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Abstract 

Background Syringomyelia is a cerebrospinal fluid (CSF) disorder resulted in separation of pain and temperature, 
dilation of central canal and formation of syrinx in central canal. It is unclear about mechanisms of the dilation and 
syrinx formation. We aimed to investigate roles of ependymal cells lining central canal on the dilation, trying to reduce 
syrinx formation in central canal.

Methods We employed 78 Sprague–Dawley (SD) rats totally with syringomyelia to detect the contribution of 
ependymal cells to the dilation of central canal. Immunofluorescence was used to examine the activation of ependy-
mal cells in 54 syringomyelia rat models. BrdU was used to indicate the proliferation of ependymal cells through 
intraperitoneal administration in 6 syringomyelia rat models. 18 rats with syringomyelia were injected with SIS3, an 
inhibitor of TGFβR-Smad3, and rats injected with DMSO  were used as control. Among the 18 rats, 12 rats were used 
for observation of syrinx following SIS3 or DMSO administration by using magnetic resonance imaging (MRI) on day 
14 and day 30 under syringomyelia without decompression. All the data were expressed as mean ± standard devia-
tion (mean ± SD). Differences between groups were compared using the two-tailed Student’s t-test or ANOVA. Differ-
ences were considered significant when *p < 0.05.

Results Our study showed the dilation and protrusions of central canal on day 5 and enlargement from day 14 after 
syringomyelia induction in rats with activation of ependymal cells lining central canal. Moreover, the ependymal cells 
contributed to protrusion formation possibly through migration along with central canal. Furthermore, suppression of 
TGFβR-Smad3 which was crucial for migration reversed the size of syrnix in central canal without treatment of decom-
pression, suggesting TGFβR-Smad3 signal might be key for dilation of central canal and formation of syrinx.

Conclusions The size of syrinx was decreased after SIS3 administration without decompression. Our study depicted 
the mechanisms of syrinx formation and suggested TGFβR-Smad3 signal might be key for dilation of central canal and 
formation of syrinx.
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Background
Syringomyelia is a disease characterized by cystic cavities 
composed of fluid similar to cerebrospinal fluid (CSF) or 
extracellular fluid in the spinal cord, representing dilation 
of the central canal, damaging the spinal nerves and lead-
ing to weakness, pain, and paralysis [1–3]. Various fac-
tors lead to syringomyelia, such as compression of spinal 
tissue, spinal tumor, arachnoiditis, and choroid plexus in 
the central canal [4, 5]. Syringomyelia is most often asso-
ciated with Chiari malformation, which results from CSF 
outflow from the fourth ventricle, diverting the CSF pulse 
waves into the central canal [6]. This theory is named 
the “water-hammer theory” [7]. Chang and Nakagawa 
hypothesized that the loss of shock-absorbing capacity of 
the cisterna magna and subsequent increase in the pres-
sure of the central canal wall resulted in syrinx formation 
in Chiari I malformation [8]. In rodent models of syringo-
myelia, rapid flow is observed from the spinal subarach-
noid space into the perivascular spaces [9]. Syringomyelia 
results in increased fluid retention in the spinal cord and 
obstruction of the subarachnoid space, which might be 
a critical step in the development of the disease [10, 11]. 
Fluid outflow may be an important consideration in the 
pathogenesis of syringomyelia [12]; however, the mecha-
nisms underlying the formation and enlargement of a 
syrinx or the source of the fluid are yet unclear.

The therapeutic decision is based on the resolution 
of the intrinsic mechanisms leading to syringomy-
elia [13]. Clinically, different approaches have been pro-
posed to treat syringomyelia, including decompression 
of hindbrain disorders when syringomyelia is associ-
ated with Chiari malformation and resection of spinal 
tumors and intramedullary tumor, respectively [3, 13, 
14]. Rarely, syringomyelia can resolve spontaneously via 
yet unknown mechanisms [15]. Cell transplantation has 
recently gained much attention as a potential treatment 
modality for syringomyelia [16]. A recent study reported 
a patient who suffered from syringomyelia-induced pain 
and received a transplant of uncultured umbilical cord-
derived mesenchymal stem cells (MSCs) combined with 
surgery to manage Chiari malformation. Even though the 
initial purpose of the treatment was relieving pain, after 
two years of the stem cells treatment, the patient’s cavity 
had almost completely disappeared, and syringomyelia 
was deemed to be cured [17].

