As aforementioned, the major concern in field is whether 
it is possible to open the BBB in a meaningful way with-
out causing negative consequences. To achieve this, it 
is particularly important to broaden our understanding 
about the dynamics of the BBB. In this context, a few key 
considerations we proposed are: (1) whether the ensu-
ing inflammation caused by BBB opening will be benefi-
cial or detrimental to the brain microenvironment, (2) as 
the core structure of tight junction barriers are not static 
rather highly dynamic that allows discrete trafficking 
under physiological or pathological stresses, so whether 
areas of the BBB with different densities of tight junctions 
(lipid-protein composition) should be targeted as high-
permeability gateways, (3) how can we empirically ana-
lyze the BBB based animal models to predict the human 
response accurately, (4) can we quantitatively model the 
interaction between BBB transport and glymphatic clear-
ance (net fluid flow inward through arteries and outward 
through veins), (5) Whether transient transcriptional 
changes with long-term effects are to be expected, espe-
cially when conducting locus-specific BBB studies, and 
(6) since concentrations of several molecules in the CNS 
are subject to circadian oscillations/rhythms, therefore, 
we do need to check the permeability/efflux of our cur-
rent compounds according to this circadian clock.

Concluding remarks
Research into drug development targeting the CNS is 
complex and it is uncertain which approach will be suc-
cessful. The systemic problems in the drug development 
industry are aggravated by the inaccessibility and sensi-
tivity of brain tissue, while it remains the most suitable 
tissue to develop novel and innovative drug delivery sys-
tems. Despite the urgency of the field in addressing the 
problems in drug delivery to the CNS, methodologic 
divergences have been faced by the field for decades. The 
widespread use of  animal models, the most commonly 
used model system in pre-clinical trials, is currently being 
questioned due to discrepancy in research findings from 
animals and human patients, particularly in BBB trans-
posing systems. These translational problems have con-
tributed to improvement of existing animal models and 
have fueled the development of human neurovascular 
models that mimic native neurovascularity more closely. 
In the search for in  vivo models, tissue engineering has 
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Fig. 3 Evaluation of the presence of IA transplanted mRNA-ITGA4 transfected or control (naïve) hBM-MSCs in the rat brain subjected to focal brain 
damage using MRI scan assessment. A mRNA-ITGA4 transfected and control hBM-MSCs labelled with Molday ION were visible in MRI in T2 and T2* 
scans up to three days after transplantation (tx). B The box-plot graph shows the percentage of right hemisphere occupied by hypo-intensive 
signal generated by transplanted mRNA-ITGA4 transfected (red boxes) or Control hBM-MSCs (violet boxes). The type III fixed effects test was used 
to determine statistical significance, and the LMS method was applied to compare between groups and time points. Box charts present 
the dispersion and the shape of the data distribution for the test value in the compared populations. The length of the bars is equal to the quarter 
range (Q1–Q3) of the data, the tips of the mustaches indicate the minimum and maximum values, the line inside of the bar determines the median, 
while the circle/plus the arithmetic mean, the outliers are presented in the form of circles/pluses; *p < 0.05, **p < 0.01, ***p < 0.001 (n = 6). Reprinted 
from [162]
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focused on tissue organoids, leading to the emergence of 
a burst of brain organoid models in recent years. None-
theless, technological innovation and disease-modeling 
are currently still performed in assembled structures, 
using a bottom-up approach that has been used in the 
field for more than 30 years. In the next few years, hybrid 
strategies integrating disease-specific assembled struc-
tures and organoids-on-chip will become an integral 
part of pre-clinical and clinical research. This trend will 
guide the field towards effective precision medicine, with 
patient-derived organoids resembling the native tissue, 
integrated in a robust and reproducible BBB vascular 
network, achieving high statistical significance.
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