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Abstract 

Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), 
are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver trans-
plantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy 
in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease 
pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabo-
lism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essen-
tial role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and 
modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role 
of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.
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Introduction
Cholestatic liver diseases are characterized by disrup-
tion of bile acid (BA) metabolism or bile flow, resulting 
in the accumulation of BAs in the liver and increased BA 
concentration in the systemic circulation [1]. Cholestatic 
liver diseases include primary biliary cholangitis (PBC), 
primary sclerosing cholangitis (PSC), intrahepatic chol-
estasis of pregnancy (ICP), progressive familial intrahe-
patic cholestasis (PFIC) and drug-induced cholestasis [2, 
3]. Early clinical manifestations may be asymptomatic, 
with only elevated levels of alkaline phosphatase (ALP) 
and gamma-glutamyl transpeptidase (GGT). However, 
as the disease progresses, symptoms, including pruritus, 

fatigue, and even hyperbilirubinemia, may occur. Most 
patients will ultimately need liver transplantation as they 
develop progressive liver fibrosis, cirrhosis, and liver 
failure [4–7]. The incidence and prevalence of choles-
tatic liver diseases have increased globally over the past 
two decades, and cholestatic liver diseases remain an 
important public health issue. There is an unmet need to 
develop effective treatments.

BAs are exclusively synthesized from cholesterol in 
hepatocytes and stored in the gallbladder as the major 
components of bile. Maintenance of enterohepatic BA 
circulation is important not only for nutrient absorp-
tion in the intestine but also for hepatic metabolism [1]. 
BAs can be highly toxic if accumulated in high concen-
trations in the liver and other tissues due to their amphi-
philic structures. The so-called BA pool refers to the total 
amount of BAs in the enterohepatic circulation, which 
includes all the BAs in the liver, gallbladder, and intestine. 
The composition of the BA pool is dynamic and complex 
[8]. The hydrophobicity of BAs is correlated to their tox-
icity. BAs are also called steroid acids and act as signaling 
molecules to regulate metabolic processes by activating 
nuclear receptors (NRs) and G protein-coupled (GPCRs) 
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[9, 10]. Since the discovery of the first BA-activated NR, 
the Farnesoid X Receptor (FXR), the physiological and 
pathological functions of BAs as key signaling molecules 
have been extensively studied. Identification of BA-acti-
vated GPCRs further expanded the BA research field 
and significantly improved the current understanding by 
which BAs regulate various physiological and pathologi-
cal processes. The role of BAs in metabolic diseases has 
been recently reviewed [10, 11]. Therefore, this review 
will focus on the current understanding of BAs and BA-
mediated signaling pathways in cholestatic liver diseases.

BA synthesis, metabolism, and circulation
BA synthesis
BAs are synthesized from cholesterol in hepatocytes, and 
the liver is the only organ with all the enzymes needed 
to synthesize BAs exist (Fig.  1). BA synthesis is the 

main pathway for cholesterol catabolism, with approxi-
mately 500  mg of cholesterol converted to BAs per day 
in adults [12]. Two main pathways have been well char-
acterized in BA synthesis: the classical pathway and the 
alternative pathway [13]. The classical pathway is also 
called the "neutral" pathway due to the forming of neu-
tral intermediate metabolites in the process, account-
ing for the majority (~ 90%) of total BA synthesis. In 
this pathway, cholesterol is catalyzed first by the rate-
limiting enzyme cholesterol 7α-hydroxylase (CYP7A1) 
to produce 7α-hydroxycholesterol, which is then cata-
lyzed by 3β-hydroxysteroid dehydrogenase 7 (3β-HSD7) 
in microsomes to generate 7α-hydroxy-4-cholesten-3-
one (named C4) [1, 14, 15]. C4 is a common precursor 
of cholic acid (CA) and chenodeoxycholic acid (CDCA). 
Therefore, the C4 level reflects the rate of BA synthe-
sis [1, 14]. C4 is catalyzed by sterol 12α-hydroxylase 

Fig.1  Synthetic pathways of bile acids and enterohepatic bile acid circulation. LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; 
NTCP, Na + -dependent taurocholic acid co-transporting polypeptide; OATP, organic anion-transporting polypeptides; BSEP, bile salt export pump; 
ASBT, apical sodium-dependent BA transporter; BSH, bile salt hydrolase; IBABP, ileal BA-binding protein; CA, cholic acid; CDCA, chenodeoxycholic 
acid; OSTα/β, organic solute transporters α and β; MCA, muricholic acid; UDCA, 3α, 7β-dihydroxy5β-cholic acid; MDCA, murine deoxycholic acid; 
HDCA, hyodeoxycholic acid
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(CYP8B1) and sterol 27-hydroxylase (CYP27A1) to form 
CA and CDCA. The alternative pathway accounts for 
only a small part of total BA synthesis in human hepato-
cytes. It is also called the “acidic” pathway because of the 
formation of acidic intermediate metabolites during the 
process. This pathway is initiated by CYP27A1, a mito-
chondrial enzyme distributed in various tissues and mac-
rophages [16, 17]. Cholesterol is catalyzed by CYP27A1 
to generate 27-hydroxycholesterol, which is then con-
verted to 3β-hydroxy-5-cholestenoic acid, and 7-hydrox-
ylation is then performed by oxysterol 7α-hydroxylase 
(CYP7B1) [1]. This pathway is thought to form CDCA 
primarily. The BA pool composition of rodents differs 
from that of humans [18] (Fig.  1). In mouse liver, most 
CDCA is converted to α-muricholic acid (α-MCA) by 
cytochrome P450 family 2 subfamily c polypeptide 70 
(Cyp2c70). Then the 7α-OH in α-MCA is epimerized 
to the 7β-OH gene to form β-MCA [13, 19]. MCAs are 
the major BAs synthesized in mouse liver. The human 
ortholog cytochrome P450 family 2 subfamily C member 
9 (CYP2C9) cannot perform this function, which makes 
mouse bile more hydrophilic than human bile [20]. In 
both mice and humans, the 7α-OH in CDCA can be 
isomerized to 7β-OH to form 3α, 7β-dihydroxy5β-cholic 
acid (UDCA) [1, 13]. In some pathological conditions, 
such as cholestatic liver diseases, the classical pathway 
is inhibited and the alternative pathway is activated as 
the main pathway for BA synthesis [1]. Mutations in the 
CYP7A1 gene in adult males cause only mild hypercho-
lesterolemia and early-onset gallstone disease, suggesting 
that when the classical pathway initiated by CYP7A1 is 
defective, the alternative BA synthesis pathway is acti-
vated to produce BAs [21].

