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Abstract

Hearing loss (HL) can be caused by a number of different genetic factors. Non-syndromic HL refers that HL occurs

as an isolated symptom in an individual, whereas syndromic HL refers that HL is associated with other symptoms or
abnormalities. To date, more than 140 genes have been identified as being associated with non-syndromic HL, and
approximately 400 genetic syndromes can include HL as one of the clinical symptoms. However, no gene therapeutic
approaches are currently available to restore or improve hearing. Therefore, there is an urgent necessity to elucidate
the possible pathogenesis of specific mutations in HL-associated genes and to investigate the promising therapeutic

strategies for genetic HL. The development of the CRISPR/Cas system has revolutionized the field of genome engi-
neering, which has become an efficacious and cost-effective tool to foster genetic HL research. Moreover, several

in vivo studies have demonstrated the therapeutic efficacy of the CRISPR/Cas-mediated treatments for specific
genetic HL. In this review, we briefly introduce the progress in CRISPR/Cas technique as well as the understanding of
genetic HL, and then we detail the recent achievements of CRISPR/Cas technigque in disease modeling and therapeu-
tic strategies for genetic HL. Furthermore, we discuss the challenges for the application of CRISPR/Cas technique in

future clinical treatments.
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Introduction

Hearing loss (HL) is one of the most prevalent sensory-
deficit forms in humans, currently affecting over 5% of
the global population (466 million people) (http://www.
who.int/mediacentre/factsheets/fs300/en/). Congenital
HL impacts about 1 in 500 newborns, and it is estimated
that over half of the cases can be attributable to genetic
factors (genetic HL), with the remaining caused by
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environmental factors (non-genetic/acquired HL) [1-3].
To date, hearing devices (e.g., hearing aids and cochlear
implants) are the most available option for HL patients
[4]. However, these devices cannot restore or improve
hearing to normal levels and no pharmacological therapy
is currently available for genetic HL.

The promise of genome editing was demonstrated
when the precise modifications of DNA were achieved
by the introduction of nucleases, including zinc finger
nucleases (ZFNs) and transcription-activator-like effec-
tor nucleases (TALENS) [5-7]. However, both ZFNs- and
TALENs-mediated genome editing techniques are costly,
labor-intensive, and time-consuming [8—10]. Fortunately,
the recently emerged genome-editing platform, the clus-
tered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (Cas) system, has
been used to edit specific genomic sites in different spe-
cies [11]. The discovery of the CRISPR/Cas system has
driven a biotechnological revolution as its simplicity and
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efficiency allow affordable genome editing [12]. In recent
years, CRISPR/Cas-mediated genome editing has gained
mounting attention as a prospective approach for mod-
eling and treating genetic HL [13-16].

In this review, we provide an overview of the CRISPR/
Cas technique and review progress in the current under-
standing of genetic HL. Furthermore, we summarize the
current achievements of CRISPR/Cas-mediated genome
editing applied to the research of genetic HL, highlight-
ing its important role in disease modeling and therapeu-
tic strategies. Moreover, we discuss the challenges for the
application in future clinical treatments.

The principles and applications of CRISPR/Cas
technique

The clustered palindromic sequence with short spacers
was first observed in Escherichia coli in 1987 [17], and
such a sequence family was officially named CRISPR
by Jansen et al. in 2002. Since 2011, the mechanism of
CRISPR/Cas system in bacteria and archaea against
invasive plasmids and viral particles was basically eluci-
dated, and the systems have subsequently been utilized
as a powerful gene-editing tool [11, 18—-20]. The system
is categorized into two classes (Class 1 and 2) that are
composed of one or more arrays of alternating repeat
sequences and spacers, a leader sequence, and a set of
CRISPR-associated (cas) genes [21, 22]. Cas genes pro-
duce CRISPR-RNAs (crRNAs) and Cas proteins (a fam-
ily of endonucleases), subsequently assembling to form
‘crRNA—effectors, which monitor the cell in search of
target nucleic acids [23]. Class 1 systems (types I, III,
and IV) use a multisubunit crRNA-effector complex,
whereas Class 2 systems (types II, V, and VI) use a sin-
gle subunit crRNA-effector protein [24]. Cas 1 and Cas
2 are universal in all systems, whereas Cas3, Cas9, Casl0,
Casl2, and Casl3 are specific for Type I, II, III, V, and
VI CRISPR/Cas systems, respectively [21, 22, 24-27].
Among all types of CRISPR/Cas systems, Type II, V, and
VI systems have recently dominated the field of genome
editing [28, 29], and natural Cas nucleases, includ-
ing Cas9, Casl2, and Cas13, have been adopted for use
as gene editing tools and their variants have been engi-
neered with improved performance (Table 1) [22, 30, 31].

