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Abstract 

Background Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic dis‑
eases for thousands of years since ancient China due to its anti‑microbial infection, anti‑allergy, and anti‑inflammation 
activities. Therefore, the potential of A. argyi and its constituents in reducing the infection with severe acute respira‑
tory syndrome coronavirus 2 (SARS‑CoV‑2) was investigated in this study.

Results Among the phytochemicals in A. argyi, eriodictyol and umbelliferone were identified to target transmembrane 
serine protease 2 (TMPRSS2) and angiotensin‑converting enzyme 2 (ACE2) proteins, the essential factors for the cellular 
entry of SARS‑CoV‑2, in both FRET‑based enzymatic assays and molecular docking analyses. These two ingredients of A. 
argyi suppressed the infection of ACE2‑expressed HEK‑293 T cells with lentiviral‑based pseudo‑particles (Vpp) expressing 
wild‑type and variants of SARS‑CoV‑2 spike (S) protein (SARS‑CoV‑2 S‑Vpp) via interrupting the interaction between S 
protein and cellular receptor ACE2 and reducing the expressions of ACE2 and TMPRSS2. Oral administration with umbel‑
liferone efficiently prevented the SARS‑CoV‑2 S‑Vpp‑induced inflammation in the lung tissues of BALB/c mice.

Conclusions Eriodictyol and umbelliferone, the phytochemicals of Artemisia argyi, potentially suppress the cellular 
entry of SARS‑CoV‑2 by preventing the protein binding activity of the S protein to ACE2.
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Introduction
The global pandemic of coronavirus disease 2019 
(COVID-19) caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has been a seri-
ous health-threatening issue in most countries [1]. 
The genomic evolution of SARS-CoV-2 creates diverse 
mutant strains, which become more transmittable and 
resistant to immune attack and anti-virus treatments 
[2]. SARS-CoV-2 variants were classified into variants of 
interest (VOIs) and variants of concern (VOCs) by the 
World Health Organization (WHO) according to their 
transmission rate, disease severity, therapeutic response, 
and healthy problem [3]. For example, the Omicron vari-
ant, identified as the lineage B.1.1.529 in South Africa in 
November 2021, has been viewed as one of the circulat-
ing and high lethal VOIs associated with its rapid human-
to-human transmission, increased risk of reinfection, and 
resistance to vaccines [4–6].

SARS-CoV-2 belongs to the family of highly diverse 
coronaviruses (CoVs) constituted by positive-sense and 
single-strand RNA [7]. For cellular infection, SARS-
CoV-2 utilizes various factors for the entry of host cells, 
translation of RNA genome, and replication cycle, ulti-
mately releasing viral progeny. The cellular access of 
SARS-CoV-2 relies on its receptor engagement of spike 
(S) protein with the specific host receptor angiotensin-
converting enzyme2 (ACE2) [8]. The receptor binding 
domain (RDB) of the S1 subunit of S protein directly 
mediates viral attachment to ACE2, while S2 is cleaved 
by the membrane proteases and exposed the fusion pep-
tide (FP) for ACE2 engagement and membrane fusion 
[9, 10]. Transmembrane serine protease 2 (TMPRSS2) 
and cathepsin L are typically necessary to present the 
FP for membrane fusion with host cells [9, 11]. In addi-
tion, the S protein can be cleaved into S1 and S2 subu-
nits by the proprotein convertase furin for the anchorage 
at the cellular membrane during the viral biosynthesis 
in the virus-producing cells, facilitating the virus entry 
[12, 13]. SARS-CoV-2 next undergoes clathrin-mediated 
endocytosis to gain access into cells [11]. Following virus 
entry, the viruses release, replicate, and transcribe their 
genomic RNA following cellular entry to produce essen-
tial structural proteins that compose new and complete 
viral particles [14, 15]. Since SARS-CoV-2 has evolved 
into diverse variants, the therapeutic effectiveness of 
anti-virus treatments is limited and scarce. It is impera-
tive to explore the potential protective treatments or 
integrated approaches against COVID-19.

Artemisia argyi (A. argyi), also named Chinese mug-
wort, belongs to the family of Asteraceae. This herb has 
been used to control pandemic diseases by burning dried 
herbs for thousands of years since ancient China [16] and 
still is a renowned traditional Chinese medicine (TCM) 

and food currently used in the Far East. A. argyi con-
tains a broad-spectrum profile of bioactive compounds, 
including flavonoids, terpenoids, and caffeoylquinic 
acids, and contributes to anti-microbial, anti-allergic, 
anti-diabetic, and anti-inflammatory activities by modu-
lating the immune system or defending oxidative stress 
[17, 18]. In addition, this TCM was also shown to sup-
press the proliferation of tumor cells with low cytotox-
icity to normal cells [19, 20]. Recently, A. argyi has been 
implied as a potential TCM against severe acute respira-
tory syndrome (SARS), middle east respiratory syndrome 
(MERS), and COVID-19 [21, 22]. Nevertheless, its activ-
ity against the infection with SARS-CoV2 has not been 
demonstrated yet, and the active phytochemicals and 
underlying mechanisms also remain unclear.