Enterohepatic BA circulation
Intrahepatic BA circulation is an important physiologi-
cal process. Upon the formation of primary BAs (CA and 
CDCA), they undergo detoxification through conjugation 
with either glycine or taurine [22]. Most primary BAs are 
conjugated to glycine in humans and taurine in mice. The 
conjugated BAs cannot penetrate the cell membrane, so 
an active transport system, ATP-binding cassette (ABC) 
transporter [mainly bile salt export pump (BSEP)] is 
needed to mediate the secretion of BAs into the canali-
culi, which are small channels between adjacent hepato-
cytes that ultimately lead to the bile ducts [23]. In certain 
situations, such as cholestatic liver diseases, the ability 
of the liver to detoxify BAs may become overwhelmed, 
leading to a buildup of toxic BAs in the liver and bile 
ducts. In such cases, some BAs can be reabsorbed by the 
apical sodium-dependent BA transporter (ASBT), dis-
charged into the periductal capillary plexus via organic 
solute transporters α and β (OSTα/β) and multidrug 

resistance-associated protein3 (MRP3), and returned to 
the hepatocyte, a process known as cholehepatic shunt-
ing [24, 25]. This can reduce the overall amount of toxic 
BAs in the bile ducts and alleviate their harmful effects on 
the liver. Additionally, cholehepatic shunting can main-
tain bile flow and enhance bicarbonate-rich choleresis. 
Previous studies on the function of cholehepatic shunting 
suggest that stimulate this process may effectively elimi-
nate toxic BAs from the liver and reduce the cholestaic 
liver injury[26–28]. The three major hepatic lipids (BAs, 
phosphatidylcholine, and free cholesterol) form mixed 
micelles and are stored in the gallbladder. Eating stimu-
lates the contraction of the gallbladder to empty its con-
tents to the junction with the duodenum. A small portion 
of BAs can be absorbed in the duodenum through passive 
absorption, and about 95% are actively taken up in the 
ileum via the ASBT at the tip of the brush border of the 
small intestine and then enter the small intestinal epithe-
lial cells [11, 29]. After binding to ileal BA-binding pro-
tein (IBABP), BAs are transported through enterocytes 
to the basolateral membrane and secreted into the por-
tal vein by OSTα/β [13, 30]. The conjugated BAs in the 
portal circulation and the systemic circulation are then 
reabsorbed by hepatocytes via the Na + -dependent tau-
rocholic acid co-transporting polypeptide (NTCP) and 
secreted into tubules together with newly synthesized 
BAs through BSEP. A small proportion of unconjugated 
BAs is reabsorbed by hepatocytes in a Na + -independ-
ent manner by organic anion-transporting polypeptides 
(OATP), including OATP1B1 and OATP1B3.

Biotransformation of BAs
The gut microbiota consists of a variety of microorgan-
isms. These microbes play key roles in maintaining gut 
barrier function, regulating metabolic processes, and 
immune responses [31]. A major function of the gut 
microbiota is the biotransformation of BAs (Fig. 1). The 
chemical diversity of BA metabolites is regulated by the 
deconjugation, dehydrogenation, dehydroxylation, and 
epimerization of primary BAs in the distal small intestine 
and colon [32]. Conjugated BAs can activate pancreatic 
lipase, which in turn releases fatty acid monoglyceride 
and free fatty acids from triglyceride. The formation of 
mixed micelles containing fatty acid monoglyceride, fatty 
acids, cholesterol, and fat-soluble vitamins (A, D, E and 
K) facilitates their absorption in the small intestine [33]. 
A few hundred milligrams of BAs escape the ileal absorp-
tion and enter the colon, where they are biotransformed 
by gut bacteria and converted into secondary BAs. More 
than 50 secondary BAs have been found in human fecal 
samples [34]. The initial step in the formation of second-
ary BAs is deconjugation, which is the process of cleav-
ing the C-24N-acylamide of the conjugated BAs and 
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generating unconjugated BAs and glycine or taurine. This 
step is mediated by bile salt hydrolase (BSH). Functional 
BSH is present in all major bacteria in the human gut, 
including gram-negative Bacteroides and gram-positive 
Lactobacilli and Clostridium [32, 35]. Changes in the 
gut microbiota also alter BSH expression levels, thereby 
affecting the composition of the host BA pool [36]. 
Considering that only conjugated BAs can be efficiently 
reabsorbed by active transports in the ileum, microbial 
metabolism can alter intestinal reabsorption of BAs. 
Therefore, bacterial overgrowth in the small intestine is 
an important contributor to intestinal BA malabsorption 
[37]. Unconjugated BAs can pass through the intestinal 
barrier by passive diffusion or be further modified by 
the gut microbiome. The primary BAs, CA and CDCA, 
are oxidized and subsequently 7α-dehydroxylated by 
specific anaerobic gut bacteria to form secondary BAs, 
deoxycholic acid (DCA) and lithocholic acid (LCA), 
respectively [38]. Unlike oxidation and epimerization, 
only a few anaerobic gut bacteria, about 0.0001% of the 
gut microbiome belonging to the genus Clostridium, can 
perform 7α-dehydroxylation [34, 38]. In the human gut, 
DCA is mainly produced by CA, and LCA and UDCA 
are produced by CDCA. DCA and a small part of LCA 
are passively absorbed from the colon into the portal 
vein. BAs returned from the gut include conjugated BAs 
as well as unconjugated primary and secondary BAs. In 
the mice, Tα-MCA and Tβ-MCA are unconjugated by 
BSH to form α-MCA and β-MCA. α-MCA is further 
converted to murine deoxycholic acid (MDCA) and 