CRISPR/Cas9 system

Type II CRISPR/Cas system consists of three key com-
ponents: the Cas9 protein, crRNA, and trans-activating
crRNA (tracrRNA). Specifically, Cas9 cleaves the target
DNA through interaction with crRNA and tracrRNA. To
date, multiple Cas9 orthologs and engineered variants
have been discovered and developed as a genome editing
tool, with distinct sizes, editing efficacy, and recognition
motifs. Furthermore, target recognition requires a short
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and conserved DNA sequence (usually 3-8 bp) adjacent
to the target DNA, namely the protospacer adjacent
motif (PAM) [32]. The PAM sequence varies between
diverse Cas9 nucleases produced by the different bacte-
rial strains [33, 34], and the most commonly used PAM
sequence is 5'-NGG-3' (N is any nucleotide) for Strepto-
coccus pyogenes Cas9 (SpCas9) [35, 36].

Generally, the crRNA-tracrRNA complex can be engi-
neered as a single guide RNA (sgRNA) that joins to Cas9
and links the Cas9 to target genes. Therefore, CRISPR/
Cas9-mediated genome editing can be achieved by sup-
plying a cell with Cas9 proteins and specifically designed
sgRNAs. Briefly, the sgRNA binds with and activates
Cas9. Active Cas9 will search for the target site and
unwind double-strand DNA, then sgRNA will anneal
to one of DNA strands. If the complementary region of
sgRNA and the target DNA sequence pair properly, Cas9
will cut the target DNA, causing double strand breaks
(DSB) approximately 3 bp upstream of the PAM. DSBs
will be commonly recovered by endogenous cellular
repair pathways: non-homologous end joining (NHE])
or homology-directed repair (HDR) (Fig. 1A) [37-40].
In the absence of any homologous sequences, the cell
will undergo NHE]. Through NHE], the two halves of
DNA will join together, leading to insertions/deletions at
the DSB site, which disrupts the target gene. If a donor
homologous DNA template containing homologous arms
matching the target DNA is supplied, it will be incorpo-
rated into the genome via HDR, which is desired to repair
the mutated gene.

In addition to the use of Cas9 for DNA cleavage, the
catalytically inactive modification of SpCas9 (dead Cas9,
dCas9) was developed for improving genome edit-
ing strategies. The dCas9 retains its ability to bind to a
target DNA sequence in combination with a sgRNA
but does not create DSBs [42]. By fusing to an effec-
tor domain, dCas9 can affect transcriptional machinery
(e.g., transcription factors or RNA Polymerase), altering
the expression level of a target gene (Fig. 1B) [88-90].
dCas9 that is fused with a transcriptional repressor (e.g.,
KRAB) can block transcription of the gene thus creating
a reversible knockdown, which is a gene repression tech-
nique named CRISPR interference (CRISPRi) [91]. Alter-
natively, by fusing with a transcriptional activator (e.g.,
VP64), dCas9 can upregulate expression via CRISPR acti-
vation (CRISPRa) [92].

Base editors (BEs) and prime editors (PEs) are newly
emerging genome-editing tools (Fig. 1C) [93, 94]. BEs
are formed by fusing a nickase Cas9 (nCas9) to differ-
ent deaminases to directly edit a single base pair of a
gene without the need for DNA cleavage [95], which
aim to correct point mutations in single-nucleotide
variants (SN'Vs). There are two established classes of
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Table 1 Cas species and their variants

Cas Species Size of cDNA  PAM sequence Refs.

(kb)

Cas9 SpCas9 Streptococcus pyogenes 4.1 5/-NGG-3/ [41]
dCas9 4.1 5-NGG-3/ [42]
SpCas9-EQR 4.1 5-NGAG-3/ [43,44]
SpCas9-VOR 4.1 5-NGA-3’ [43,44]
SpCas9-VRER 4.1 5-NGCG-3' [44]
SpCas9-HF1 4.1 5'-NGG-3/ [45]
SpCas9-NG 4.1 5-NG-3’ [46]
SpCas9-NGv1 4.1 5/-NG-3’ [47]
eSpCas9(1.1) 4.1 5-NGG-3/ (48]
HypaCas9 4.1 5'-NGG-3/ [49]
xCas9 46 5/-NG, NAA, or NGT-3/ [50]
SaCas9 Staphylococcus aureus 3.16 5'-NNGRRT-3/ [51]