To investigate the mechanisms underlying syringomy-
elia pathogenesis, an in-depth study of its pathology is 
warranted. One of the significant pathological changes 
observed in syringomyelia patients is the dilation of the 
central canal on magnetic resonance imaging (MRI). 
The ependymal cells lining the central canal have been 
referred to as endogenous stem cells in mammalians 
[18, 19], and they are known to proliferate after spinal 

cord injury (SCI) [20–22]. We hypothesized the ependy-
mal cells lining the central canal might contribute to the 
dilation of the central canal under syringomyelia condi-
tion. In the current study, we described the involvement 
of ependymal cells in syringomyelia pathogenesis and 
explored the underlying pathways. Our results showed 
that syringomyelia led to the activation of ependymal 
cells and the formation of tunnel-like protrusions in the 
central canal, resulting in its dilation and syrinx forma-
tion. Inhibition of TGFβR1-Smad3 was found to alle-
viate syringomyelia-induced central canal dilation, 
indicating the key role of TGFβR1-Smad3 in syringomy-
elia pathogenesis.

Results
Syringomyelia induces syrinx formation in the central 
canal, along with ependymal cell proliferation
Clinically, most syringomyelia cases exhibit adverse 
impacts on the central canal. In our study, we established 
syringomyelia rat models according to a protocol pro-
posed previously [23]. We observed syrinx formation on 
SM D5 (day 5 of syringomyelia) in the central canal by 
DAPI staining, with normal morphology on SM D1 and 
enlargement from SM D14 onward (Fig. 1A). We noticed 
that syrinx became obvious on SM D14, with many tun-
nel-like protrusions in the central canal. According to 
previous studies, ependymal cells of spinal cord remain 
quiet under normal conditions and are activated post-
injury, such as spinal cord injury (SCI), inspiring us to 
detect whether the ependymal cells are activated by 
syringomyelia. Our results showed that ependymal cells 
located in the central canal co-expressed neural stem 
cell (NSC) marker Nestin and proliferative marker Ki67 
(Fig.  1B). Nestin and Ki67 signals in the central canal 
appeared on days 1–5, peaked on SM D14, and dimin-
ished on SM D30 (Fig. 1B and Additional file 1: Fig. S1A), 
when syrinx kept stable. The results indicated that epend-
ymal cells could be activated by syringomyelia.

Tunnel‑like protrusions in the central canal were 
ependymal cells
Mechanisms underlying the formation of the tunnel-like 
protrusions was crucial in developing novel syringomye-
lia therapies. We speculated that the activation of epend-
ymal cells under syringomyelia involved in the formation 
of protrusions. Our results indicated that SM D14 was 
the most appropriate time point when the proliferation/
activation of ependymal cells peaked, so we focused on 
SM D14 observations. On SM D14 and SM D30, we 
found that the cells in the protrusions expressed Foxj1, a 
marker of ependymal cells (Fig. 2A). PTB was reported to 
be expressed in the ependymal cells [24] and we observed 
the co-expression of Foxj1 and PTB in the protrusions on 
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SM D14 (Additional file 1: Fig. 1B and C). To further con-
firm the cell origins of the protrusions, we injected BrdU 
for 20 days consecutively to indicate inherent ependymal 
cells of spinal cord, followed by syringomyelia induction 
and decompression (Fig. 2B). We performed decompres-
sion after 7  days of syringomyelia, and collected spinal 
tissue in another 7 days (14 days in total) (Fig. 2B). Some 
PTB-expressing  BrdU+ cells were observed in protru-
sions on SM D14 (Fig.  2C), as indicated by staining on 
SMDEC D14 (day 7 after decompression) (Fig. 2D). The 

results indicated that the tunnel-like protrusions were 
composed of ependymal cells.

