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Abstract 

Background The temporomandibular joint (TMJ) is a complex joint consisting of the condyle, the temporal articu-
lar surface, and the articular disc. Functions such as mastication, swallowing and articulation are accomplished 
by the movements of the TMJ. To date, the TMJ has been studied more extensively, but the types of TMJ cells, their 
differentiation, and their interrelationship during growth and development are still unclear and the study of the TMJ 
is limited. The aim of this study was to establish a molecular cellular atlas of the human embryonic temporomandibu-
lar joint condyle (TMJC) by single-cell RNA sequencing, which will contribute to understanding and solving clinical 
problems.

Results Human embryos at 3 and 4 months of age are an important stage of TMJC development. We performed 
a comprehensive transcriptome analysis of TMJC tissue from human embryos at 3 and 4 months of age using 
single-cell RNA sequencing. A total of 16,624 cells were captured and the gene expression profiles of 15 cell clusters 
in human embryonic TMJC were determined, including 14 known cell types and one previously unknown cell type, 
"transition state cells (TSCs)". Immunofluorescence assays confirmed that TSCs are not the same cell cluster as mesen-
chymal stem cells (MSCs). Pseudotime trajectory and RNA velocity analysis revealed that MSCs transformed into TSCs, 
which further differentiated into osteoblasts, hypertrophic chondrocytes and tenocytes. In addition, chondrocytes 
 (CYTL1high +  THBS1high) from secondary cartilage were detected only in 4-month-old human embryonic TMJC.

Conclusions Our study provides an atlas of differentiation stages of human embryonic TMJC tissue cells, which will 
contribute to an in-depth understanding of the pathophysiology of the TMJC tissue repair process and ultimately 
help to solve clinical problems.
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Background
During human embryonic development, abnormal devel-
opment of the TMJC cartilage can lead to malforma-
tion of the oral and maxillofacial system, and abnormal 
respiratory and masticatory functions [1, 2]. Dysplasia 
development of the TMJ during the embryonic period 
may even lead to the development of congenital TMJ 
disorders. The TMJ is a complex joint that including the 
condyle, temporal articular surface, and the articular disc 
[1, 3]. Functions such as mastication, swallowing, and 
articulation are accomplished through TMJ movements 
[2, 4].

The embryonic development of human TMJ can be 
divided into three important stages: 1. the initial stage 
(8–9  weeks), the temporal and condylar embryonic 
bases appear, the condylar embryonic base begins intra-
chondral osteogenesis; 2. the differentiation stage (10–
20  weeks), the articular disc, joint cavity and synovial 
membrane are formed, secondary cartilage appears, the 
condyle further endochondral osteogenesis; 3. The com-
pletion stage (21  weeks to delivery), the components of 
the TMJ have formed, Meckel’s cartilage disappears, the 
articular disc is further modified, the condyle continues 
endochondral osteogenesis, endochondral osteogen-
esis occurs in the articular fossa, and haematopoietic 
tissue appears. Of these, the differentiation phase (10–
20 weeks) is crucial for the development of the condylar 
tissue of the TMJ [2, 5]. A single-cell atlas of the condylar 
tissue of human embryos at three and four months of age 
was constructed. To our knowledge, this is the first and 
earliest single-cell atlas of human embryonic TMJ condy-
lar tissue.

Single-cell RNA sequencing had been widely used in 
the study of joints. In the mouse knee joint, combining 
segmental bulk- and single-cell RNA sequencing were 
used to define the chondrocyte gene expression signature 
[6]. Single-cell RNA sequencing was used to comparing 
major cell clusters in osteoarthritic, Kashin-Beck disease 
and healthy articular chondrocytes [7]. Single-cell RNA 
sequencing has shown that different subpopulations of 
synovial fibroblasts exist in patients with rheumatoid 
arthritis (RA) [8]. Single-cell RNA sequencing revealed 
the transcriptomic changes in subchondral bone hypo-
plasia of the knee and in cartilage after traumatic frac-
ture [9]. Single-cell RNA sequencing has also identified 
transcriptome heterogeneity and early molecular changes 
associated with post-traumatic osteoarthritis in mouse 
articular chondrocytes [10]. However, studies of single-
cell RNA sequencing of the TMJ, particularly in human 
embryos, have not been reported.

Many key genes and transcription factors were 
reported to be involved in the differentiation of chon-
drocytes and osteoblasts. The common mesenchymal 

progenitors cell of chondrocytes and osteoblasts can 
express Sox9 and Runx2 [11]. The direction of cell dif-
ferentiation toward chondrocytes or osteoblasts depends 
on the expression of Sox9 and Runx2 [12]. Sox9 regulates 
the chondrocytes differentiation [13]. Runx2 is expressed 
in hypertrophic chondrocytes and promotes the expres-
sion of Col10a1 and Mmp13 [14]. Runx2 also promotes 
osteoblast differentiation by regulating the expression of 
Osx [15]. Osx transactivates Col1a1, which is essential for 
the differentiated osteoblasts. Therefore, Osx is essential 
for the differentiation of preosteoblastic cells [15]. More-
over, many signaling pathways have been reported to be 
involved in the differentiation of bone cells. The Indian 
Hedgehog (IHH) signaling pathway promotes chondro-
cyte differentiation toward hypertrophic terminal [16]. 
Conversely, the parathyroid hormone-related peptide 
(PTHrP) signaling pathway prevents premature chondro-
cyte differentiation [17]. In the previous studies, many 
other signaling pathways including PTN [18], BMP [19], 
FGF [20], CXCL [21], MSTN [22] and GH [23] have been 
associated with chondrocyte and osteoblast differentia-
tion. In conclusion, the exploration of key genes, tran-
scription factors and signaling pathways is important for 
understanding the development and differentiation of 
human embryonic TMJC cells.