hyodeoxycholic acid (HDCA), and β-MCA is converted 
to ω-MCA. Although MDCA and HDCA can be syn-
thesized from LCA through cytochrome P450 family 3, 
subfamily a (Cyp3a), the gut bacteria-mediated transfor-
mation of α-MCA is the primary source of MDCA and 
HDCA [39]. And secondary BAs can be converted back 
to primary BAs by cytochrome P450, family 2, subfamily 
a, polypeptide 12 (Cyp2a12) in mice [39].

BAs in cholestatic liver diseases
Cholangiocyte proliferation
BA secretion can be impaired in various liver diseases, 
especially cholestatic liver diseases. Under cholestatic 
conditions, BAs accumulate in the liver resulting in fewer 
bile constituents reaching the duodenum. The elevated 
hepatic BAs will disrupt the tight junctions of biliary epi-
thelial cells (cholangiocytes), leading to bile leakage in 
the periductal area, which initiates the inflammatory and 
fibrotic response (Fig. 2). Cholangiocyte proliferation and 
periportal fibrosis would occur after the accumulation of 
BAs [40]. It has been reported that TCA could stimulate 
cholangiocyte proliferation [41].

Cholangiocyte proliferation, also known as the "ductu-
lar reaction (DR)," is an adaptive response of cholangio-
cytes after cholestatic liver injury [42–44]. DR refers to 
the fact that cholangiocytes become reactive and adopt 
a neuroendocrine-like phenotype after cholestatic liver 
injury [45]. This neuroendocrine-like phenotype allows 
cholangiocytes to secrete in an autocrine and paracrine 
way in responding to many hormones, neuropeptides, 

Fig.2  Bile acid-mediated regulation of cholangiocyte proliferation and senescence in the pathogenesis of cholestatic liver diseases. DR, ductular 
reaction, SASP, senescence-associated secretory phenotype
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and neurotransmitters [45–47]. Studies have shown that 
proliferating cholangiocytes express many anti-apoptotic 
genes, adhesion molecules, costimulatory molecules, 
cytokines, chemokines, growth factors, and pro-fibrotic 
stimuli. These factors have both autocrine and paracrine 
effects on the activation, migration, and proliferation of 
myofibroblasts [47, 48]. In rodents, DR can be induced 
by BA feeding and bile duct ligation (BDL) [42] as well 
as different growth factors and inflammatory cytokines, 
such as epidermal growth factor (EGF) and vascular 
endothelial growth factor (VEGF), interleukin-6 (IL-6), 
IL-1 and tumor necrosis factor α (TNFα) [49, 50]. Early 
DR may lead to the regression of biliary damage but also 
can lead to biliary fibrosis if in the presence of persis-
tent inflammation [51, 52]. Ultimately, DR may lead to 
changes in the cell cycle, senescence, apoptosis, reduc-
tion of ducts, mesenchymal infiltration, and sometimes 
malignant transformation. Therefore, DR is suggested to 
be the "pacemaker of portal fibrosis" because of the close 
relationship between cholangiocyte proliferation and 
fibrosis [48]. Treatments that reduce DR may also reduce 
the secretion of cytokines, chemokines, and other factors 
that drive liver fibrosis in cholestatic liver diseases [45]. 
More research is needed to identify the critical pathways 
responsible for the DR-associated progression of choles-
tatic liver diseases.

Cholangiocyte senescence
The response of cholangiocytes to the injury caused by 
the elevated levels of BAs is heterogeneous (Fig. 2). Cel-
lular senescence is a pathophysiological state in which 
proliferating cells enter cell cycle arrest following DNA 
damage and other stresses [53]. BAs have been identi-
fied as potent inducers of cellular senescence [54, 55]. 
Senescent cholangiocytes exhibit unique phenotypic 
characteristics, including resistance to apoptosis and 
a senescence-associated secretory phenotype (SASP) 
[55, 56]. SASP is a cellular phenotype characterized by 
increased secretion of proinflammatory cytokines and 
chemokines, growth factors, metalloproteinases, and 
extracellular vesicles [57, 58]. SASP has been reported to 
activate the immune response and recruit immune cells 
to affected peribiliary areas in PBC [55]. It is worth men-
tioning that cholangiocyte senescence was first described 
in the end-stage of PSC patients [59]. To further elucidate 
the role of cholangiocyte senescence in other stages of 
PSC, Cazzagon et al. recruited 35 PSC patients in a lon-
gitudinal study and found that cholangiocyte senescence 
was present in all stages of PSC. The degree of cholangio-
cyte senescence is correlated to the histological and clini-
cal severity and disease outcome of PSC [60]. Another 
study also showed that cholangiocyte senescence directly 
promoted fibro-inflammatory responses around the bile 

ducts, which exacerbated the damage and impaired liver 
regeneration [61]. Cholangiocyte senescence is consid-
ered a key pathogenic process in cholestatic disease pro-
gression [56, 62, 63]. One potential mechanism is the 
persistent secretion of fibro-inflammatory mediators 
through SASP [53]. The work of Barron-Millar et al. high-
lights the importance of cholangiocyte senescence in the 
pathogenesis of PBC. It identifies novel prognostic fac-
tors that can be used in developing new therapeutic strat-
egies [63]. Recent studies in multidrug-resistance protein 
2 knockout (Mdr2−/−) mice have shown that a reduction 
in the number of senescent cholangiocytes represents a 
potential therapeutic strategy for cholestatic liver injury 
[64–66].