Ependymal cells might contribute to protrusions 
through migration along the central canal
According to previous reports, ependymal cells of the 
central canal were considered as a source of NSCs in 
spinal cord and were found to migrate after injury [25, 
26]. Sox2, a marker of NSCs, was expressed in ependy-
mal cells of intact/injured spinal cord and upregulated in 

Fig. 1 Dilation of central canal and activation of ependymal cells under syringomyelia. A Dilation of central canal at different time points of 
syringomyelia disease. Tunnel-like protrusions were obvious on day 14 of syringomyelia. SM, syringomyelia. DAPI, blue. Scale bar: 250 μm. B 
Ependymal cells lining central canal were activated. DAPI, blue; Nestin, green; Ki67, red. Scale bars: 100 μm
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Fig. 2 BrdU staining showed cells in protrusions of central canal under syringomyelia were ependymal cells. A Foxj1, an ependymal cell marker, 
was positive in the protusions on SM D14 and SM D30. DAPI, blue; Foxj1, green. Scale bars: 100 μm. B Experimental plan of BrdU injection. C  BrdU+ 
cells were observed in protrusions on SM D14. The right panel were magnification of the left. DAPI, blue; BrdU, green; PTB, red. Scale bars in left: 
100 μm. Scale bars in right: 20 μm. D  BrdU+ cells were observed in protrusions after decompression. The spinal tissue in SMDEC D14 group were 
decompressed on SM D14 followed by collection and detection after another 7 days. DAPI, blue; BrdU, green; PTB, red. The lower panels were 
magnifications of the upper. Scale bar in upper: 100 μm. Scale bar in lower: 30 μm
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injured spinal cord [27]. GFAP (a marker of astrocytes) 
was negative in ependymal cells and co-expressed with 
Sox2 in cells located close to the central canal or in the 
dorsal horns [28]. So we defined the ependymal cells in 

the central canal as  Sox2+/GFAP–. In syringomyelia sam-
ples, we observed that some ependymal cells lining the 
central canal disappeared, such as on days 10, 14, and 30, 
with DAPI negative (Fig.  3A and B, as arrows indicated 

Fig. 3 Some ependymal cells were dispeared along central canal. A Ependymal cells were particially dispeared form SM D10. The white arrows 
showed the diminished ependymal cells. DAPI, blue; Sox2, green; GFAP, red. Scale bars: 100 μm. B The magnification of ependymal cells on SM D14. 
The white arrows indicated cells lining central canal expressed GFAP but not Sox2. DAPI, blue; Sox2, green; GFAP, red. Scale bar: 100 μm. C Expression 
of N-cadherin under syringomyelia. The red arrows indicated the central canal. N-cadherin, green. Scale bar: 100 μm
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the disappeared cells). The Sox2-negative cells along 
central canal with expressed GFAP (Fig.  3B), indicating 
they were not ependymal cells. Three hypotheses might 
explain the partial deletion of ependymal cells: (1) The 
ependymal cells were deleted due to cell death; (2) The 
ependymal cells were reprogrammed into  GFAP+ cells; 
(3) The ependymal cells left and migrated to other posi-
tions along central canal. BrdU staining revealed some 
 BrdU+ cells in the protrusions (Fig.  2C), and we sus-
pected the  BrdU+ cells contributed the protrusions pos-
sibly through migration. In addition, we found that the 
central canal changed morphologies into several protru-
sions on SM D5 at different slice planes (Additional file 2: 
Fig. S2A), making migration of the ependymal cells feasi-
ble. Then, how did the ependymal cells migrate, and what 
about changes of  the cell connections between ependy-
mal cells, such as N-cadherin and E-cadherin? Both of 
N-cadherin and E-cadherin contributed in cell migra-
tion and the downregulation of E-cadherin was balanced 
by the enhanced expression of N-cadherin, resulting 
in a ‘cadherin switch’ that alters cell adhesion [29]. The 
N-cadherin interactions were weaker than E-cadherin 
interactions facilitated cell migration and invasion [30]. 
N-cadherin was not expressed by the ependymal cells 
in the sham group (Fig.  3C). However, in syringomy-
elia specimens, N-cadherin was expressed in ependy-
mal cells, and diminished after decompression (Fig. 3C). 
Moreover, syringomyelia induced robust ependymal 
cell proliferation and protrusions which, like ependymal 
tumors, expressed N-cadherin (Fig. 3C) to some extent. 
The results suggested protrusions formation under syrin-
gomyelia might be similar with ependymal tumors which 
involved proliferation and migration of ependymal cells.