Results
Eriodictyol and umbelliferone, two constituents 
in Artemisia argyi, suppressed the enzymatic activities 
involved in the cellular entry of SARS‑CoV‑2
To identify the bioactive compounds with the potential 
against the enzymatic activities for S protein priming or 
viral replication, 14 known ingredients of A. argyi [18] 
were subjected to fluorescence resonance energy transfer 
(FRET)-based enzymatic activity assays, which princi-
ple was illustrated in Fig. 1A [23]. As shown in Table 1, 
the enzymatic activity of TMPRSS2 was dramatically 
attenuated by eriodictyol (100.0% ± 0.3%), umbelliferone 
(74.1% ± 3.5%), and 13-Oxo-9E,11E-octadecadienoic acid 
(13-Oxo-ODE) (76% ± 4.7%) at 60 μM. However, none of 
these compounds at 60 μM suppressed more than 50% of 
 3CLpro (Mpro) activity (Table 1), which is the main pro-
tease in cleaving coronavirus polyprotein for the repli-
cation of SARS-CoV [16]. 13-Oxo-ODE is a metabolite 
from de-hydrogenation of 13-hydroxyoctadecadienoic 
acid (13-HODE), an oxidized product of linoleic acid 
catalyzed by 12/15-lipoxygenase (LOX) [24, 25], and has 
been reported as an endogenous ligand for nuclear hor-
mone receptor peroxisome proliferation-activated recep-
tor gamma (PPARγ) involved in inflammatory bowel 
disease [26, 27]. But the clinical relevance of 13-Oxo-
ODE as a potential contributor to nonalcoholic fatty liver 
disease [11] led us to focus on eriodictyol and umbel-
liferone for their anti-corona virus activity. Eriodictyol 
not only repressed the enzymatic activity of TMPRSS2 
(Fig.  1B) but also abolished furin activity (Fig.  1C) in a 
dose-dependent manner. Following the priming of the 
S protein by TMPRSS2 or furin, the cleaved S protein 
interacts with the human cellular receptor ACE2 [28]. 
Another FRET assay, which principle was illustrated in 
Fig. 1D [23], further showed the inhibitory effect of erio-
dictyol on the interaction between S protein and ACE2 
in a dose-dependent manner (Fig.  1E). Taken together, 
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eriodictyol and umbelliferone in A. argyi potentially sup-
pressed the enzymatic activities of TMPRSS2 or furin to 
reduce the S1/S2 priming of S protein and interfered the 
interaction between S protein and ACE2.

Molecular docking analysis of eriodictyol 
and umbelliferone with SARS‑CoV‑2 proteins
Since eriodictyol and umbelliferone suppressed the enzy-
matic activity of TMPRSS2 and S protein/ACE2 interac-
tion, the binding modes of these two compounds in the 
catalytic pockets of TMPRSS2 and the interface between 
the S protein and ACE2 were performed with Discovery 
Studio. The results indicated that eriodictyol (Fig.  2A) 
and umbelliferone (Fig. 2B) showed binding affinity to the 
catalytic pockets of TMPRSS2, and the changes in energy 
value were − 13.05 kcal/mol (eriodictyol/TMPRSS2) and 
−  14.82  kcal/mol (umbelliferone/TMPRSS2), respec-
tively (Table  2). Furthermore, the interface between the 
S protein and human receptor ACE2 was also disrupted 
by these two compounds (Figs.  2C, D) with the free 
energy decreases of −  33.478 and -36.539  kcal/mol for 
eriodictyol/S protein-ACE2 and umbelliferone/S protein-
ACE2 complexes, respectively (Table 2). Based on these 
results, eriodictyol and umbelliferone could be the phy-
tochemicals in A. argy capable of targeting the potential 

residues (Table  2) of multiple proteins associated with 
the cellular entry of SARS-CoV-2.

A. argyi and its active compounds downregulate ACE2 
and TMPRSS2 expressions in lung epithelial cells
The cytotoxic activities of A. argyi, eriodictyol, and 
umbelliferone were next examined in Beas 2B lung 
epithelial cells using MTT assays. Cytotoxicity con-
centration 50%  (CC50) values of A. argyi, eriodictyol, 
and umbelliferone were 4471  μg/ml (Additional file  1: 
Fig. S1A), 212.6  μM (Additional file  1: Fig. S1B), and 
302.4 μM (Additional file 1: Fig. S1C), respectively. Based 
on the level of  CC50, we further addressed whether the 
expressions of ACE2 and TMPRSS2 are also affected by 
these potential agents in preventing the cellular entry of 
SARS-CoV-2. A. Argyi, eriodictyol, and umbelliferone 
significantly suppressed the and mRNA expressions of 
ACE2 and TMPRSS2 (Fig.  3A–D). While A. argyi sup-
pressed ACE2 protein expression at 100 μg/ml (Fig. 3E) 
and eriodictyol reduced TMPRSS2 protein level at 50 μM 
(Fig.  3F), umbelliferone showed more potent inhibitory 
effects on both ACE2 and TMPRSS2 protein expressions 
in a dose-dependent manner (Fig.  3G). These results 
suggest that A. argyi, eriodictyol, and umbelliferone can 
inhibit SARS-CoV-2 infection by mainly repressing the 

Fig. 1 Eriodictyol suppresses the membrane‑binding mechanisms of the SARS‑CoV‑2 spike protein. FRET‑based enzymatic activity assays A were 
performed to examine the activity of TMPRSS2 B and furin C in the presence of eriodictyol at the indicated concentrations. FRET‑based protein 
interaction assays D were employed to test the inhibitory effect of eriodictyol on the protein interaction between S protein and ACE2 E. Camostat 
(CAM), naphthofluorescein (NAP), and cepharanthine (CEP) were used as the positive control for the inhibitions of TMPRSS2 and furin activities and 
the binding between S protein and ACE2, respectively. Data are shown as mean ± SEM from three independent experiments with triplicates. ** 
p < 0.01 and **** p < 0.0001
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expressions of cellular ACE2 and TMPRSS2 with differ-
ent specificity and potency.