Inflammation
It is becoming increasingly clear that BAs represent a 
major trigger of inflammation in cholestatic liver injury. 
Allen et al. suggested that BAs might induce liver injury 
by activating an inflammatory response in hepatocytes 
[67]. Inflammation is a fundamental feature of chronic 
liver diseases and an important contributing factor to 
liver fibrosis. Signals from damaged cells, such as ROS, 
can activate inflammatory cells, including macrophages, 
lymphocytes, and NK cells et al. [68]. These signals from 
damaged cells and pathogens are called damage-associ-
ated molecular patterns (DAMPs) and pathogen-associ-
ated molecular patterns (PAMPs), respectively. The core 
of cholestatic liver diseases is cholangitis, which also sug-
gests direct or indirect damage to cholangiocytes caused 
by BAs. BAs can stimulate the production of inflamma-
tory mediators, including cytokines, chemokines, and 
adhesion molecules [67]. Interestingly, cholangiocytes 
can secrete inflammatory mediators to induce neutro-
phil activation in response to DAMPs and PAMPs [69–
71]. More efforts are needed to understand the complex 
mechanisms by which inflammation promotes cholesta-
sis liver injury.

Targeting the BA‑mediated signaling pathways 
as potential therapeutics for cholestatic liver diseases
Since the discovery of the NR, FXR, as a BA receptor 
in 1999, extensive studies have supported that BAs are 
essential signaling molecules regulating hepatic metab-
olism [40, 72–74]. Identification of GPCRs activated 
by BAs further expanded the field of BA research. BA 
homeostasis is co-regulated by specific receptors and 
transporters in the liver and gut [75, 76]. Growing evi-
dence suggests that BA-mediated signaling pathways are 
involved in cholestatic liver injury, making BA receptors 
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attractive therapeutic targets for cholestatic liver diseases 
[23, 26, 28].

Nuclear receptors
NRs are a family of ligand-activated transcription fac-
tors that bind to a wide range of natural and synthetic 
ligands to regulate the development, homeostasis, and 
metabolism in organisms [77]. BA-activated NRs mainly 
include FXR, the pregnane X receptor (PXR, also known 
as NR1I2), the constitutive androstane receptor (CAR, 
also known as NR1I3), and the vitamin D receptor (VDR) 
[40, 75].

FXR
FXR, the transcription product of NR1H4, was first dis-
covered by Forman et  al. in 1995 [78]. It is expressed 
in the liver, intestine, kidney, adrenal gland, and ovary 
among which it is highly expressed in the liver and 
intestine. In the liver, FXR is mainly expressed in chol-
angiocytes and hepatocytes [13]. In 1999, three groups 
simultaneously identified BA as the natural ligand for 
FXR [72–74]. FXR is activated by unconjugated BAs. 
The potency of BAs in activating FXR varies, with CDCA 
being the highest, followed by DCA, LCA, and CA 
[79] (Fig.  3). FXR regulates BA homeostasis in a tissue-
specific manner [80]. It should be mentioned here that 
UDCA, especially glycine-conjugated, does not appear 
to activate FXR [81], but inhibits FXR [82]. In hepato-
cytes, FXR activation can induce the expression of the 

small heterodimer partner (SHP), an atypical member 
of the NR family that lacks a DNA-binding domain and 
an inhibitor of CYP7A1 expression, to negatively regu-
late BA synthesis [83–85]. In the ileum, FXR activation 
induces expression of the intestinal hormone fibroblast 
growth factor (FGF) 15/19 (FGF15 in mice and FGF19 in 
humans), which is secreted as a hormone into the portal 
circulation. FGF15/19 binds to FGF receptor 4 (FGFR4) 
on the surface of hepatocytes, inhibiting hepatic CYP7A1 
gene transcription through a Jun N-terminal kinase-
dependent pathway [12, 86, 87]. Furthermore, FGF15/19 
leads to the filling of the gallbladder with bile by regulat-
ing the relaxation of the smooth muscle of the gallblad-
der. FXR activation in the ileum is recognized to play a 
more important role than the SHP-induced pathway in 
suppressing hepatic CYP7A1 expression [88]. Activated 
FXR also prevents BAs accumulation in hepatocytes by 
inhibiting the uptake by hepatocytes and promoting BAs 
secretion by directly regulating the expression of human 
hepatic and intestinal BA transporters, including upregu-
lating BAs efflux transporters BSEP, MRP2, and OSTα/β 
[89–91], and downregulating the expression of BAs 
uptake transporters NTCP and ASBT [92]. Overall, FXR 
can regulate the enterohepatic circulation of BAs and 
prevent the toxic effects of detergent BAs on hepatocytes 
and cholangiocytes.