TGFβR‑Smad3 might play roles on protrusion formation 
and inhibit further enlargement of the syrinx
The microenvironment play important roles in neural 
degeneration disease such as SCI [31–33] and we sus-
pect it may be involved in protrusion formation induced 
by syringomyelia. In the central canal, we detected the 
expression of IL4 (interleukin 4), IL6, NT3 (neurotro-
phin-3) and did not found positive signals except TNFα 
(tumor necrosis factor-α) and BDNF ( brain derived neu-
rotrophic factor). TNFα was expressed constitutively and 
stably from SM D1, while BDNF which was involved in 
sensory function, was expressed from SM D5 and peaked 
on SM D14 (Fig.  4A) that was consistent with the acti-
vation of ependymal cells. However, the expression of 
BDNF did not change after decompression on SM D14 
(Fig.  4B). Moreover, irrespective of decompression, 
the ependymal cells did not express the BDNF recep-
tor TrkB (Tyrosine kinase receptor B) (Fig.  4B), indi-
cating that BDNF might not be involved in protrusion 

formation. TGFβR (transforming growth factor beta β 
receptor)-Smad3 signal has been reported as an impor-
tant pathway controlling cell migration and EMT (epithe-
lial–mesenchymal transition) in various tumors [34–41], 
so we investigate this pathway’s role on the migration of 
ependymal cells in the current study. Our results showed 
negative TGFβR-Smad3 activity in the sham group, high 
activity in SM D14 specimens, and diminished activity 
post-decompression on SMDEC D14 (Fig.  5A). To con-
firm the role of the TGFβR-Smad3 axis on protrusion and 
syrinx formation, we injected DMSO and SIS3, a Smad3 
inhibitor, into rats with syringomyelia by intraperitoneal 
injection respectively in  vivo (Fig.  5B). DAPI staining 
showed syrinx was reduced in SIS3 group (Additional 
file  2: Fig.  S2B) on SM D5. In addition, SIS3 treatment 
downregulated N-cadherin and upregulated E-cadherin 
expression (Additional file  2: Fig.  S2C), indicating the 
inhibitory effects of SIS3 on TGFβR-Smad3 pathway, 
which enhanced N-cadherin and reduced E-cadherin 
expression involved in EMT process. MRI showed that 
both Control (DMSO injection) and SIS3 groups pre-
sented syrinx in the central canal on SM D14 (Fig.  6A) 
without significant difference. On SM D30, we found that 
the syrinx was enlarged in the Control group compared 
with the SIS3 group (Fig.  6B and C), in consistant with 
DAPI staining (Fig. 7), indicating that SIS3 inhibited fur-
ther enlargement of the syrinx.

Discussion
Surgical treatment is the only treatment method for 
syringomyelia that focuses on the cause of the cavity. It 
helps reduce the pressure of the subarachnoid space via a 
shunt that is mainly used to draw fluid out from the cav-
ity [14, 42, 43]. Cell therapy can be considered an alterna-
tive therapy to treat syringomyelia. Animal experiments 
have shown good therapeutic effects of MSCs and NESCs 
(neuroepithelial-like stem cells) injection on syringo-
myelia [16, 44, 45]. Previous case reports have indicated 
that cell transplantation facilitates a reduction in syr-
inx and alleviation of disease [46, 47]. However, pains 
and somatic sensory disturbances due to syringomyelia 
remain an unsolved issue for many patients [48].