(R=AorQ)
SaCas9-KKH 3.16 5/-NNNRRT-3/ [52]
St1Cas9 Streptococcus thermophilus 34 5-NNAGAAW-3/ (53]
(W=AorT)
ScCas9 Streptococcus canis 4.1 5/-NNG-3/ [54]
SpyCas9 Streptococcus pyogenes 4.1 5'-NAA-3’ (55]
SmacCas9 Streptococcus macacae 4.0 5/-NAAN-3’ [56]
iSpyMac Cas9 / 5-NAA-3 [56]
CjCas9 Campylobacter jejuni 295 5'-N,RYAC-3 [57]
(R=AorG,Y=CorT)
CjCas9-VPR 36 5'-N,ACAC-3 (58]
NmeCas9 Neisseria meningitidis 324 5'-N,GATT-3 (59]
Nme2Cas9 5-N,CC-3/ [60]
FnCas9 Francisella novicida 49 5-NGG-3/ (61]
RHA FnCas9 49 5/-YG-3/ [61]
BlatCas9 Brevibacillus laterosporus 3.28 5'-N,CNAA-3’ [62]
Cas12 AsCas12a Acidaminococcus sp. BV3L6 39 5-TTTV-3/ (63]
(V=A,C and G)
enAsCas12a 39 5TTTV-3/ (64]
LbCas12a Lachnospiraceae bacterium ND2006 37 5TTTV-3/ (63]
LbCas12a-RVR 37 5/-TATV-3! [65]
LbCas12a-RR 37 5-TYCV-3/ [65]
FnCas12a Francisella tularensis subsp. novicida U112 39 5/TTTV-3/, 5/-TATV-3/, [66-68]
and 5/-TYCV-3/
AaCas12b Alicyclobacillus acidiphilus 34 5/-TTN-3’ [69]
AacCas12b Alicyclobacillus acidoterrestris 34 5/-TTN-3/ [69]
BthCas12b Bacillus thermoamylovorans 33 5/-ATTN-3’ [70]
BhCas12b v4 Bacillus hisashii 33 5/-ATTN-3’ (71]
Casl2c / 3.8 5/-TN-3/ [72]
Cas12d (formerly CasX) Candidate Phyla Radiation (CPR) bacteria 38 5/-TR-3! [73]
Cas12e (formerly CasX) Deltaproteobacteria 30 5/-TTCN-3/ [74]
Un1Cas12f1 uncultured archaeon 1.6 5-TTTG-3/ [75]
AsCas12f1 Acidibacillus sulfuroxidans 13 5-YTTN-3' [76]
Casl12g / 23 / [72]
Cas12h / 2.6 5/-RTR-3/ [72]
Cas12i / 3.2 5/-TTN-3’ [72]
Cas12j bacteriophages 23 5/-TTN-3/ 771
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Table 1 (continued)
Cas Species Size of cDNA  PAM sequence Refs.
(kb)
Cas13 LbuCas13a Leptotrichia buccalis 35 / [78]
LwaCas13a Leptotrichia wadei 35 / [79]
LshCas13a Leptotrichia shahii 4.1 / [80]
LbaCas13a Lachnospiraceae bacterium 43 / [81]
Cas13b1 Bergeyella zoohelcum ATCC 43767 34 / [82]
Cas13b2 Prevotella buccae ATCC 33574 38 / [82]
dPspCas13b Prevotella sp. P5-125 3.0 / [83]
Cas13c / 33 / (84]
EsCas13d Eubacterium siraeum 2.8 / [85]
RspCas13d Ruminococcus sp. 2.8 / [85]
RfxCas13d(CasRx) Ruminococcus flavefaciens XPD3002 29 / (86]
Cas13X / 23 / [87]
Cas13X.1 23 / [87]
Cas13Y / 24 / [87]
' Effector .
A 'B @™ 'C
Cas9 SGRNA | dcaso SgRNA | dcaso SgRNA
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I ;; ? : | |
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Fig. 1 CRISPR/Cas9 mechanism. A Cas9 nuclease combines with a sgRNA to create a DSB in the targeted DNA sequence, which can be repaired
by NHEJ or HDR. B Fusing an effector domain to dCas9 will regulate target gene expression. C CBEs or ABEs are engineered by fusing a nCas9 and
a single-stranded DNA modifying enzyme, which are used to induce a C to T transversion or an A to G transversion. PEs encompass an engineered
reverse transcriptase, a nCas9, and a pegRNA, which are the ability to generate the permanent incorporation of the desired edit into target DNA