Several published studies have shown that semisyn-
thetic and nonsteroidal agonists of FXR are able to 
reduce liver inflammation and fibrosis in animal models 
of cholestasis [93–95]. The synthetic BA derivative obet-
icholic acid (OCA) is a potent and selective FXR agonist 
with anti-cholestatic effects [96, 97]. In human clinical 
studies (Table  1), OCA significantly reduced ALP and 
GGT, compared with placebo, in PBC patients who had 
inadequate responses to UDCA [98]. OCA monotherapy 
significantly improved the long-term clinical outcomes of 
PBC [99, 100]. In animal studies, OCA increases insulin 
sensitivity, inhibits gluconeogenesis and adipogenesis, 
and has anti-inflammatory and anti-fibrotic properties 
[101, 102]. However, the most common side effect of 
OCA is a dose-dependent development of itching [98, 
99]. In addition to OCA, other FXR agonists are emerg-
ing as potential treatments for cholestatic liver diseases 
(Table  1). Tropifexor (LJN452) improved markers of 
cholestasis and showed an acceptable safety-tolerability 
profile, supporting its further clinical development for 
PBC [103]. Cilofexor (GS-9674) was also well tolerated 
and attenuated cholestasis in PSC patients in the phase 2 
study [104, 105]. Meanwhile, EDP-305, a novel FXR ago-
nist, reduced fibrosis progression in rat BDL model and 
had also finished a phase 2 clinical trial [106]. As previ-
ously mentioned, FXR activation results in the upregula-
tion of FGF15/19 and the downregulation of NTCP and 

Fig.3  Bile acid-mediated activation of FXR. CDCA, chenodeoxycholic 
acid; DCA, deoxycholic acid; LCA, lithocholic acid; CA, cholic acid; 
FXR, Farnesoid X Receptor; SHP, small heterodimer partner; CYP7A1, 
cholesterol 7α-hydroxylase; FGF, fibroblast growth factor; FGFR4, FGF 
receptor 4; NTCP, Na + -dependent taurocholic acid co-transporting 
polypeptide; ASBT, apical sodium-dependent BA transporter; BSEP, 
bile salt export pump; MRP2, multidrug resistance-associated 
protein2; OSTα/β, organic solute transporters α and β
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ASBT. Recently, many FGF19 analogs and ASBT inhibi-
tors have been developed. Some of them are currently 
in various stages of clinical trials for cholestatic liver 
diseases (Table  2). Aldafermin (NGM282), an FGF19 
analog, showed potent suppression of hydrophobic bile 
acids across metabolic and cholestatic liver diseases in 
the phase 2 study [107]. On the other hand, Odevixibat 
(A4250), an ASBT inhibitor, shown to reduce the pruri-
tus and the levels of serum BAs, and was also generally 
well tolerated in children with PFIC1/2 in a phase 3 study 
[108]. Linerixibat (GSK2330672), another ASBT inhibi-
tor, demonstrated efficacy in reducing pruritus severity in 
PBC, but the long-term use of this drug may be limited 
with the common adverse event of diarrhea, which needs 
more attention in future studies [109, 110]. Meanwhile, 
Maralixibat (LUM001) also led to rapid and sustained 
reductions in serum BA levels, as well as reductions in 
pruritus in PFIC patients [111]. It was the first agent to 
show durable and clinically meaningful improvements in 

cholestasis in children with Alagille Syndrome (ALGS), 
which might represent a new treatment paradigm. How-
ever, it also has gastrointestinal-related side effects [112]. 
Notably, patients with chronic and advanced cholestasis 
often are at higher risk of developing hepatocellular car-
cinoma and cholangiocarcinoma, which may be closely 
related to the downregulation of hepatic FXR. Increased 
hepatocellular carcinoma in Fxr−/− mice is associ-
ated with elevated serum TCA and activation of c-Myc 
[113]. Overall, it is important to note that FXR agonists 
may cause side effects such as diarrhea, abdominal pain, 
and nausea. Additionally, the long-term safety of FXR 
agonists remains uncertain. While FXR agonists have 
shown promise in reducing bile acid accumulation and 
improving liver function, their efficacy may be limited 
in advanced stages of cholestatic liver disease. Therefore, 
further research is necessary to fully evaluate the safety 
and efficacy of FXR agonists in this patient population.

Table 1  The major clinical trials of FXR agonists for cholestatic liver diseases

Drug Name Indication Clinical Trials No Start Year Status Sponsor

OCA (obeticholic acid), 6-ECDCA 
(6-ethyl-chenodeoxycholic acid), 
or INT-747

PBC NCT00570765 2008 Phase 2 (Completed) Intercept Pharmaceuticals

OCA [100] PBC NCT01473524 2012 Phase 3 (Completed) Intercept Pharmaceuticals

OCA PBC NCT02308111 2014 Phase 4 [Terminated (Due to the 
lack of feasibility for this post-
marketing study as designed)]

Intercept Pharmaceuticals

OCA [97] PSC NCT02177136 2015 Phase 2 (Completed) Intercept Pharmaceuticals

OCA Pediatric Subjects 
With Biliary Atresia

NCT05321524 2015 Phase 2 (Active, not recruiting) Intercept Pharmaceuticals

OCA PBC NCT03633227 2018 Phase 4 (Terminated (Due to 
Ocaliva (obeticholic acid) US 
labeling update, the sponsor 
decided to terminate the study))

Intercept Pharmaceuticals

Tropifexor (LJN452) [103] PBC NCT02516605 2015 Phase 2 (Completed) Novartis Pharmaceuticals

Cilofexor (GS-9674) PBC NCT02943447 2016 Phase 2 (Terminated because 
of the availability of alternate 
therapies for PBC)