A. argyi, eriodictyol, and umbelliferone broadly suppress 
the cell entry of SARS‑CoV‑2 S‑Vpp variants
The above data suggest that eriodictyol and umbellif-
erone could prevent the cellular entry of SARS-CoV-2 
through multiple mechanisms, including inhibitions of 
cellular TMPRSS2 activity, cellular ACE2 and TMPRSS2 
expressions, and S protein/ACE2 interaction. There-
fore, we further assessed the efficacy of A. argyi extracts 
and its phytochemicals eriodictyol and umbelliferone 
in blocking the cellular entry of SARS-CoV-2 S protein-
pseudo-type lentiviral particles (SARS-CoV-2 S-Vpp). 
HEK-293  T cells stably expressing ACE2 protein were 
employed to test the cellular entry of SARS-CoV-2 Vpp 
with S protein variants following the pretreatments with 
tested drugs. The results displayed that the infections 
with most SARS-CoV-2 S-Vpp variants, including wild 
type (WT) (Fig. 4A), B.1.351 (Beta) (Fig. 4C), Lineage P1 
(Gamma) (Fig.  4D), and B1.617.2 (Delta) (Fig.  4E) were 
dramatically repressed by the treatments with A. argyi, 
eriodictyol, and umbelliferone in a dose-dependent man-
ner without affecting the infection with VSVG control 
(Additional file  2: Fig. S2) and the cell viability. How-
ever, the infections with B1.1.7 (Alpha) (Fig.  4B) and 
B.1.429 (Epsilon) (Fig. 4F) were not affected by A. argyi 
extracts. The inhibitory concentration 50%  (IC50) values 
of A. argyi, eriodictyol, and umbelliferone in antiviral 
activity are shown in Table 3. The  IC50 values of A. argyi, 
eriodictyol, and umbelliferone in the detected viruses, 
except B1.1.7 (Alpha) and B.1.429 (Epsilon), were around 
332 ~ 1534 μg/ml, 88 ~ 126 μM, and 67 ~ 100 μM, respec-
tively. These findings suggested that A. argyi can inhibit 
infections with SARS-CoV-2.

Omicron (B.1.1.529), first reported in November 2021, 
is a highly mutated variant of SARS-CoV-2 and has 
become the predominant viral variant of concern (VOC) 
worldwide. The inhibitory effects of tested compounds 
on the cellular entry of SARS-CoV-2 S-Vpp of Omicron 
variants were next examined in HEK-293 T cells express-
ing ACE2 proteins. The results showed that umbellif-
erone significantly and dose-dependently suppressed 
the cellular entry of all tested Omicron variants BA.1 
(Fig.  5A), BA.1.1 (Fig.  5B), BA.2 (Fig.  5C), and XBB.1 
(Fig.  5D). A. argyi also significantly reduced the infec-
tions with BA.1, BA1.1, and XBB.1 variants. However, 
eriodictyol only slightly interfered with the infection with 
XBB.1 but not other Omicron variants. Our findings sug-
gested that umbelliferone can be a potential agent more 
selective against the variants of SARS-CoV-2 Omicron 
with  IC50 values of around 50 ~ 147 μM (Table 3).

Umbelliferone effectively suppressed the lung 
inflammation of mice induced by SARS‑CoV‑2 S‑Vpp of WT 
or Omicron variants
Since umbelliferone showed promising activity against 
the cellular entry of SARS-CoV-2 S-Vpp in  vitro, its 
inhibitory effects on SARS-CoV-2-associated inflamma-
tion in lung tissues were addressed in a mice model. As 
illustrated in Fig.  6A, BALB/c mice expressing human 
ACE2 were pre-treated with umbelliferone 70  mg/kg 
for 2  days, followed by challenge with WT, BA.2, or 
XBB.1 variants of SARS-CoV-2 S-Vpp and continu-
ous treatment with umbelliferone for another 7  days. 
Compared to the infection of SARS-CoV-2 S-Vpp 
WT (Additional file  3: Fig. S3A), infections with BA.2 
(Fig.  6B) and XBB.1 (Additional file  4: Fig. S4A) vari-
ants more obviously elicited inflammation as evidenced 
by the formation of granuloma (indicated with the 
arrow) in H&E staining and the inductions of inflam-
matory gene expressions, including Tnf, Infg, Il1b, Il6, 
Il10, and Tgfb1 in RT-qPCR analysis (Additional file 5: 
Figs. S5A–F). IHC staining with anti-CD3 and TNF-α 
antibodies further supported the SARS-CoV-2 S-Vpp-
induced infiltration of immune cells and inflammation 
(Fig.  6B and Additional files 3, 4: Figs. S3A and S4A). 
The increases in the mRNA level of alpha-smooth mus-
cle actin (α-SMA), a marker for fibrogenesis [29], fur-
ther revealed the tendency of lung tissues to form lung 
fibrosis by the infection with the pseudo viral particles 
(Additional file 5: Fig. S5G). Similar to the effect in vitro 
(Fig.  3), pretreatment with umbelliferone suppressed 
the protein and mRNA expression of TMPRSS2 in lung 
tissues (Figs. 6C, D, and Additional files 3, 4: Figs. S3B, 
C and S4B, C). Also, it reduced the granuloma forma-
tion, CD3-positive immune cell infiltration, and TNF-α 
expression (Fig. 6B and Additional file 3: Figs. S3A and 
Additional file  4: S4A). The decreases in the mRNA 
expressions of inflammatory genes (Fig. 6E–J and Addi-
tional files 3, 4: Figs. S3D–I and S4D–I) and α-SMA 
expressions (Fig. 6K and Additional files 3, 4: Figs. S3J 
and S4J) further supported the potential of umbellifer-
one in preventing infection with SARS-CoV-2 variants 
in vivo.