In recent years, single-cell sequencing techniques have 
been used to study the cell types of tissues and the dif-
ferentiation relationships between cell clusters. To study 
the cell types and differentiation relationships of human 
embryonic TMJC, we completed single-cell sequenc-
ing of TMJC from 3-and 4-month-old human embryos. 
To the best of our knowledge, this is the first and earli-
est single-cell atlas of human embryonic TMJC. In this 
study, we describe the cell types and differentiation rela-
tionships of human embryonic TMJC tissue. This has 
important implications for studying the functional and 
differentiation relationships of cell clusters and the con-
genital TMJ diseases caused by abnormal development of 
human embryonic TMJC.

Results
scRNA‑Seq analysis of human embryonic TMJC cell types
To construct a cellular atlas of the human embryonic 
TMJC in 3 and 4-month-old, we isolated TMJC tis-
sue from two early developmental stages: 7052 cells 
from 3-month-old TMJC and 9572 cells from 4-month-
old TMJC. After cell quality control (Additional file  1: 
Fig. S1b), a total of 16,624 cells were clustered into 15 
cells clusters. We annotated these 15 cell clusters to 
include satellite cells, MSCs, TSCs, tenocytes, myo-
blasts, endothelial cells, hypertrophic chondrocytes, 
erythrocytes, proliferating cells, leukocytes, pericytes, 
chondrocytes  (CYTL1high +  THBS1high), schwann’s cells, 
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osteoblasts and osteoclasts (Fig.  1a and Additional 
file  1: Fig. S5). Unexpectedly, we found no chondro-
cytes cluster from secondary cartilage in the 3-month-
old TMJC. However, a distinct cluster of chondrocytes 
 (CYTL1high +  THBS1high) from secondary cartilage 
appeared in 4-month-old TMJC (Fig. 1b and Additional 
file 1: Fig. S1c). The marker genes used for annotation are 
shown (Additional file  1: Fig. S1d and Additional file  1: 
Fig. S6). The expression of CYTL1 and THBS1 as marker 
genes for chondrocytes clustering is illustrated (Fig. 1c). 
Immunofluorescence staining showed that CYTL1 and 
THBS1 were expressed in 4-month-old TMJC. CYTL1 
and THBS1 were not detected in 3-month-old TMJC 
(Fig.  1d). The top 5 DEGs in each cluster are shown 
(Additional file  1: Fig. S1e). The GO analysis for each 
cluster is also shown (Additional file 1: Fig. S1f ). 

Marker genes used to annotate of hypertrophic chon-
drocytes included COL10A1, MMP13, RUNX2, FGFBP2 
and SCIN (Additional file  2: Fig. S2a, 2b). Immuno-
fluorescence staining showed FGFBP2 and SCIN were 
expressed in hypertrophic chondrocytes from 3-month-
old and 4-month-old TMJC (Additional file 2: Fig. S2c).

Subpopulation analysis of TSCs
In this study, we identified TSCs as a specific cell cluster. 
Subpopulation analysis revealed that TSCs consisted of 5 
subpopulations (Fig. 2a). The proportions of the subpop-
ulations were osteoblasts (67.9%), preosteoblasts (19.0%), 
hypertrophic chondrocytes (7.1%), chondrocytes (3.0%) 
and MSCs (2.9%) (Fig.  2b). Five subpopulations were 
annotated on the reported cell markers (Additional file 1: 
Fig. S1g). As marker genes, CAPN6 expression in MSCs 
and PTN expression in TSCs are illustrated separately 
(Fig. 2c, d). Immunofluorescence staining showed no co-
localization and expression of CAPN6 and PTN in dif-
ferent cells of 3 and 4-month-old TMJC (Fig. 2e). These 
results indicate the presence of MSCs and TSCs in 3 and 
4-month-old TMJCs. These results also further confirm 
that MSCs and TSCs are distinct cell types in human 
embryonic TMJC (Fig. 2e).

Monocle3 and RNA velocity analysis of cell differentiation 
relationships
In order to clarify the differentiation relationships 
between TMJC cells, 15 TMJC cell clusters were cal-
culated and divided into 8 differentiation trajectories 
based on Monocle3 analysis. Clear differentiation path-
ways could be found between MSCs, TSCs, tenocytes, 
hypertrophic chondrocytes and osteoblasts (Additional 
file  3: Fig. S3a). We further focused on the differentia-
tion relationships between these five cell clusters. It is 
reasonable to designate the MSC cluster as the root in 
the pseudotime trajectory pathway. The differentiation 