Establishment of a perfect syringomyelia animal model 
is required
The decision regarding appropriate clinical therapy 
depends on the mechanisms underlying the disease. Ani-
mal models are the best tools for foundational  research 
of desease. In the current study, we employed female 
SD rats because they are easier to care for post-op and 
exhibit less aggression than male rats [49–51]. Sex plays 
a significant role in the prevalence of Chiari I malforma-
tion and syringomyelia (female:male = 1.3:1 ~ 4:1) [52]. 
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Previous reports have shown a female predominance in 
both pediatric and adult Chiari I malformation popula-
tions [53, 54]; syringomyelia is found more commonly in 
girls than in boys [55]. Even so, males should be validated 
among syringomyelia models in future experiments.

Since syringomyelia is rare, scientists are trying to 
establish animal models for syringomyelia through epi-
dural compression, quisqualic acid, and kaolin injec-
tions into the spinal cord to explore the pathogenesis 
and adequate therapies for the disease [56, 57]. MRI, as 
a gold standard for definite SCI, has been the most com-
monly used tool for diagnosing syringomyelia [58–60]. 
However, a good animal model should stimulate not 
only pathological characteristics but also the symptoms 
of the disease. Separation of pain and fever caused by 
syringomyelia is rarely imitated in animals, partly due to 
the physiological differences between humans and non-
human organisms, such as rats and mice. In clinical, doc-
tors could understand the recovery of patients through 
interrogation, while scientists could not in animal study. 
Therefore, improved animal models and developed medi-
cal testing instruments are urgently required for a more 
effective investigation of syringomyelia.

The relevance of the syrinx reduction to recovery 
following syringomyelia
Clinically, syrinx were decreased from MRI after treat-
ment with syringomyelia, and case reports showed the 
symptoms of syringomyelia responded to reduction of 
the syrinx cavities [61–64]. The size of the syrinx was 
generally reduced after decompression with an improve-
ment of the symptoms, however, the symptoms was 
improved clinically with no change of syringe size after 
decompression treatment [65]. In addition, few studies 
describe the management of residual syrinx after decom-
pression, and there is general agreement that the aim of 
clinical treatment is to restore relatively unimpeded flow 
of cerebrospinal across the craniocervical junction [66]. 
Large holocord syrinx may induce permanent symptoms 
of SCI even with adequate decompression and reduc-
tion of the syrinx [66]. In our study, inhibition of TGFβR-
Smad3 signaling alleviated the enlargement of syrinx, 
however, it is possible to result in off-target effects or 
incomplete inhibition of the signal. Activation of TGFβR-
Smad3 pathway and knockdown/knockout of TGFβR 
or Smad3 by using more syringomyelia animal models 
would be helpful for detection of the syrinx enlargement 

Fig. 4 TNFα and BDNF expression under syringomyelia. A TNFα and BDNF were expressed in central canal. DAPI, blue; TNFα and BDNF, green; GFAP, 
red. Scale bars: 100 μm. B BDNF receptor TrkB was not expressed by central canal, whether decompression or not. DAPI, blue; TrkB and BDNF, green; 
GFAP, red. Scale bar: 100 μm
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under syringomyelia in the future experiments. In addi-
tion, further in-depth research about the mechnisms of 
syrinx generation is needed trying to selected optimal 
treatment on syringomyelia.

Conclusions
In this study, we found the ependymal cells of spinal cord 
proliferated and formed tunnel-like protrusions in cen-
tral canal possibly through migration. Inhibiting TGFβR-
Smad3 pathway might play roles on slowing down the 
dilation of central canal and the progress of syringomy-
elia disease, providing therapy potential on syringomyelia 
in clinical.

Methods
Animals and ethical approval
Female 8-week-old Sprague–Dawley (SD) rats (Charles 
River, Beijing, China, n = 78) were used in this study. 