Gilead Sciences

Cilofexor (GS-9674) PSC NCT02808312 2016 Phase 1 (Completed) Gilead Sciences

Cilofexor (GS-9674) [104] PSC NCT02943460 2016 Phase 2 (Completed) Gilead Sciences

Cilofexor (GS-9674) PSC NCT03890120 2019 Phase 3 [Terminated (Following 
recommendation of the external 
Data Monitoring Committee, 
after it reviewed the results of a 
planned interim futility analysis.)] 
(Updated on January 23, 2023)

Gilead Sciences

EDP-305 PBC NCT03394924 2017 Phase 2 (Completed) Enanta Pharmaceuticals, Inc

TQA3526 PBC NCT04278820 2020 Phase 2 (Unknown) Chia Tai Tianqing Pharmaceu-
tical Group Co., Ltd

ASC42 PBC NCT05190523 2022 Phase 2 (Recruiting) Gannex Pharma Co., Ltd

Linafexor (CS0159) PSC NCT05082779 2021 Phase 1 (Completed) Cascade Pharmaceuticals, Inc

Linafexor (CS0159) PBC NCT05624294 2022 Phase 1 (Recruiting) Cascade Pharmaceuticals, Inc
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PXR
Another BA-activated NR, PXR, is highly expressed 
in the small intestine and hepatocytes [114]. PXR is 
mainly activated by LCA (both free and conjugated) 
and DCA. PXR plays an essential role in the degra-
dation and clearance of toxins [115]. PXR signaling is 
known to regulate the expression of drug-metabolizing 
enzymes and transporters (DMETs) to facilitate the 
metabolism, transport, and clearance of xenobiotics 
[116]. In addition to DMET regulation, PXR is also 
involved in energy homeostasis, endobiotic metabo-
lism (e.g., BAs, glucose, and lipids), and inflamma-
tion regulation [116, 117]. Activated PXR promotes 
the 6-hydroxylation and increases the water solubility 

of LCA by inducing the expression of CYP3A [118, 
119]. PXR is positively regulated by FXR, and the two 
receptors act synergistically to ensure BA homeostasis 
[120]. PXR activation also inhibits hepatic CYP7A1. 
Recently, Huang et al. reported that a lathyrane diter-
penoid (5/11/3 ring system), a highly selective agonist 
of human PXR, exerted its anti-cholestatic effect via 
activation of the PXR pathway, accelerating the detoxi-
fication of toxic BAs and promoting liver regenera-
tion in LCA-induced cholestasis mouse model [121]. 
While PXR agonists have shown promise in preclinical 
studies, clinical trials have not yet demonstrated sig-
nificant efficacy in treating cholestatic liver diseases. 
Although the discovery of novel PXR agonists holds 

Table 2  The major clinical trials of FGF19 analogs and ASBT Inhibitors for cholestatic liver diseases

Drug Name Indication Targets and 
Mechanism

Clinical Trials No Start Year Status Sponsor

Aldafermin (NGM282) PBC FGFR4 (FGF19 ana-
logue)

NCT02026401 2014 Phase 2 (Completed) NGM Biopharmaceuti-
cals, Inc

Aldafermin (NGM282) 
[107]

PSC FGFR4 (FGF19 ana-
logue)

NCT02704364 2016 Phase 2 (Completed) NGM Biopharmaceuti-
cals, Inc

Odevixibat (A4250) PBC Pruritus ASBT (Inhibitor) NCT02360852 2015 Phase 2 [Termi-
nated ((Expected) 
side effects)]

Sahlgrenska University 
Hospital, Sweden

Odevixibat (A4250) Pediatric Cholestasis ASBT (Inhibitor) NCT02630875 2015 Phase 2 (Completed) Albireo

Odevixibat (A4250) 
[108]

Children With PFIC1/2 ASBT (Inhibitor) NCT03566238 2018 Phase 3 (Completed) Albireo

Linerixibat 
(GSK2330672) [109]

PBC Pruritus ASBT (Inhibitor) NCT01899703 2014 Phase 2a (Completed) GlaxoSmithKline

Linerixibat 
(GSK2330672)

PBC Pruritus ASBT (Inhibitor) NCT02801981 2016 Phase 1 (Completed) GlaxoSmithKline

Linerixibat 
(GSK2330672) [110]

PBC Pruritus ASBT (Inhibitor) NCT02966834 2017 Phase 2b (Com-
pleted)

GlaxoSmithKline

Linerixibat 
(GSK2330672)

PBC Pruritus ASBT (Inhibitor) NCT04950127 2021 Phase 3 (Recruiting) GlaxoSmithKline

Maralixibat (LUM001) 
[111]

PFIC ASBT (Inhibitor) NCT02057718 2014 Phase 2 (Completed) Mirum Pharmaceuti-
cals, Inc

Maralixibat (LUM001) PSC ASBT (Inhibitor) NCT02061540 2014 Phase 2 (Completed) Mirum Pharmaceuti-
cals, Inc

Maralixibat (LUM001) PFIC ASBT (Inhibitor) NCT03905330 2019 Phase 3 (Completed) Mirum Pharmaceuti-
cals, Inc

Maralixibat (LUM001) 
[112]

ALGS ASBT (Inhibitor) NCT02160782 2014 Phase 2 (Completed) Mirum Pharmaceuti-
cals, Inc

Maralixibat (LUM001) PFIC; ALGS; CLD ASBT (Inhibitor) NCT04729751 2021 Phase 2 (Recruiting) Mirum Pharmaceuti-
cals, Inc

Volixibat PSC ASBT (Inhibitor) NCT04663308 2020 Phase 2 (Recruiting) Mirum Pharmaceuti-
cals, Inc

Volixibat ICP ASBT (Inhibitor) NCT04718961 2021 Phase 2 (Active, not 
recruiting)

Mirum Pharmaceuti-
cals, Inc

A3907 PSC ASBT (Inhibitor) NCT05642468 2023 Phase 2 (Recruiting) Albireo

Maralixibat chloride 
(TAK-625)

PFIC ASBT (Inhibitor) NCT05543187 2023 Phase 3 (Recruiting) Takeda

Maralixibat chloride 
(TAK-625)

ALGS ASBT (Inhibitor) NCT05543174 2023 Phase 3 (Recruiting) Takeda
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potential value in the development of anti-cholestasis 
drugs, further research is necessary to determine their 
efficacy and long-term safety in clinical settings.