Eriodictyol decreases the replication of SARS‑CoV‑2 
by enzymatic inhibition of RdRp
After the entry and uncoating of SARS-CoV-2, 3-chy-
motrypsin-like protease  (3CLpro) and papain-like pro-
tease  (PLpro) are the virus-encoded cysteine proteases 
for cleaving the viral polyprotein and then generating 
nonstructural proteins during viral replication [30, 31]. 



Page 9 of 19Cheng et al. Cell & Bioscience          (2023) 13:118  

RNA-dependent RNA polymerase (RdRp; also known 
as nsp12) is a viral replicase for synthesizing com-
plementary RNA during the transcriptional cycle of 
SARS-CoV-2 [32]. Therefore, we further examined the 
inhibitory effects of tested compounds on the enzymatic 
activity of  3CLpro,  PLpro, and, RdRp by performing FRET-
base enzymatic activity assays and found that eriodictyol 
dramatically reduced the activities of these three viral 
enzymes (Additional file  6: Figs. S6A–C). However, the 
50% inhibition concentrations of eriodictyol for  3CLpro 
and  PLpro were over 240 μM. These results displayed that 
A. argyi and its phytochemicals may interfere with the 
cellular entry and RNA replication of SARS-CoV-2 at rel-
atively lower doses and showed inhibitory effects on the 
viral protease activities at higher doses.

Discussion
Until the end of 2022, the COVID-19 pandemic has 
caused more than 60 million confirmed cases and 6 mil-
lion deaths worldwide. The emergency of SARS-CoV-2 
variants, which not only facilitate viral replication, 
transmission, and immune escape but also weaken the 
protective ability of recently developed vaccines [2, 33], 
generates more concerns about the prevention of SARS-
CoV-2 infection. TCMs have been explored as potential 
therapeutics against COVID-19 and can improve the 
efficacy of standard treatments while diminishing dis-
ease deterioration [34, 35]. For example, Taiwan Ching-
guan Yihau (NRICM101) has been shown to disrupt virus 
invasion and host inflammation in patients with SARS-
CoV2 infections [36, 37]. Our data showed that treatment 

Fig. 2 The interactions of eriodictyol and umbelliferone with TMPRSS2, ACE2, and SARS‑CoV‑2 S proteins. The predicted binding affinities of 
TMPRSS2 (PDB ID: 7MEQ) and the interface between ACE2 and S protein (PDB ID: 6M0J) with eriodictyol A and C and umbelliferone B and D 
were investigated by using BIOVIA Discovery Studio. The rounds with black rings (right of C and D indicated the amino acid residues of S protein 
interacting with eriodictyol or umbelliferone
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with A. argyi, a well-known herbal medicine used in the 
Far East, can be a new strategy to prevent infections with 
multiple variants of SARS-CoV2 by suppressing their cel-
lular entry as well as viral replication via targeting cellu-
lar proteins TMPRSS2 and ACE2 and viral protein RdRp, 
respectively (Fig. 7 and Additional file 6: Fig. S6D).

The binding affinity of jaceosidin and eupatilin, two 
phytochemicals in A. argyi, to SARS-CoV-2  3CLpro 
has been predicted in molecular docking simulation 
[38]. In the present study, however, several flavonoids, 
including 5,7,3’-Trihydroxy-6,4’,5’-trimethoxyflavone, 
β-Rhamnocitrin, eriodictyol, eupatilin, hispidulin, and 
jaceosidin containing the basic skeleton of bezno-γ-
pyrene [39] did not show the inhibitory effect on the 
activity of SARS-CoV-2  3CLpro (Table  1), suggesting 
that the flavonoids in A. argyi mainly target the cellular 
entry of SARS-CoV-2 to decrease the deterioration from 
COVID-19.

Although the cellular entry of SARS-CoV-2. B1.1.7 
(Alpha) also depends on the binding to human receptor 
ACE2, the transmissibility of B1.1.7 is lower than that of 
other classified SARS-CoV-2 mutants [40]. The S1-recep-
tor binding domain (RBD) of B1.1.7 may maintain an 
unfavorable conformation before ACE2 engagement, 
causing its weak binding affinity to human ACE2 [41, 

42]. It explains the fewer effects of A. argyi, eriodictyol, 
and umbelliferone on the cellular entry of SARS-CoV-2. 
B1.1.7 (Alpha) (Fig.  4B). Similar to our findings, many 
other S protein-targeting agents, such as Echinacea pur-
purea [43] and Montelukast [44], showed efficacy in pre-
venting infections with different SARS-CoV-2 mutants 
except B1.1.7.