relationships between these five cell clusters were iden-
tified. MSCs were positioned as the origin and differen-
tiated into TSCs. TSCs could further differentiate into 
tenocytes, hypertrophic chondrocytes and osteoblasts, 
respectively (Fig.  3a). Pseudotime analysis of 3- and 
4-month-old TMJC cells is also shown (Additional file 3: 
Fig. S3c). In addition, we used RNA velocity analysis to 
look at the extent and orientation of MSCs, TSCs, teno-
cytes, hypertrophic chondrocytes and osteoblasts. The 
arrow directions showed that MSCs and TSCs are highly 
heterogeneous and are thought to be the starting point 
for differentiation in each direction. The arrowheads of 
the tenocytes, hypertrophic chondrocytes and osteo-
blasts are oriented in the same direction, indicating that 
these three clusters have a stable state and appear to dif-
ferentiate from the TSCs (Fig.  3b). RNA velocity analy-
sis of 15 TMJC cell clusters and 5 cell clusters from 
3- and 4-month-old TMJCs are also shown (Additional 
file  3: Fig. S3b, d), and these results are consistent with 
the monocle3 analysis. Expression of key genes associ-
ated with chondrocyte and osteoblast differentiation 
were illustrated. These genes included RUNX2, SOX9, 
MMP13, SOST, VEGFA, COL10A1, MAF, CCDC80, and 
SYNE2 (Fig. 3c).

CellChat analysis of signaling pathways in cell cluster 
differentiation
To analyze cell–cell interactions and potential signal-
ing pathways, we screened known cell–cell exchanges 
using CellChat. Complex networks of cell–cell interac-
tions were identified in 15 cell clusters (Fig. 4a and Addi-
tional file 4: Fig. S4a). Notably, the FGF signaling pathway 
inferred by CellChat was highly enriched in MSCs, TSCs, 
hypertrophic chondrocytes osteoblasts and tenocytes 
(Fig. 4b and Additional file 4: Fig. S4b). We further iden-
tified FGF7-FGFR1 as a major contributor to the FGF 
signaling pathway (Fig.  4c). We further investigated the 
expression of molecules involved in FGF7-FGFR1 and 
found that FGFR1 was mainly expressed in TSCs, teno-
cytes, hypertrophic chondrocytes and osteoblasts (Addi-
tional file  4: Fig. S4c). Thus, FGF7-FGFR1 is the main 
signaling pathway mediating cell–cell communication 
between MSCs, TSCs, hypertrophic chondrocytes, oste-
oblasts and tenocytes (Fig. 4d and Additional file 4: Fig. 
S4d). In addition, we also demonstrated the other key 
signaling pathways with the function of “identify Com-
munication Patterns” in CellChat. Among the patterns of 
outgoing communication in secretory cells, TSCs, hyper-
trophic chondrocytes and osteoblasts belong to pattern 1. 
Pattern 1 contains PTN, THBS, ANGPTL, FGF, TENAS-
CIN, CHAD, CADM, CDH, BSP, BMP, HSPG, OSM, 
ncWNT, RANKL, ACTIVIN, SEMA4, IL16, and DMP1 
and other signaling pathways. Meanwhile, incoming 
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Fig. 1 Overview of the scRNA sequencing of human embryonic TMJC. a The 15 cell clusters identified in human embryonic TMJC using UMAP. b 
The cell clusters were identified in 3 and 4-month-old human embryonic TMJC. c The expression of CYTL1 and THBS1 in each cluster of human 
embryonic TMJC. d The immunofluorescent staining of CYTL1 and THBS1 in 3 and 4-month-old human embryonic TMJC, Scale bar = 1 mm 
and 50 µm
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Fig. 2 Subpopulation analysis of TSCs. a The five subpopulations of TSCs were visualized using UMAP. b The cell proportions of subpopulations 
in TSCs. c The expression of CAPN6 in each cluster of human embryonic TMJC. d The expression of PTN in each cluster of human embryonic TMJC. e 
Immunofluorescence staining of CAPN6 and PTN in 3 and 4-month-old human embryonic TMJC, Scale bar = 1 mm and 50 µm
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Fig. 3 The differentiation relationship analysis of MSCs, TSCs, tenocytes, hypertrophic chondrocytes and osteoblasts. a The differentiation 
relationship among MSCs, TSCs, tenocytes, hypertrophic chondrocytes and osteoblasts based on Monocle3 analysis. b The differentiation 
relationship among these five clusters based on RNA velocity analysis. c The expression of key genes including RUNX2, SOX9, MMP13, SOST, VEGFA, 
COL10A1, MAF, CCDC80 and SYNE2 among the five clusters
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Fig. 4 CellChat analysis of human embryonic TMJC clusters. a The number of ligand-receptor pairs in 15 cell clusters. b FGF signaling pathway 
networks among 15 cell clusters. c The contribution of each ligand-receptor pairs of FGF signaling pathway. d FGF7-FGFR1 signaling pathway 
networks among 15 cell clusters. e The analysis of outgoing communication patterns of secreting cells and incoming communication patterns 
of target cells among 15 cell clusters
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communication patterns of target cells indicated that 
TSCs, hypertrophic chondrocytes and osteoblasts were 
in pattern 1, regulated by FGF, EPHA, MIF, BMP, GRN, 
CXCL, MSTN, ADGRE5, RANKL, ACTIVIN, SEMA4, 
CNTN, PROS, SEMA6 and GH (Fig.  4e and Additional 
file 4: Fig. S4e).