BEs: Cytosine BEs (CBEs) that enables a C to T trans-
version and Adenine BEs (ABEs) that enable an A to G
transversion [95, 96]. PEs are made by fusing a Cas9 to
an engineered reverse transcriptase. Compared to BEs,

PEs can copy genetic information from a prime edit-
ing guide RNA (pegRNA) into a specific target genomic
locus, leading to precise modification of all 12 possi-
ble classes of point mutations in SN'Vs, as well as small
insertion/deletion mutations [97].
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CRISPR/Cas12 system

Casl2 is a versatile protein that has been used as an
alternative DNA endonuclease to Cas9 for gene edit-
ing. Casl2 can be guided by its crRNA to recognize
the target DNA strand with PAM sequences [63]. Upon
PAM recognition, Casl2 cleaves both target and non-
target DNA strands via its RuvC domain and gener-
ates a staggered double-stranded break beside the
PAM sequence [63]. The Casl2 protein family contains
various subtypes including Casl2a (formerly known
as Cpfl), Casl2b, Casl2c, Casl2d (formerly known
as CasY), Casl2e (formerly known as CasX), Casl2f,
Casl2g, Casl12h, Casl2i, and Casl2j (formerly known
as Casl4) [63-77]. Distinct types of identified natural
Casl2 orthologs have broader PAM recognition sites,
and several Casl2a variants with weakened PAM con-
straints have also been developed (Table 1). CRISPR/
Casl2 system is also considered as an attractive type
of the CRISPR/Cas family for genome editing. Moreo-
ver, since Cas12 not only can cleave both double-strand
DNA and single-strand DNA via its RuvC domain but
also have trans-cleavage activity on [98], CRISPR/
Casl2 system has been successfully employed for rapid
and sensitive nucleic acid detection [99, 100].

CRISPR/Cas13 system

CRISPR/Casl3 system serves as an adaptive immune
system targeting the invading single-stranded RNA
substrates in archaea and bacteria [101]. Several Cas13
subtypes have been identified to date, including Cas13a
(formerly known as C2c2), Cas13b, and Casl3c, Casl13d,
Cas13X, Cas13Y, and Casl3bt (Table 1) [78-82, 84, 85,
87]. Casl3 is an RNA-guided ribonuclease, which can
process its pre-crRNA into mature crRNA. Casl3 is
guided by crRNA to search for the target single-strand
RNA that is flanked by protospacer-flanking sites (PES),
and then cleave the target RNA [30]. Distinct subtypes
of Casl3 have diverse PFS requirements. However, it is
not clear whether the PFS has any physiological role at
present [30]. Further investigation is required to explain
if and how PFS preferences are capable of affecting RNA-
targeting recognition of the CRISPR/Casl3 system. As
an RNA-targeting tool, Casl3 provides a more widely
applicable platform of RNA editing for applications in
research, therapeutics, and biotechnology [83, 84, 102].
Programmable single-base RNA editing approaches,
including RNA editing for programmable A to I (G)
replacement (REPAIR) and RNA editing for specific C to
U exchange (RESCUE), were developed via fusing inac-
tivated Cas13 (dCas13) with adenosine deaminase acting
on RNA type 2 (ADAR?2) [83, 84]. Furthermore, similar to
Casl2, Casl3 was found with the trans-cleavage activity
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on RNA [80, 101], thus being used for CRISPR-based
diagnostics [103].

Genetic hearing loss

Genetic HL is frequently caused by a mutation in a single
gene [104]. To date, nearly 150 HL-associated genes and
their loci have been identified and a regularly updated
overview can be found online (http://hereditaryheari
ngloss.org) [2, 105]. Clinically, 70% of genetic HL occurs
as an isolated symptom (non-syndromic HL), while 30%
of genetic HL is associated with other symptoms or
abnormalities [2]. According to the study of the Clinical
Genome Resource (ClinGen) Hearing Loss Gene Cura-
tion Expert Panel, non-syndromic HL can be further
subdivided based on the pattern of inheritance, including
autosomal dominant (DFNA, ~ 36%), autosomal recessive
(DENB, ~59%), X-linked (DFNX,~4%), and mitochon-
drial (~1%) [106]. Most of those genes underlying HL
have distinct functions, such as transporters, ion chan-
nels, and transcription factors, which play roles in inner
ear homeostasis, mechano-electrical transduction, and
transcriptional regulation (Fig. 2) [107]. Studies on those
causative genes have tremendously improved our under-
standing of the inner ear functions at the molecular level.