All animals were housed in temperature- and humidity-
controlled animal quarters with a 12-h light/dark cycle. 
All of the animals were divided randomly for different 
assay: pathological assay (n = 54), BrdU assay (n = 6) and 
inhibitors administration (n = 18). All animal experi-
ments were performed in accordance with the Chinese 
Ministry of Public Health Guide and the US National 
Institutes of Health Guide for the care and use of labora-
tory animals. All experimental procedures were approved 
and performed in accordance with the standards of the 
Experimental Animal Center of Xuanwu Hospital Capital 
Medical University (XW-20210423-2).

Animal surgery
Anesthesia induction was performed in an anesthe-
sia chamber using 2% enflurane (Yipin Corp., Hebei, 
China) in 70% nitrous oxide and 30% oxygen (Bickford 
veterinary anesthesia equipment model no. 61010; AM 

Fig. 5 Expressions of TGFβR1 and Smad3 under syringomyelia. A TGFβR1 and Smad3 were expressed on SM D14, while not in sham or 
decompression groups. DAPI, blue; Smad3, green; TGFβR1, red. Scale bars: 100 μm. B Experimental plan of TGFβR1-Smad3 inhibition in vivo
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Bickford, Inc., Wales Center, NY, USA) through a nose 
cone. All surgical procedures including syringomyelia 
induction and decompression of rats with syringomyelia 
were performed in a sterile field according to a protocol 
proposed previously [23]. Briefly, an approximately 3 cm 
skin incision was made, and T12, T13, and L1 vertebral 

laminae were completely exposed. Aseptic cotton strips 
weighing 1.5  mg were gently stuffed into the extradural 
space below the T13 lamina from the incision of the liga-
mentum favum in the T12–13 lamina space under a sur-
gical microscope (OPMI Pico, Carl Zeiss, Oberko Chen, 
Germany). For decompression, the cotton strip was care-
fully cut of using micro-tweezers and micro-scissors. All 
rats were kept and observed in conventional and clean 
rat houses. After the surgery, cefuroxime sodium (Sinop-
harm group Zhijun pharmaceutical co. LTD, China) was 
injected intraperitoneally every 8 h for 1 week.

5‑BrdU administration
5-BrdU (MCE, BrdU in short) disloved in prue water 
adding 50% PEG300 (polyethylene glycol, Selleck) was 
daily adiministrated by intraperitoneal injection (50 mg/
Kg) for 20 days before syringomyelia models induction or 
decompression of syringomyelia rats and terminiated in 
the following days during the experiments (n = 6).

SIS3 administration
Each rat (n = 9 in each group) received SIS3-Hcl (Selleck, 
SIS3 in short) disolved in 10% DMSO by intraperitoneal 
injection (2.8 mg/Kg) 7 days before syringomyelia induc-
tion. 10% DMSO was injected as control. DMSO and 
SIS3 injections were continued until the end of the exper-
iment. All of the rats in the two groups were not decom-
pressed after syringomyelia induction.

MRI in vivo
MRI was performed using a 7.0 Teslan MRI scanner 
(PharmaScan 7  T, Bruker Corp., Karlsruhe, Germany) 
with 400 mT/m gradients in the Animal Imaging Experi-
mental Center at Capital Medical University. The rats 
were placed on the table in the prone position with two 
restraining belts to fix the trunk. General anesthesia 
was induced via 4% isoflurane in oxygen before scan-
ning and maintained by 2% isoflurane in oxygen via a 
rat mask during scanning. The body temperature, heart 
rate, and respiration of the rats were closely moni-
tored during imaging. Once rapid whole-body localiza-
tion scans were performed in all three planes, sagittal 
and axial T2-weighted images were acquired with the 
operation area as the center using a fat-saturated RARE 
sequence. A rat volume coil with a diameter of 89  mm 
was used for transmission and to obtain data. Imag-
ing parameters for sagittal acquisition were as follows: 
TR/TE = 3000/33  ms, matrix size = 256 × 256, field of 
view (FOV) = 60 × 40   mm2, slice thickness = 600  µm 
with no gap, number of slices = 10, NEX = 8, and resolu-
tion = 0.147 × 0.147 × 1  mm3. The imaging parameters for 
axial acquisition were as follows: TR/TE = 4500/33  ms, 
matrix size = 256 × 256, FOV = 60 × 40   mm2, slice 