Analysis of transcription factors in cells cluster 
differentiation
Figure  5a shows the activity matrix of binary regula-
tors. SP9, SHOX2, TBX18, PLAGL1, PAX9 and SRY are 
turned on in MSCs. TCF7, DLX6, BCL11A, PRRX2 and 
MSX1 are turned on in TSCs. MKX, ETV4, DLX1, ALX4 
and USF1 are turned on in tenocytes. FOXA2, TRPS1, 
SOX6, SIX3 and FOXA3 are turned on in hypertrophic 
chondrocytes. ZBTB7C, DLX3, IRX5 and TBX2 are 
turned on in osteoblasts. Strikingly, all 483 regulons were 
organized into 13 modules. Representative regulators and 
cell clusters were identified in each module. For example, 
module 3 consisted of hypertrophic chondrocytes and 
chondrocytes, containing regulons of ERF, BHL, HE41, 
FOXC1, HE40 and ATF2. Module 5 was organized by 
MSCs and TSCs and included ZNF607, MSX1, ZNF157, 
GLI2 and ALX4. Module 10 consisted of hypertrophic 
chondrocytes and osteoblasts, containing regulators 
of PHOX2A, ESRRA, PGAM2 and SOX8 (Fig.  5c). The 
heatmap shows that many common regulators are turned 
on between MSCs and TSCs (Fig. 5b). Interaction map-
ping of transcription factor networks showed that PAX1 
and PAX9 are important regulators of chondrocyte dif-
ferentiation and are commonly switched on between 
MSCs and TSCs. NRF1, TFEB, ALX4 and DLX2 are 
associated with the differentiation of MSCs into osteo-
blasts and also commonly switched on between MSCs 
and TSCs. In addition, sequences of promoter regions of 
transcription factors were shown to target genes, includ-
ing PAX1, PAX9, NRF1, TFEB, ALX4 and DLX2 (Fig. 5d).

Discussion
During the embryonic period, the development of the 
TMJ lags behind that of other joints [24]. As a result, at 
birth, the TMJ remains largely immature. Developmental 
disorders of the TMJ such as hypoplasia and aplasia are 
characterized by TMJ dysfunction [25]. In addition, there 
are many causes of TMJ growth disorders and abnormali-
ties. Growth disorders of TMJ development may occur 
in utero and lead to contributions such as hyperplasia 
or hypoplasia of the TMJ. Congenital abnormalities of 
the TMJ can be divided into three categories, including 
hypoplasia or aplasia of the TMJ, hyperplasia and bifid-
ity [24, 26]. It is important to study the development of 

the condyle for treating congenital abnormalities of the 
condyle.

Single-cell RNA sequencing was used to identify new 
cell clusters and cell function in the joint. Seven clusters 
of articular chondrocytes in human OA cartilage have 
been identified by single-cell RNA sequencing [27]. Dif-
ferent subtypes of cells, particularly macrophages, have 
been shown to have pro- or anti-inflammatory effects in 
the joint depending on polarization [28, 29]. In patients 
with rheumatoid arthritis (RA), 13 distinct cell subpopu-
lations were identified within the synovium by single-
cell RNA sequencing [30]. In the adult knee synovium, 
the Gdf5-lineage cell cluster contains fibroblasts that 
become pathogenic in inflammatory arthritis [31]. In the 
articular cartilage of the knee joint of healthy mice, nine 
chondrocyte subtypes were identified by single-cell RNA 
sequencing [10]. Single-cell RNA sequencing was used 
to determine the differentiation trajectory and molecu-
lar regulation of fibroblast and progenitor cell clusters in 
the synovial membrane of knee joints of steady-state and 
injured mouse knees [32]. In addition to the common cell 
populations of Osteoblast, Chondrocyte, Tenocyte, there 
are cell population difference between the synovial mem-
brane of the knee joints and TMJC.

To better understand the cell types and differentiation 
relationships of the human embryonic TMJC, we con-
structed a cellular atlas of the 3- and 4-month-old TMJC 
by single-cell sequencing. In previous reports, many 
studies have revealed the development of TMJ through 
imaging and morphological studies [5]. To date, there 
have been no studies on the cellular level of the human 
embryonic TMJC. This is the first and earliest atlas of the 
cellular development of the human embryonic TMJC. We 
have identified 15 cell clusters (Fig. 1a). We found that the 
chondrocytes cluster  (CYTL1high +  THBS1high) was not 
yet differentiated in 3-month-old TMJC. However, a dis-
tinct chondrocytes population emerged in 4-month-old 
TMJC (Fig. 1b and Additional file 1: Fig. S1c). We there-
fore, hypothesize that chondrocytes have differentiated 
in 4-month-old TMJC. Chondrocytes differentiate later 
than other cell clusters, suggesting that chondrocytes dif-
ferentiation is completed at a later stage of TMJC devel-
opment. This phenomenon is the first to be reported in 
the development of human embryonic TMJC.