CRISPR/Cas9 in genetic hearing loss

Since 2014, CRISPR/Cas9 was shown to correct genetic
disorders [108, 109], CRISPR/Cas-mediated genome
editing techniques have been applied in the research set-
ting to investigate and treat genetic HL. In 2015, Zuris
et al. reported the Cationic lipid-mediated delivery of
Cas9-sgRNA complexes into the mouse inner ear in vivo,
achieving 20% Cas9-mediated genome modification
in hair cells [110], which provides a viable CRISPR/Cas
delivery approach for in vivo genome editing in inner
ear. In 2017, Holly et al. achieved specific, DNA-free base
editing in both zebrafish embryos and the inner ear of
live mice in vivo through delivering a high-fidelity third-
generation BE (HF-BE3) based on protein engineering
[111]. In 2018, Gao et al. applied CRISPR/Cas9-based
treatment in vivo to achieve (transmembrane channel-
like gene family 1) (Tmc1) allele gene disruption in a Bee-
thoven (TmcI®"/*) mouse model of a human genetic HL,
leading to the amelioration of a disease phenotype [112],
which further shows the potential of CRISPR/Cas-medi-
ate treatment for genetic HL. In addition, Cas9-based
CBE and Casl3-based RNA BE have been reported to
be successfully used to treat genetic HL in mice models
[113, 114]. Therefore, this section summarizes the cur-
rent applications of the CRISPR/Cas-mediated genome
editing techniques in generating disease models and
treating genetic HL in vitro and in vivo (Fig. 3).
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Fig. 2 Schematic lllustration of the ear and the lists of non-syndromic HL genes. The lists of non-syndromic HL genes are can be found online
(http://hereditaryhearingloss.org) [105]
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Fig. 3 The mile-stone progress of CRISPR/Cas-mediated genome editing techniques and their applications in genetic HL
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Disease modeling

Recently, the CRISPR/Cas system has been utilized as a
gene-editing tool to establish disease models for genetic
HL, which could be used to elucidate the possible patho-
genesis of specific mutations in HL-associated genes. In
this section, we will summarize and discuss such reports
on genetic HL modeling constructed with CRISPR/Cas
technique (Table 2).

Cell models

Cell models can be easily established and used to study
molecular mechanisms of specific gene mutations
in vitro. Transmembrane protein connexin 26 (Cx26)
plays a crucial role in the ionic and metabolic homeo-
stasis of inner ear and is essential for the normal hearing
process [115, 116]. Mutations in the GJB2 gene encod-
ing Cx26 are the most common cause of HL worldwide,
and diverse pathogenic mutations can result in non-
syndromic HL DFNB1 or DFNA3 and HL-associated
syndromes. To clarify the functional consequences of a
rare recessive GJB2 variant ¢.516G > C, the GJ/B2 knock-
out HeLa cell line was generated by the CRISPR/Cas9
tool and used to establish transgenic cell lines stably
expressing distinct GJ/B2 variants (wild type, ¢.516G>C,
€.224G > A, or ¢.35delG) [117]. The c.516G > C substitu-
tion causes the replacement of tryptophan with cysteine
at a conserved amino acid position of Cx26 protein, and
mutant Cx26 fails to translocate to the plasma membrane
and reduces hemichannels permeability, which supports
its pathogenesis of non-syndromic HL [117]. G protein-
coupled receptor associated sorting protein 2 (GPRASP2)
was identified as a novel pathogenic gene for X-linked
recessive syndromic HL [118]. However, the role of
GPRASP2 in auditory function was still unknown. There-
fore, Lu et al. used CRISPR/Cas9 techniques to construct
Gprasp2-knockout mouse HEI-OC1 auditory cells [119].
The results revealed that Gprasp2-disruption could lead
to apoptosis in HEI-OC1 cells by inhibiting the Sonic
Hedgehog signaling pathway, which might provide the
potential molecular mechanism of GPRASP2 mutation
associated with human HL.