VDR
VDR is expressed in both biliary epithelial cells in the 
liver and the intestine. VDR is nearly ten times more 
sensitive to LCA than PXR. Activation of VDR pro-
tected hepatocytes from cholestatic injury by inhibiting 
the expression of genes involved in bile acid metabolism 
and transport [122]. Deletion of VDR promoted chole-
static liver injury by diminishing bile duct integrity in 
mice [123]. VDR deletion in the intestine can reduce the 
expression of CYP3A and inhibit the metabolism of LCA 
[124]. At the same time, VDR deletion in the intestine 
can indirectly upregulate the expression of BA transport-
ers resulting in promoting enterohepatic circulation and 
more BAs to the liver, which in turn leads to hepatic chol-
estasis and liver injury [125]. Previous studies showed 
that the VDR–YAP axis promotes cholangiocyte prolif-
eration and enhances adaptive bile duct remodeling, alle-
viating cholestatic liver injury in BDL mice [126]. VDR 
activation mitigated cholestatic liver injury by reducing 
autophagy-dependent hepatocyte apoptosis and sup-
pressing the activation of the ROS-dependent ERK/
p38MAPK pathway [127]. While modulating VDR activ-
ity may be a potential target for treating cholestatic liver 
diseases, it is important to note that VDR activity can 
affect calcium metabolism and influence blood calcium 
levels. This could be particularly concerning in patients 
with liver diseases. Thus, more research is needed to fully 
understand the efficacy, safety, and optimal dosing regi-
mens of VDR agonists before they can be considered a 
viable treatment option.

G‑protein‑linked receptors (GPCRs)
The seven transmembrane GPCRs are the most promi-
nent family of membrane proteins and are responsible for 
most signal transduction from extracellular to intracellu-
lar. GPCRs are also the most diverse class of transmem-
brane proteins, which can sense various environmental 
stimuli, such as light, lipids, sugars and proteins. Takeda 
G protein-coupled receptor 5 (TGR5, also known as 
GPBAR1 or M-BAR), is the first BA-activated GPCR 
identified in macrophages [76]. During the last decade, 
several studies also reported that sphingosine-1-phos-
phate receptor 2 (S1PR2) and the muscarinic receptors 
were also activated by BAs [128, 129]. BA-mediated 
activation of GPCRs induces the activation of different 
downstream signaling pathways based on the coupling 
of different G proteins in a cell-type-specific manner. 
GPCRs represent the most important drug targets, and 

more than 700 FDA-approved drugs target GPCRs [130]. 
Understanding BA-mediated activation of GPCRs will 
provide critical information for developing novel thera-
peutic agents for cholestatic liver disease [131].

TGR5
TGR5 was initially identified in macrophages as the 
first GPCR activated by BAs [76]. It is widely expressed 
in various tissues, including the intestine, colon, endo-
crine glands, adipose tissue, muscles, immune organs, 
gallbladder, kidney, and liver [132–134]. In the liver, 
TGR5 is highly expressed in non-parenchymal cells, 
including hepatic sinusoidal endothelial cells [135], 
activated hepatic stellate cells (HSCs), and intrahepatic 
[136] and extrahepatic [137] cholangiocytes, Kupffer 
cells [138], but not expressed in hepatocytes [49]. TGR5 
was mainly activated by secondary BAs with the fol-
lowing rank order: TLCA > LCA > DCA > CDCA > CA > 
UDCA (Fig.  4) [132, 139]. TGR5 also can be activated 
by steroid hormones. Activation of TGR5 is mainly 
coupled to Gαs, resulting in the activation of adenylyl 
cyclase and the elevation of cAMP levels. It has been 
reported that TGR5 is coupled to Gαi in ciliated H69 
cholangiocytes [136]. TGR5 also activates AKT and 
ERK signaling pathways and regulates glucose and 
energy metabolism [140]. In addition, TGR5 has been 
identified as a negative regulator of liver inflammation 
via inhibiting NF-κB signaling [128, 140–142]. TGR5 
activation can induce cholangiocyte regeneration to 
maintain the integrity of the biliary tree and control the 
hydrophobicity of BA pools by stimulating bicarbonate 
secretion [28, 141, 143]. In the BDL and BA-feeding 
cholestatic mouse models, TGR5−/− mice appeared to 
develop more severe inflammation and cholestatic liver 
injury than WT mice. These studies suggest that TGR5 
agonists may be beneficial to prevent cholestatic liver 
injury [144].