SARS-CoV-2 lineage B.1.1.529, named Omicron strain, 
was documented as a VOC on 26th November 2021 
by WHO and became the significant viral strain in the 
COVID-19 pandemic. Unlike other SARS-CoV-2 vari-
ants, Omicron is marked by many mutations across the 
entire genome, including its spike glycoprotein gene 
[45], contributing to immune escape, an attenuating abil-
ity of vaccines, and a higher frequency of reinfections 
[5, 6]. Unlike the alpha strain, these high mutations of 
the Omicron S protein are associated with its increased 
binding efficacy to host receptor ACE2 [46]. Our data 
also showed that infections with Omicron variants also 
caused a higher frequency of inflammation in lung tis-
sues (Fig.  6 and Additional files 3, 4, 5: Figs. S3, S4, 
S5). While other SARS-CoV-2 variants require the S 
protein priming by the host transmembrane protein 
TMPRSS2 for cellular entry, the infection of Omicron 
variants can be accomplished by an endocytic route in 

Table 2 The binding energy and interaction sites of TMPRSS2, ACE2, and SARS‑CoV‑2 S proteins with eriodictyol and umbelliferone

a Interaction with S protein
b Interaction with ACE2

Compounds Proteins Energy value (kcal/
mol)

Amino acids Interactions

Eriodictyol TMPRSS2 − 13.05 Cys 148 Hydrogen bond (2.60 Å)

Asp 482 Hydrogen bond (2.09 Å)

Arg 489 Pi‑Cation (3.73 Å)

S protein‑ACE2 − 33.478 Arg  403a Pi‑Cation (2.89 Å)

Glu  406a Hydrogen bond (2.03 Å)

Tyr  453a Hydrogen bond (2.24 Å)

Ser  494a Pi‑Lone pair (2.69 Å)

Gly  496a Hydrogen bond (2.02 Å)

His  34b Pi‑Cation (3.47 Å); Hydrogen bond 
(2.55 Å); Amide‑Pi Stacked (4.48 Å)

Glu  35b Hydrogen bond (2.03 Å)

Lys  353b Hydrogen bond (1.83 Å, 1.93 Å)

Umbelliferone TMPRSS2 − 14.82 Arg 150 Attractive charge (4.93 Å)

Pro 369 Hydrogen bond (2.41 Å); Pi‑Alkyl (4.54 Å)

Asp 482 Pi‑Anion (3.99 Å)

S protein‑ACE2 − 36.539 Arg  403a Pi‑Cation (4.03 Å)

Gly  496a Hydrogen bond (2.61 Å)

Tyr  505a Pi‑Pi T shaped (5.97 Å)

Lys  353b Salt bridge (1.65 Å)



Page 11 of 19Cheng et al. Cell & Bioscience          (2023) 13:118  

a TMPRSS2-independent manner [47, 48]. Our results 
found that both A. argyi and umbelliferone diminished 
the protein level of ACE2 (Fig.  4), accounting for their 

activity in blocking the cellular entry of Omicron vari-
ants (Figs. 5, 6 and Additional file 4: Fig. S4). Therefore, 
umbelliferone would be the critical phytochemical in A. 

Fig. 3 Eriodictyol and umbelliferone inhibited the expressions of ACE2 and TMPRSS2 in lung epithelial cells. Beas 2B cell lines were treated with 
A. argyi, eriodictyol, and umbelliferone at the indicated concentrations for 2 days. The cell lysates and total RNA harvested from Beas 2B cells were 
subjected to RT‑qPCR A‑D and Western blot analysis E–G analyses to examine the effects of tested compounds on the mRNA and protein levels of 
ACE2 and TMPRSS2, respectively. The quantitated data of protein level was shown below. Data were shown as mean ± SEM from three independent 
experiments with triplicates. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001
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argyi capable of reducing the infection with Omicron 
variants.

Conclusions
In general, this study explored the potent antiviral 
activity of A. argyi and its phytochemicals (eriodic-
tyol and umbelliferone) against multiple SARS-CoV-2 

variants with the  IC50 values ranging from 332 to 
1534 µg/ml and 67 to 126 µM, respectively. Mechanis-
tically, A. argyi, eriodictyol, and umbelliferone repress 
the enzymatic activity of TMPRSS2 and furin for prim-
ing S protein, impeding the interaction between S pro-
tein and ACE2, and inhibit the RdRp-mediated viral 
replication (Fig.  7 and Additional file  6: Fig. S6D). In 

Fig. 4 The inhibitory effects of A. argyi, eriodictyol, and umbelliferone on the cellular entry of Vpp of SARS‑CoV‑2 S variants. HEK‑293 T cells 
expressing ACE2 were infected with SARS‑CoV‑2 S protein pseudo viral variants with luciferase, including wild type A B1.1.7 (alpha) B B.1.351 (Beta) 
C Lineage P1 (Gamma) D B1.617.2 (Delta) E and B.1.429 (Epsilon) F after treatments with A. argyi, eriodictyol or umbelliferone at the indicated 
concentrations for 2 days, and the luciferase activities were measured to determine the infection rate with the pseudoviruses. Additionally, the cell 
viability also was examined in CCK‑8 assays. Camostat (CAM), naphthofluorescein (NAP), and cepharanthine (CEP) were used as the positive controls 
for the inhibitions of TMPRSS2 and furin activities and the binding between S protein and ACE2, respectively. Data were shown as mean ± SEM from 
three independent experiments with triplicates. ** p < 0.01, *** p < 0.001, and **** p < 0.0001
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addition, A. argyi and umbelliferone also showed spe-
cific activity against Omicron variants due to their 
inhibitory effect on ACE2 protein expression.

Methods
Cell lines culture
Beas 2B epithelial cells, which were established from nor-
mal human bronchus, were grown in Dulbecco’s Modi-
fied Eagle Medium (DMEM) with low glucose (1 g/L) and 
sodium pyruvate (Gibco), and ACE2-expressing HEK-
293  T cells were cultured in DMEM/Nutrient Mixture 
(F-12) medium (Gibco). The culture mediums for these 
two cell lines contained 10% fetal bovine serum (FBS; 
Gibco) and 1% penicillin–streptomycin (P/S; Thermo 
Fisher Scientific), and both cell lines were incubated at 
37 ℃ in a humidified 5%  CO2/95% air incubator.