Fig. 6 MRI of DMSO and SIS3 treated rats. A MRI showed no 
significant difference of syrinx size between the two groups on 
SM D14. B MRI showed that the size of syrinx was decreased after 
SISI3 treatment on SM D30. Each number in A and B indicated the 
individual rat, the red arrows indicated the syrinx in central canal, and 
the yellow stars showed the compressed positions by cotton strips. C 
Statistics of syrinx size of the two groups. *p < 0.05 and **p < 0.01
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thickness = 1  mm with no gap, number of slices = 30, 
NEX = 8, and resolution = 0.147 × 0.147 × 1   mm3. Each 
MRI scan took approximately 12  min. The anteropos-
terior (AP) diameter of the syrinx every 1 mm from the 
full length of the syrinx was measured in sagittal T2-MRI 
images. The largest diameter of these was selected, and 
the AP diameters of the spinal cord in the same plane 
were measured to calculate the diameter ratio. All meas-
urements were made using the Horos software platform 
(v3.3.5, https:// horos proje ct. org).

Tissue collections
Rats were perfused with 4% paraformaldehyde (PFA) fol-
lowing euthanization by pentobarbital sodium (150 mg/
kg IP). The spinal cord from T6 to T10 was harvested 
carefully to retain its integrity, fixed in 4% PFA for 48 h 
at 4°C, and transferred to 20% and 30% sucrose for 24 h. 
The segments were then embedded in an optimal cutting 
temperature compound (OCT), cut into 20-µm thick sec-
tions (Leica Microsystems), and stored at − 80°C.

Immunofluorescence
The spinal cord sections were first pretreated in 0.3% 
Triton X-100 in phosphate-buffered saline (PBS, pH 7.4) 
for 20 min, followed by incubation in 10% bovine serum 
albumin (BSA) for 1  h at room temperature (RT). The 
sections were then incubated with primary antibodies 
overnight at 4 °C. The primary antibodies used were anti-
BDNF (Bioss, bs-4989R), anti-E-cadherin (Proteintech, 
20874-1-AP), anti-Foxj1 (abcam, ab178847), anti-GFAP 
(Abcam, ab4674), anti-Ki67 (Millipore, AB9260), anti-
N-cadherin (Proteintech, 66219-1-lg), anti-Nestin (Mil-
lipore, MAB353), anti-PTB (Proteintech, 12582-1-AP), 
anti-Smad3 (abcam, ab40854), anti-Sox2 (Santa Cruz, 
sc-365823), anti-TGFβR1 (abcam, ab31013), and anti-
TNFα (Immunoway, YT4689). The slides were washed 
three times with PBS and subsequently incubated with 
conjugated secondary antibodies (Jackson ImmunoRe-
search Laboratories) for 2 h at RT. DAPI (1 mg/mL) was 
used to counterstain nuclei. The images were captured 
using a confocal microscope Leica SCN400 Slide Scanner 

Fig. 7 DAPI staning showed the reduced diameters of central canal in SIS3 group. A Inhibition of dilation of central canal in SIS3 group. DAPI, blue. 
Scale bar: 100 μm. B Statistics of average diameters of central canal in the two groups. *p < 0.05 and **p < 0.01

https://horosproject.org
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(Leica Microsystems) using the same settings, such as 
voltage, background reduction, and other parameters.

Statistical analysis
All the data were expressed as mean ± standard devia-
tion (mean ± SD). Statistical evaluations were conducted 
with GraphPad Prism 5 (GraphPad Software, San Diego, 
USA). Differences between groups were compared using 
the two-tailed Student’s t-test or ANOVA. Differences 
were considered significant when *p < 0.05 and **p < 0.01.
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