We identified TSCs as a new cell cluster that can be 
divided into five subpopulations including osteoblasts, 
preosteoblasts, hypertrophic chondrocytes, chondro-
cytes and MSCs (Fig.  2a). The different composition of 
TSCs suggests that TSCs possess multiple differentia-
tion potentials. Based on this prediction, three new dif-
ferentiation lineages related to TSCs were proposed 
by trajectory and RNA velocity analysis. MSCs differ-
entiate into TSCs. TSCs can further differentiate into 



Page 9 of 16Zhu et al. Cell & Bioscience          (2023) 13:130  

a

d

b

Module 1 Schwann cells, Pericytes SOX2, SOX3, SOX10, 
PRDM16, HOXD9

Module 2 Mesenchymal stem cells,
Endothelial cells

MEOX2, FOS, GATA6

Module 3 Hypertrophic chondrocytes,
Chondrocytes

ERF, BHL, HE41, FOXC1, 
HE40, ATF2

Module 4 Leukocytes, Osteoclasts CEBPE, POXK1, POSL2

Module 5 Mesenchymal stem cells,
Transition state cells

ZNF607, MSX1, ZNF157, 
GLI2, ALX4

Module 6 Transition state cells,
Tenocytes

NFATC4, BCL11A, MKX, 
TCF3

Module 7 Endothelial cells, Myoblasts,
Schwann cells, 

SOX7, SOX17, TBX19, 
GBX2, RBBP5, AEBP2

Module 8 Erythrocytes, Pericytes NFE2, GATA1, KLF1, 
HEYL, ZNF808

Module 9 Chondrocytes, Pericytes ELF2, TAF7, ATF3, 
STAT5B, ELK1

Module 10 Osteoblasts,
Hypertrophic chondrocytes

PHOX2A, ESRRA, 
PGAM2, SOX8

Module 11 Satellite cells, Proliferating cells, 
Myoblasts

SP9, CREB5, MSC, 
PAX7, PITX3, NR0B1

Module 12 Myoblasts, Proliferating cells MYOD1, TGIF1, 
FOXM1, SPDEF

Module 13 Proliferating cells, Erythrocytes,
Myoblasts

E2F7, E2F8, TFDP1,
TFDP2, ZXDB, ETV7

c

Fig. 5 Transcription factors analysis among human embryonic TMJC clusters. a The regulon activity analysis showed the on/off of the specific 
regulons in each cluster. b Heatmap showed the common regulons were turned on between MSCs and TSCs. c Modules analysis of cell clusters 
and common regulons. d Interaction mapping of transcription factors networks showed common regulons between MSCs and TSCs
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hypertrophic chondrocytes, osteoblasts and tenocytes 
(Fig. 3a, b). MSCs have been reported to differentiate into 
tenocytes [33]. Contrast to previous reports [33], teno-
cytes were not differentiated directly from MSCs, but 
from TSCs from human embryonic TMJC (Fig. 3a). The 
stature-deficient homeobox 2 (Shox2) has been reported 
to be expressed in the developing TMJ. Overexpres-
sion of Shox2 will result in congenital hypoplasia in the 
TMJ in mice. Furthermore, deletion of Shox2 also leads 
to hypoplasia in the TMJ of mice. In our study, SHOX2 
was specially expressed in MSCs of human embryonic 
TMJC. These results suggest that SHOX2 plays an impor-
tant role in the function and early differentiation of the 
MSCs in human embryonic TMJC. During develop-
ment, hypertrophic chondrocytes and osteoblasts have 
been reported as separate cell lines [11]. They are differ-
entiated from osteochondro-progenitors cells. Sox9 and 
Runx2 are highly expressed in osteochondro-progenitors 
cells [34]. In the present study, similar to osteochondro-
progenitors, TSCs highly expressed Sox9 and Runx2 
and were able to differentiate into hypertrophic chon-
drocytes and osteoblasts, respectively (Fig.  3c). In addi-
tion, RUNX2 [35] has been reported to be involved in 
the trans-differentiation of chondrocytes to osteoblasts 
and to promoted osteoblast differentiation. RUNX2 is 
highly expressed in the differentiation pathways from 
TSCs to hypertrophic chondrocytes and from TSCs to 
osteoblasts. SOX9 has been reported to be a key tran-
scriptional regulator of chondrogenesis [36]. MMP13 has 
been implicated in osteogenesis [37]. SOX9 and MMP13 
are highly expressed in the differentiation of TSCs to 
hypertrophic chondrocytes. SOST has been implicated in 
the differentiation of bone formation [38]. In the present 
study, SOST was highly expressed in osteoclasts. Other 
key genes include VEGFA [39], COL10A1 [40], MAF 
[41], CCDC80 [42] and SYNE2 [43] which are associated 
with bone proliferation and differentiation and are widely 
expressed in MSCs, TSCs, tenocytes, hypertrophic chon-
drocytes and osteoblasts. These results suggest the key 
genes associated with the differentiation of chondro-
cytes and osteoblasts are expressed in the TMJC clusters 
(Fig. 3c). These genes can promote the differentiation of 
human embryonic TMJC cells. Interestingly, we found 
that TSCs also have the potential ability to differenti-
ate into tenocytes. Thus, as intermediate cells, between 
MSCs and other cell clusters, TSCs are critical for the 
development of human embryonic TMJCs. Although 
we have established the presence of TSCs in the human 
embryonic TMJC (Fig.  2e), further experiments are 
required to reveal their detailed functions.