Extensive efforts have been put into developing selec-
tive and potent TGR5 agonists in the past decade. The 
6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) 
is the best-known semisynthetic TGR5 agonist. How-
ever, TGR5 agonists alone did not improve liver fibro-
sis in Mdr2−/− mice, and the dual TGR5/FXR agonist 
(INT-767) reduced liver inflammation and fibrosis, 
possibly by lowering BA synthesis in an FXR-depend-
ent manner [145]. Simultaneous activation of TGR5 
and FXR receptors improves prognosis, which may 
represent a better therapeutic strategy [131]. Consider-
ing the broad expression of TGR5, activation of TGR5 
in cholangiocytes and macrophages may be beneficial 
to reduce cholestatic liver injury and inflammation. 
However, it will cause unwanted effects in other cells 
and tissues, such as increased gallstone formation by 
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altering gallbladder motility and promoting cholangio-
carcinoma cell proliferation [146, 147]. Another side 
effect of the TGR5 agonist is pruritus. It is necessary to 
take this into consideration in the future development 
of therapeutic agents targeting TGR5.

S1PR2
S1PR2 was initially identified as a BA-activated GPCR in 
primary rodent hepatocytes [128]. S1PR2 is one of five 
S1PRs originally discovered as endothelial differentia-
tion G protein-coupled receptor 5 (EDG5) [41]. S1PR2 is 
highly expressed in hepatocytes, cholangiocytes, and 
immune cells in the liver. It is mainly activated by con-
jugated primary BA, TCA and GCA. Compared to S1P, 
the ligand affinity of TCA to S1PR2 is 100 times lower. 
However, TCA-mediated activation of S1PR2 plays an 
essential role in regulating hepatic lipid and glucose 
metabolism [33]. S1PR2 can activate various signaling 
pathways via coupling with different G-proteins [148]
(Fig.  4). Our previous studies also reported that the 
upregulation of S1PR2 expression is associated with 
cholestatic liver fibrosis [41, 149]. TCA-induced activa-
tion of AKT and ERK1/2 signaling pathways via S1PR2 

promoted cholangiocarcinoma cell proliferation and 
invasion [150]. Activation of S1PR2 has also been asso-
ciated with inflammation and mitochondrial dysfunction 
[151]. A study reported that S1PR2 deficiency inhibits 
macrophage proinflammatory activities in apoE-deficient 
mice [152]. However, this paper was retracted due to 
data manipulation. Therefore, more rigorous studies are 
needed to understand the role of S1PR2 in modulating 
inflammatory response in immune cells. The develop-
ment of more selective and potent antagonists of S1PR2 
is critical to test the therapeutic effects for cholestatic 
liver diseases.

Muscarinic receptor 3 (M3)
The muscarinic receptors (M) are composed of five sub-
types, M1-M5, with different tissue distributions and 
overlapping functions by coupling to similar G proteins 
[153]. M1 and M3 receptors are activated not only by 
acetylcholine but also by selected BAs. M3 is located at 
cholangiocyte cell membrane invaginations [154, 155], 
which is the primary cholangiocyte receptor for differ-
ent parasympathetic regulation [156]. TLCA has been 
reported as an antagonist of M3. TLCA inhibits the 

Fig.4  Bile acid-activated GPCRs. TLCA, taurolithocholic acid; LCA, lithocholic acid; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid; CA, cholic 
acid; UDCA, 3α, 7β-dihydroxy5β-cholic acid; TCA, taurocholic acid; GCA, glycocholic acid; TGR5, Takeda G protein-coupled receptor 5; GDP, guanine 
dinucleotide phosphate; GTP, guanine trinucleotide phosphate; ATP, adenosine triphosphate; cAMP, cyclic adenosine phosphate; NF-κB, nuclear 
transcription factor kappa B; ERK, extracellular signal-regulated kinase; PKA, protein kinase A; S1PR2, sphingosine-1-phosphate receptor 2; EGFR, 
epidermal growth factor receptor



Page 11 of 15Zeng et al. Cell & Bioscience           (2023) 13:77 	

acetylcholine-induced increase in inositol phosphate 
formation and activation of mitogen-activated protein 
kinase (MAPK) [129]. Acetylcholine is rapidly degraded 
by acetylcholinesterase upon release. Cholinergic stimu-
lation appears to have pro-proliferative, pro-survival 
effects on biliary growth. BDL mice undergoing vagot-
omy showed a decreased biliary mass and M3 expres-
sion and increased cholangiocyte apoptosis [157]. PBC 
patients frequently showed autoantibodies directed 
against M3 [158]. Previous studies also reported that M3 
signaling significantly influenced bile formation, M3−/− 
increased susceptibility to cholestatic injury, and treat-
ment of Mdr2−/− mice with M3 agonist decreased liver 
injury [159]. Furthermore, human HSCs also express 
M receptors, and M3 is upregulated in activated HSCs. 
HSCs secrete and respond to acetylcholine in an auto-
crine and paracrine manner to increase their expression 
of proliferative and fibrotic markers [160]. These find-
ings suggested that M3 could play an important role in 
etiopathogenesis and may represent a promising novel 
therapeutic target in cholestatic liver diseases.

Summary and future direction
As important signaling molecules, BAs play critical roles 
in regulating enterohepatic bile acid homeostasis, hepatic 
metabolic function, and immune responses under nor-
mal physiological conditions. Disruption of BA-medi-
ated signaling pathways has been closely associated with 
various liver diseases, including cholestatic liver disease. 
The differential expression of different BA receptors and 
dynamic changes in BA composition and levels under 
cholestatic conditions contribute to disease progression. 
Understanding the role of individual BA receptor-medi-
ated signaling pathways in different types of cells and tis-
sues under physiological and pathological conditions is 
critical to developing better therapeutics for cholestatic 
liver diseases. The therapeutic application of the current 
available agonists and antagonists of BA receptors is lim-
ited due to severe side effects and lack of tissue or/cell 
type specificity. There is an urgent need to develop tis-
sue- or cell-type-selective agonists or antagonists of BA 
receptors as potential therapeutics for cholestatic liver 
diseases.
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