Preparation of A. argyi extraction and pure compounds
The powder of A. argyi obtained from dry plants was dis-
solved and heated in sterilized  H2O at 37 ℃ for 30 min. 
Eriodictyol (Cayman), umbelliferone (Sigma-Aldrich), 
and other ingredients of A. argyi listed in Table  1 were 
dissolved in DMSO.

Measurement of cell viability
The cell viability was measured in MTT (Sigma-Aldrich) 
and cell counting kit-8 (CCK-8; Dojindo) according to 
the manufacturer’s protocols. Beas 2B cells (5000 cells/
well) in a 96-well plate were treated with A. argyi solu-
tion, eriodictyol, or umbelliferone in a dose-dependent 
manner for 2  days and then subjected to MTT assays. 

ACE2-expressing HEK-293  T cells were treated with A. 
argyi solution, eriodictyol, or umbelliferone for 2  days 
followed by infections with the variants of SARS-CoV-2 
pseudoviruses, and their viabilities were then detected in 
CCK-8 assays.

Infection with pseudo‑typed lentiviral particles (Vpp) 
of SARS‑CoV‑2 S protein mutants
The virus particle pseudo-typed (Vpp) of SARS-CoV-2 S 
protein mutants and the vesicular stomatitis-G (VSV-G) 
control bearing luciferase were obtained from RNA Tech-
nology Platform and Gene Manipulation Core, Academia 
Sinica in Taiwan. ACE2-expressing HEK-293 T cells were 
pre-treated with A. argyi, eriodictyol, and umbelliferone 
at the indicated concentrations for 2 days and then were 
infected with the pseudo lentivirus of VSVG and SARS-
CoV-2 variants for 1 day. After determining the cell via-
bility in cell counting kit-8 assay (CCK-8; Dojindo), the 
luciferase intensity of the lysates prepared with One-
Glo™ Luciferase assay buffer (Promega) was measured in 
Luminescence Plate Reader.

Molecular docking simulation
The structures of proteins and compounds in this study 
were retrieved from Protein Data Bank (PDB, https:// 
www. rcsb. org/) and were applied to molecular docking 
calculation (BIOVIA  Discovery Studio) to simulate the 
binding efficacy of tested compounds to S protein and 
receptor ACE2 as well as TMPRSS2.

Table 3 IC50 value of A. argyi, eriodictyol, and umbelliferone against the Vpp of SARS‑CoV‑2 variants

# Undetectable

https://www.rcsb.org/
https://www.rcsb.org/
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Fluorescence resonance energy transfer (FRET)‑based 
enzymatic activity assay
In the examination of TMPRSS2 and Furin protease 
activities in the cleavage of SARS-CoV-2 spike protein, 
the recombinant proteins (15  μg/ml) of TMPRSS2 and 
Furin were pre-incubated in the assay buffer (25  mM 
Tris 8.0, 150 mM NaCl) with/without eriodictyol at room 
temperature for 30  min. Additionally, Camostat (CAM) 
[49] and naphthofluorescein (NAP) [50] were employed 
as the positive control against the activity of TMPRSS2 
and furin, respectively. After adding 20 μM of the fluores-
cent protein substrates, the reaction of substrate cleav-
age was monitored continuously for 6  h by detecting 
mNeonGreen fluorescence (excitation: 506 nm/emission: 
536  nm) using  Synergy™ H1 hybrid multi-mode micro-
plate reader (BioTek Instruments, Inc.) [23, 51]. The first 
1 h of the reaction was used to calculate the initial veloc-
ity  (V0). The initial velocity with each compound was 

calculated and normalized to DMSO control (as illus-
trated in Fig. 1A).

In the analysis of the enzymatic activities associated 
with SARS-CoV-2 replication, including 3C-like protease 
 (3CLpro), papain-like protease  (PLpro), and RNA-depend-
ent RNA polymerase (RdRp), the tested compounds were 
first incubated with the recombinant proteins of these 
proteases at room temperature. Additionally, GC-376 
(GC) [49], GRL-0617 (GRL) [52], and GS-443902 (GS, an 
active metabolite from remdesivir) [53], and cepharan-
thine [54], were employed as positive controls against 
the activity of  3CLpro,  PLpro, RdRp, and S/ACE2 interac-
tion, respectively. After 30  min of incubation, the fluo-
rescent protein substrate was added to the reaction. The 
fluorescent signal was recorded by detecting the excita-
tion wavelength of 505  nm and emission wavelength of 
536 nm [55].

Fig. 5 The inhibition effects of A. argyi, eriodictyol, and umbelliferone on the cellular entry of SARS‑CoV‑2 Omicron variants. HEK‑293 T cells 
expressing ACE2 were infected with SARS‑CoV‑2 Omicron pseudo viral variants with luciferase, including BA.1 A BA.1.1 B BA.2 C and XBB.1 D 
after treatments with A. argyi, eriodictyol, or umbelliferone at the indicated concentrations for 2 days, and the luciferase activities were measured 
to determine the infection rate with these pseudoviruses. Additionally, the cell viability also was examined in CCK‑8 assays. Camostat (CAM), 
naphthofluorescein (NAP), and cepharanthine (CEP) were used as the positive controls for the inhibitions of TMPRSS2 and furin activities and the 
binding between S protein and ACE2, respectively. Data are shown as mean ± SEM from three independent experiments with triplicates. * p < 0.05, 
** p < 0.01, *** p < 0.001, and **** p < 0.0001
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Time‑resolved fluorescence resonance energy transfer 
(TR‑FRET) assay
The interruption effects of tested compounds on the 
interaction between SARS-CoV-2 Spike S1 and human 
ACE2 proteins were measured by using TR-FRET assays 

according to the manufacturer’s protocol (BPS Biosci-
ence, Inc.) [23, 51]. Briefly, the recombinant proteins of 
ACE2 and SARS-CoV-2 Spike S1 were incubated with or 
without the tested compounds at the indicated concen-
trations at room temperature for 1  h. TR-FRET signals 