We performed an analysis of cell–cell communica-
tion between the TMJC cell clusters. We found that the 
FGF signaling pathway mediated the communication 

between these five clusters (Fig.  4b). We then analyzed 
the strength of the FGF signaling pathway and found 
that FGF7-FGFR1 was the main pathway (Fig.  4c, d). 
FGF7 has been reported to promote bone formation by 
increasing osteogenesis [44]. FGF7 also promotes osteo-
genic differentiation by regulating the expression of the 
β-catenin and Runx2 signaling pathways [45]. In the pre-
sent study, as a source cell cluster, TSCs communicated 
with target cell cluster of MSCs via the FGF7-FGFR1 
signaling pathway. In addition, as source cell clusters, 
hypertrophic chondrocytes, osteoblasts and tenocytes 
also communicate with the target cell clusters of TSCs 
via the FGF7-FGFR1 signaling pathway, respectively. 
Thus, as the primary signaling pathway, we determined 
that FGF7-FGFR1 mediated the communication and dif-
ferentiation among MSCs, TSCs, hypertrophic chondro-
cytes, osteoblasts and tenocytes. In addition, we explored 
other signaling pathways between TSCs, hypertrophic 
chondrocytes and osteoblasts. Notably, we screened 
many chondrocyte and osteoblast differentiation signal-
ing pathways, including PTN [18], BMP [19], TENAS-
CIN [46], ACTIVIN [47], RANKL [47], DMP1 [48], MK 
[49], FGF [20], GRN [50], CXCL [21], MSTN [22] and 
GH [23]. These reported signaling pathways regulating 
bone differentiation may also play an important role in 
the differentiation of TSCs, hypertrophic chondrocytes 
and osteoblasts. In addition, we screened other signaling 
pathways including THBS, ANGPTL, CHAD, CADM, 
CDH, BSP, HSPG, OSM, ncWNT, SEMA4, IL16, which 
also mediate cellular communication in TSCs, hyper-
trophic chondrocytes and osteoblasts (Fig. 4e). The role 
of these signaling pathways in cell differentiation is elu-
sive and needs to be further explored.

In addition to cell–cell communication analysis, tran-
scription factor analysis revealed that some specific 
transcription factors were turned on in the cell clusters 
(Fig.  5a). For example, SHOX2 [51], TBX18 [52] and 
PAX9 [53], which are associated with ossification and 
chondroitin differentiation, are turned on in MSCs. TCF7 
[20], DLX6 [54] and MSX1 [55], which are reported to be 
involved in ossification and chondroitin differentiation, 
are turned on in TSCs. MKX [56] which is associated 
with tenocytes differentiation, is turned on in tenocytes. 
FOXA2 [57], TRPS1 [58], SOX6 [59] and FOXA3 [60], 
which are associated with chondrocyte differentiation 
and hypertrophy, are turned on in hypertrophic chondro-
cytes. DLX3 [61] and IRX5 [62] which are associated with 
the ossification and differentiation, are turned on in oste-
oblasts. These results suggest that transcription factors 
that are specifically switched on are essential for main-
taining specific functions of the cell cluster. Furthermore, 
module analysis revealed that common regulatory factors 
were switched on in different cell clusters (Fig.  5c). For 
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example, Module 3 consists of hypertrophic chondro-
cytes and chondrocytes containing common regulators 
of ERF [63], FOXC1 [64] and ATF2 [65] which have been 
reported to be involved in bone formation and osteo-
genic differentiation. Module 10 consists of hypertrophic 
chondrocytes and osteoblasts and contains co-regulators 
of SOX8 [66] and ESRRA [67] which are important reg-
ulators of chondrogenic and osteoblast differentiation 
(Fig. 5c). Notably, co-regulators including PAX9 [53], SP9 
and TCF7 [20, 68] were switched on between MSCs and 
TSCs. Regulon module analysis showed MSCs and TSCs 
were in module 5. 32 co-regulators were further switched 
on between MSCs and TSCs. Among these co-regulators, 
PAX1 [69] and PAX9 are important regulators of chon-
drocyte differentiation. NRF1 [70], TFEB [71], ALX4 
[72] and DLX2 [73] are associated with the differentia-
tion of MSCs into osteoblasts (Fig.  5d). These co-regu-
lators turned on between MSCs and TSCs may mediate 
the differentiation from MSCs to TSCs and further to 
tenocytes, hypertrophic chondrocytes, and osteoblasts, 
respectively.

Conclusions
In summary, our data provided the first and earliest cel-
lular atlas of the human embryonic TMJC. The present 
results show that chondrocytes from secondary carti-
lage differentiate in 4-month-old TMJC and that chon-
drocytes differentiate later than other cell clusters. Our 
results also demonstrated the differentiation relation-
ships and underlying mechanisms of differentiation 
between MSCs, TSCs, hypertrophic chondrocytes, oste-
oblasts and tenocytes by advanced analysis of single-
cell sequencing (Fig.  6). This study is an indispensable 
resource for studying the development and differentia-
tion of human embryonic TMJC. Our findings also have 
important implications for the study of cellular mecha-
nisms of temporomandibular joint disorders (TMD), 
which are caused by abnormal embryonic development 
of the TMJC.

Methods
Collection of human embryonic TMJC
This work was reviewed and approved by the Institu-
tional Review Boards of Nantong University Hospital 
(2020-K013). Parents of study participants signed an 
Informed consent form. For scRNA-seq, TMJC tissue 
was isolated by surgical excision. The entire mandible, 
including the mandibular body and TMJ (condyle, joint 
capsule, joint disc, part of fibrous ligament and tem-
poro-articular fossa), was isolated along the mandibular 
labiobuccal migration. The mandibular body, condyle 
and coracoid process were separated from the rest of the 
TMJ. The condyle is separated from the mandibular body 

through the neck of the condyle (Additional file  1: Fig. 
S1a). The left condyle was cut into pieces as far as possi-
ble and placed in tissue preservation solution (Singleron 
Biotechnologies, Nanjing, China), and then transported 
to the laboratory by cold chain for cell dissociation and 
single cell sequencing.

Preparation of single‑cell suspensions
The dissociation of human embryonic TMJC was per-
formed according to a previous study [74]. Briefly, the 
isolated TMJC tissue was cut into 2–3 mm pieces. Tissue 
pieces were washed with Hanks Balanced Salt Solution 
(HBSS). These tissue fragments were spin-digested for 15 
using tissue dissociation solution (Singleron Biotechnol-
ogies, Nanjing, China). The pieces were filtered through 
a sterile 40-μm filter (Corning, NY, USA) and centrifuged 
at 150  g for 5  min. Erythrocytes were removed using a 
lysis reagent (Singleron Biotechnologies, Nanjing, China) 
for 10  min. Afterwards, cells were resuspended in PBS 
and stained with trypan blue (T6146, Sigma, Burlington, 
VT, USA). Cell viability was assessed using a TC20 auto-
mated cell counter (Bio-Rad, Hercules, CA, USA).

Library preparation and data pre‑processing
A cell suspension at a concentration of 1 ×  105 cells/mL 
of was then added to the microfluidic plate. The scRNA-
seq libraries were constructed using the Single-cell RNA 
Library Kit (Singleron Biotechnologies, Nanjing, China). 
The constructed libraries were pooled onto an Illumina 
HiSeq × 10 sequencer machine for sequencing. Raw reads 
were processed by the CeleScope (https:// github. com/ 
singl eron- RD/ CeleS cope) pipeline. First, low quality raw 
reads and adaptor sequences were trimmed by fastqc 
(version 0.11.7) and cutadapt (version 1.17). Reads were 
mapped to GRCm38 (Ensembl V. 92 annotation) using 
STAR (version 020201). Gene counts and UMI counts 
were calculated using FeatureCounts (version 1.6.2). A 
series of analysis procedures were completed by Cele-
Scope and a gene expression matrix was generated.

Dimension‑reduction and clustering analysis
The dimension reduction and cell clustering were per-
formed in R using the Seurat version 4 package (https:// 
satij alab. org/ seurat/) [75]. Sctransform (SCT) (https:// 
github. com/ Chris tophH/ sctra nsform) was used to 
remove batch effects and to normalize the expression 
data. The function of subset was used to extract a sub-
set of in Seurat objects which meet the requirements 
of quality control (nFeature_RNA > 200 & nFeature_
RNA < 4000 & percent.mt < 50 & nCount_RNA < 20,000). 
The low-quality cells were filtered out and did not par-
ticipate in the downstream data analysis. The first 3000 
variable genes were selected for sample data integration. 

https://github.com/singleron-RD/CeleScope
https://github.com/singleron-RD/CeleScope
https://satijalab.org/seurat/
https://satijalab.org/seurat/
https://github.com/ChristophH/sctransform
https://github.com/ChristophH/sctransform
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Cell clusters were separated suing “FindNeighbors” in 50 
dimensions and “FindClusters” at a resolution of 0.25. 
Subcluster analyses of TSCs was set up using a resolution 
of 0.1. The clusters were visualized using the Uniform 

Manifold Approximation and Projection (UMAP) algo-
rithm. For the analysis of differentially expressed genes 
(DEGs), Seurat’s “FindMarkers” was used. Genes that 
were more than 25% expressed in their clusters and had 

Fig. 6 Overview of the cell types and differentiation relationship among human embryonic TMJC cells
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a mean log (Fold Change) greater than 0.25 were defined 
as DEGs.

Cell type annotation and gene enrichment analyses
Cell types were annotated based on the expression of 
marker genes known from published literature. Subse-
quently, gene enrichment was performed using cluster-
Profiler v3.6.1 (https:// bioco nduct or. org/ packa ges/3. 11/ 
bioc/ html/ clust erPro filer. html) [76]. Biological process 
(BP) with p_adj value < 0.05 were defined as significantly 
enriched. GO classification was screened from the org.
Hs.eg.db database (https:// bioco nduct or. org/ packa ges/3. 
11/ data/ annot ation/ html/ org. Hs. eg. db. html).

Trajectory analysis and RNA velocity
The pseudotime trajectories of TMJC cell clusters were 
analyzed by Monocle 3 (https:// cole- trapn elllab. github. 
io/ monoc le3). Highly variable genes were selected from 
each cluster. Trajectories were visualized using the 
UMAP method. Finally, cells were sorted according to 
developmental and differentiation relationships. For 
RNA velocity analyses, the BAM file containing each 
cluster was first processed into a loom file. Subsequently, 
the loom files were processed as input into spliced and 
unspliced matrices. Finally, the results were visualized 
using the UMAP method.