Fig. 6 Umbelliferone represses the Omicron BA.2‑associated pulmonary inflammation in vivo. A Schematics of the administration process of 
the mouse model. The mouse model was created by bioRENDER. The mice infected with VSVG or Omicron BA.2 pseudoviruses were sacrificed 
after oral administration with sterilized water (Ctrl), 70 mg/kg umbelliferone (UMB), and 10 mg/kg cepharanthine (CEP) for 9 days, and lungs were 
subsequently harvested for the examinations of histopathological changes in H&E staining B, lymphocyte infiltration and TNF‑α protein expression 
in IHC staining B, TMPRSS2 protein in Western blot analysis C, and the mRNA levels of indicated genes in RT‑qPCR D‑K, respectively. * p < 0.05, ** 
p < 0.01, and *** p < 0.001
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were recorded by detecting the emission at a wavelength 
of 620 or 665 nm with the excitation at a wavelength of 
340 nm (Fig. 1D).

In vivo infection
The 8-week-old female BALB/c mice (5 for each group) 
were purchased from LASCO. For pseudovirus infec-
tion, mice were first treated with 2.5 ×  108 PFU of Adv-
hACE2 via intranasal administration. After Adv-hACE2 
infections for 7  days, mice were intranasally delivered 
 105 PFU of VSVG or SARS-CoV-2 pseudo-lentiviruses of 
wild-type spike protein, BA.2, and XBB.1 for 7 days [56]. 
Before 2  days of infections with SARS-CoV-2 pseudo-
lentiviruses, mice were orally fed with water, 70  mg/kg 
umbelliferone, or 10 mg/kg cepharanthine for 9 days (as 
illustrated in Fig. 5A). At the indicated harvest time point, 
mice were euthanized by  CO2 inhalation, and lungs were 
collected for analyzing histopathology, TMPRSS2 expres-
sion, and the mRNA levels of inflammation cytokines in 
immunohistochemistry, western blotting, and RT-qPCR 
analyses, respectively. All the procedures of the animal 
experiments in this study were approved by the Institu-
tional Animal Care and Use Committee of China Medical 
University (CMUIACUC-2021-87) in accordance with 
NIH guidelines.

Western blot analysis
Protein lysates from mouse lungs or Beas 2B lung cells 
prepared in RIPA buffer with protease and phosphatase 
inhibitors were separated in SDS-PAGE and then trans-
ferred to PVDF membranes. The membranes were 
blocked in 5% milk in TBST buffer (TBS with 0.1% 
Tween 20) and were incubated with primary antibod-
ies against TMPRSS2 (ProteinTech), ACE2 (Genetex), 

or β-actin (Sigma-Aldrich) at 4 ℃ for overnight followed 
by the incubation with HRP-conjugated second antibody 
at room temperature for 1  h. After washing with TBST 
buffer, the immunoreactive signals were visualized using 
enhanced chemiluminescence with enhanced chemilu-
minescence (ECL) reagent.

Quantitative reverse transcription PCR (RT‑qPCR)
Total RNA from mouse lungs or Beas 2B lung cells was 
extracted with TRIzol reagent (Invitrogen). The first-
strand cDNA synthesis was started in a 20  μl mixture 
with 500  ng of mRNA, dNTP, Oligo-dT, and distilled 
DEPC  H2O at 65 ℃ for 5  min, and was added with 5X 
First-Strand Buffer, 0.5 M DTT, 200 U/μl M-MLV reverse 
transcriptase (Invitrogen) for the incubation at 37  ℃, 
25 ℃, and 37 ℃ for 2, 10, 50 min, respectively, followed by 
another incubation at 70 ℃ for 15 min. The cDNA prod-
ucts were subjected to real-time PCR analyses with SYBR 
Green Master Mix to detect the gene expressions of 
ACE2, TMPRSS2, inflammatory cytokines, and α-SMA 
with specific primer sets (Additional file 7: Table S1).

Immunohistochemistry (IHC) staining
The sections of paraffin-embedded lung tissue (5  μm) 
were dewaxed by xylene and rehydrated by 100%, 95%, 
80%, and 75% of ethanol. These sections were incubated 
overnight with indicated primary antibodies and then 
were washed to remove unbound primary antibodies. 
These sections are then stained with a polymer HRP-con-
jugated secondary rabbit antibody for 30 min followed by 
a reaction with diaminobenzidine for 2 min. TissueFAXS 
was used to capture the images and perform the quanti-
tative analysis.

Statistical analysis
Data are shown as the mean ± standard error of the mean 
(SEM). A two-tailed t-test was used for comparisons. A 
p-value < 0.05 was considered statistically significant.