Analysis of cell–cell communication
Cell–cell communication networks for ligand-receptor 
interaction were analyzed using CellChat (http:// www. 
cellc hat. org/; last accessed on May 10, 2021) [77]. A total 
of 32,491 ligand-receptor pairs were screened from the 
“CellChatDB.human” database. Using the “compute-
CommunProb” and “aggregateNet” in CellChat, the 
number of ligand-receptor interactions and the strength 
of interactions in the TMJC cell population were calcu-
lated. The “computeCommunProbPathway” function 
was used to determine the major signaling pathways. 
The outgoing communication patterns of secretory cells 
and the incoming communication patterns of target cells 
were analyzed using “identifyCommunicationPatterns” 
function.

Transcription factors analysis
Transcription factors were analyzed using a python ver-
sion of Single-Cell Regulatory Network Inference and 
Clustering (pySCENIC) [78]. Cell-type-specific regulons 
were screened using the regulon specificity score (RSS) 
proposed in a previous study [79]. Regulon module anal-
yses were performed using the Connection Specificity 

Index (CSI) parameter which has been reported in pre-
vious studies [80]. Regulatory networks associated with 
MSCs and TSCs were analyzed using Cytoscape [81].

Immunofluorescent staining
The procedure for immunofluorescence was based on a 
previous studies [74]. Briefly, human embryonic TMJC 
was fixed in 4% paraformaldehyde for 24  h at 4 ℃. The 
samples were demineralized at 4  ℃ gently shaking for 
2  weeks in 4% EDTA in PBS.A 4-μm-thick tissue sec-
tion was cut from TMJC tissue. Antigen retrieval was 
performed using 10 mM sodium citrate buffer (pH 6.0). 
Sections were then blocked with 5% donkey serum con-
taining 0.1% Triton X-100 in 2% BSA. Diluted primary 
antibodies were added to the sections and stored over-
night at 4 ℃. Sections were further incubated in the dark 
with the secondary antibody for 1 h at room temperature. 
Cell nuclei were stained with DAPI for 5 min. The images 
were captured with Leica SP8 laser scanning confocal 
microscopy (Leica TCSSP8, Leica).

The primary antibodies including Calpain 6 (10,120-
1-AP, Proteintech), FGFBP2 (13,254-1-AP, Proteintech), 
SCIN (11,579-1-AP, Proteintech), CCR2 (16,153–1-AP, 
Proteintech), CYTL1 (15,856-1-AP, Proteintech), Cal-
pain 6 (MA5-24,733, Invitrogen), PTN (27,117-1-AP, 
Proteintech), PTN (H00005764-M01, Novus Biologicals), 
THBS1 (PA5-102,583, Invitrogen), THBS1 (18,304-1-AP, 
Proteintech), were used in this study. The second anti-
bodies including Alexa  Fluor™ 488 (A-21206, Invitrogen) 
and Alexa  Fluor™ 568 (A10037, Invitrogen) were used in 
this study.
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Additional file 1: Fig. S1. Quality control of scRNA-seq and GO enrich-
ment analysis. a The separation of TMJC. b The analysis of the number of 
genes, counts and percentage of mitochondria. c The statistics of cells 
in each cluster from 3 and 4-month-old human embryonic TMJC. d The 
markers genes for the annotation which were from pieces of literature. e 
The top five DEGs of each cluster in human embryonic TMJC. f GO analysis 
of each cluster in human embryonic TMJC. g The marker genes were used 
for the annotation of TSCs.

Additional file 2: Fig. S2. The immunofluorescent staining in 3 and 
4-month-old human embryonic TMJC. a The expression of COL10A1, 
MMP13 and RUNX2 in each cluster of human embryonic TMJC. b The 
expression of FGFBP2 and SCIN in each cluster of human embryonic TMJC. 
c Immunofluorescence staining of FGFBP2 and SCIN in 3 and 4-month-old 
human embryonic TMJC, Scale bar = 1 mm and 50 µm.

Additional file 3: Fig. S3. The differentiation relationship among human 
embryonic TMJC cells. a The differentiation relationship among 15 TMJC 
cell clusters based on Monocle3 analysis. b The RNA velocity analysis 
of 15 TMJC cell clusters. c The pseudotime analysis among MSCs, TSCs, 
tenocytes, hypertrophic chondrocytes and osteoblasts of the 3 and 
4-month-old human embryonic TMJC. d The RNA velocity analysis among 
MSCs, TSCs, tenocytes, hypertrophic chondrocytes and osteoblasts of the 
3 and 4-month-old human embryonic TMJC.
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Additional file 4: Fig. S4. Cell Chat analysis of human embryonic TMJC 
cell clusters. a The interaction strength analysis of ligand-receptor pairs in 
15 cell clusters. b FGF signaling pathway networks among 15 cell clusters. 
c The expression analysis of FGFR1 among 15 cell clusters. d FGF7-FGFR1 
signaling pathway networks among 15 cell clusters. e The analysis of 
outgoing signaling patterns and incoming signaling patterns among 15 
cell clusters.

Additional file 5.  

Additional file 6.  
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