Abbreviations
A.argyi   Artemisia argyi
TCM   Traditional Chinese medicine
SARS‑CoV‑2   Severe acute respiratory syndrome coronavirus 2
TMPRSS2   Proteins transmembrane serine protease 2
ACE2   Angiotensin‑converting enzyme 2
S protein   Spike protein
COVID‑19   Coronavirus disease 2019
VOIs   Variant of interests
VOCs   Variant of concerns
WHO   World Health Organization
CoVs   Coronaviruses
FP   Fusion peptide
MERS   Middle east respiratory syndrome
13‑Oxo‑ODE   13‑Oxo‑9E,11E‑octadecadienoic acid

Fig. 7 Schematics of the working model of umbelliferone and 
eriodictyol in inhibiting SARS‑CoV‑2 infection. Umbelliferone and 
eriodictyol attenuate the enzymatic activities of furin and TMPRSS2, 
which cleaves and primes SARS‑CoV‑2 spike protein, suppressing the 
cellular entry of SARS‑CoV‑2 variants. The photograph was created by 
bioRENDER
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13‑HODE   13‑Hydroxyoctadecadienoic acid
LOX   12/15‑Lipoxygenase
PPARγ   Peroxisome proliferation‑activated receptor gamma
CC50   Cytotoxicity concentration 50%
SARS‑CoV‑2 S‑Vpp   SARS‑CoV‑2 S protein‑pseudotyped lentiviral particles
IC50   Inhibitory concentration 50%
3CLpro   3‑Chymotrypsin‑like protease
PLpro   Papain‑like protease
RdRp   RNA‑dependent RNA polymeras
α‑SMA   Alpha‑smooth muscle actin
RBD   Receptor binding domain
FRET   Fluorescence resonance energy transfer
CAM   Camostat
NAP   Naphthofluorescein
GC   GC‑376
GRL   GRL‑0617
GS   GS‑443902
TR‑FRET   Time‑resolved fluorescence resonance energy transfer
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Additional file 1: Fig. S1 The cytotoxicity of A. argyi, eriodictyol, and 
umbelliferone is illustrated in lung epithelial cells. Beas 2B cells were 
treated with A. argyi A eriodictyol B, and umbelliferone C at the indicated 
concentrations for 2 days. Then the cell viability was detected using MTT 
assays. The cytotoxicity concentration 50%value was calculated and 
displayed. Data was shown as mean±SEM from three independent experi‑
ments with triplicates.

Additional file 2: Fig. S2 A. argyi, eriodictyol, and umbelliferone did not 
affect the cellular entry of VSVG‑pseudotyped lentivirus.HEK‑293T cells 
expressing ACE2 were infected with VSVG‑pseudotyped lentivirus encod‑
ing luciferase after treatments with A. argyi, eriodictyol, or umbelliferone 
at the indicated concentrations for 2 days, and the luciferase activities 
were subsequently measured to determine the infection rate with the 
pseudoviruses. Additionally, the cell viability also was examined in CCK‑8 
assays. Camostat, naphthofluorescein, and cepharanthinewere used as 
the positive controls for the inhibitions of TMPRSS2 and furin activities and 
the binding between S protein and ACE2, respectively. Data were shown 
as mean±SEM from three independent experiments with triplicates. *** 
p<0.001.

Additional file 3: Fig. S3 Umbelliferone represses the wild‑type SARS‑
CoV‑2‑associated pulmonary inflammation in vivo.The mice infected with 
VSVG or wild‑type SARS‑CoV‑2 pseudoviruses were sacrificed after oral 
administration with sterilized water, 70 mg/kg umbelliferone, and 10 mg/
kg cepharanthinefor 9 days, and lungs were subsequently harvested for 
the examinations of histopathological changes in H&E staining A lympho‑
cyte infiltration and TNF‑α protein expression in IHC staining A TMPRSS2 
protein in Western blot analysis B and the mRNA levels of indicated genes 
in RT‑qPCR analysis C–J respectively. * p < 0.05, ** p < 0.01, *** p <0.001, 
and **** p < 0.0001.

Additional file 4: Fig. S4 Umbelliferone represses Omicron BA.2‑asso‑
ciated pulmonary inflammation in vivo.The mice infected with VSVG or 
Omicron BA.2 pseudoviruses were sacrificed after oral administration with 
sterilized water, 70 mg/kg umbelliferone, and 10 mg/kg cepharanthinefor 
9 days, and lungs were subsequently harvested for the examinations of 
histopathological changes in H&E staining A lymphocyte infiltration and 
TNF‑α protein expression in IHC staining A TMPRSS2 protein in Western 
blot analysis B and the mRNA levels of indicated genes in RT‑qPCR analysis 
C–J respectively. * p < 0.05, ** p < 0.01, and *** p <0.001. The granuloma 
formation is marked with a circle.

Additional file 5: Fig. S5 Omicron variants strongly elicited the expres‑
sions of inflammatory cytokines and fibrosis markers in vivo.. The mice 
infected with wild‑type SARS‑CoV‑2 and Omicron variantspseudo 
lentiviruses were sacrificed, and total RNA extracted from lung tissues 
were subjected to RT‑qPCR analyses for the mRNA levels of inflammatory 

cytokines, including Tnf A Ifng B Il1b C Il6 D Il10 E and Tgfb1 F and lung 
fibrosis marker Acta2 G. * p < 0.05, ** p < 0.01, and **** p < 0.0001.

Additional file 6: Fig. S6 Eriodictyol suppresses the activity of viral rep‑
lication enzymes. A FRET‑based enzymatic activity assay was performed 
to address the activity of RdRp A  3CLpro B and  PLpro C under treatment 
with eriodictyol at the indicated concentrations. GS‑443902, GC‑376, and 
GRL‑0617were used as the positive controls for the inhibitions of RdRp, 
 3CLpro, and  PLpro activities, respectively. Data were shown as mean±SEM 
from three independent experiments with triplicates. ** p < 0.01 and **** 
p < 0.0001. D Schematics of the working model of eriodictyol in inhibiting 
viral replication by antagonizing RdRp activity. The working model was 
created by bioRENDER.

Additional file 7: Table S1 The primers for determining gene expressions 
in this study.
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