Broly et al. discovered rare bi-allelic mutations in
THUMP-domain containing protein 1 (THUMPDI) in
13 individuals with a syndromic form of intellectual dis-
ability associated with HL [120]. To investigate the patho-
genic mechanism of bi-allelic mutations in THUMPDI,
they used CRISPR/Cas9 tools to create THUMPDI-
knockout HEK293T and HeLa cell lines. In both
THUMPDI-knockout cell lines, the loss of THUMPDI
mRNA and protein expression as well as the complete
loss of N4-acetylcytidine modification of small RNAs
were similar to what was observed in lymphoblasts from
an individual homozygous for a ¢.706C>T (p.GIn236%)
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variant. These findings suggest that THUMPD] is impor-
tant in neurodevelopment as it could specifically affect
small RNA N4-acetylcytidine modification [120]. Simi-
larly, Zheng et al. reported 9 individuals carrying bi-allelic
variants in 2-oxoglutarate dehydrogenase-like (OGDHL)
gene with a range of neurological and neurodevelopmen-
tal phenotypes including HL [121]. A functional study
in OGDHL knockout Drosophila melanogaster and SH-
SY5Y cells revealed that the OGDHL variants are loss-of-
function alleles, which are underly a neurodevelopmental
disease in humans.

Given the absolute scarcity of human inner ear tissue,
using human induced pluripotent stem cells (hiPSC)
with modified HL-related genes might provide an alter-
native strategy to understand the pathogenesis of human
genetic HL and explore more novel therapeutics [10].
Several studies reported the generation of hiPSC mod-
els from volunteers with different genetic HL mutations,
in which CRISPR/Cas systems were used to geneti-
cally correct these mutations [122—124]. iPSC technol-
ogy together with CRISPR/Cas technology are powerful
tools that provide a novel approach to modeling the roles
of genetic variants in the pathogenesis of HL in HL-
related cells derived from hiPSCs. Moreover, CRISPR/
Cas-mediated genetic correction of hiPSCs induced from
somatic cells of patients with genetic HL is a promis-
ing method for its treatment. For example, hiPSCs were
generated from the urinary cells of a deaf patient with
MYO7A mutations [122]. Myosin VIIa (MYO7A) belongs
to the unconventional myosin superfamily that is vital
for proper differentiation and development of stereocilia
bundles [125], and MYO7A mutations in patients are
associated with DFNB2, DFNA11, and usher syndrome
(USH, genetically heterogenous disorder characterized
by retinitis pigmentosa and HL) type 1B (USH1B) [126,
127]. CRISPR/Cas9 system was used to correct MYO7A
c.4118C>T mutation in the hiPSC model. The genetic
correction of MYO7A mutation resulted in morphologic
and functional recovery of hair cell-like cells derived from
hiPSCs, which has confirmed the hypothesis: MYO7A
functions in the assembly of stereocilia into stereociliary
bundles [122]. MYO15A is also an unconventional myo-
sin required for auditory function [128], and MYOI5A
mutations in patients are related to DFNB3 [129].
Another study reported the generation of iPSCs from
the patient carrying compound heterozygous MYOI5A
mutations, which resulted in abnormal morphology (e.g.,
F-actin disorganization, abnormally short stereocilia, and
syncytia formation) and dysfunction (lower current den-
sity) of the derived hair cell-like cells from those iPSCs
[123]. A CRISPR/Cas9 approach was used to genetically
correct the MYOI5A mutation in the iPSCs and rescued
the morphology and function of the derived hair cell-like
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cells [123]. These findings demonstrate the feasibility of
generating inner ear hair cells from hiPSCs and the func-
tional rescue of gene mutation-based HL by using genetic
correction.

The mitochondrial 12S rRNA 1555A >G mutation is
related to aminoglycoside-induced and non-syndromic
HL. TRMU gene encoding tRNA thiouridylase is cru-
cial for mitochondrial DNA translation. A modifier
allele (c.28G>T, p.Alal0Sser) in TRMU interacts with
m.1555A >G mutation that has been reported to cause
HL [130]. Recently, the TRMU mutation (c.28G>T)
in hiPSCs from a hearing-impaired subject with 12S
rRNA m.1555A >G and TRMU c.28G>T was corrected
by CRISPR/Cas9 [124]. Genetic correction of TRMU
¢.28G >T mutation reversed the defective expressions of
the genes involved in the mechanotransduction of hair
cell-like cells, including transmission across chemical
synapses, neurotransmitter release cycle, and potassium
channels, thus recovering the morphologic and func-
tional of these cells [124].

Murine models
With characteristics of easy raising, a short period of
reproduction, and homologous with human genes,
murine models have been most commonly used for the
research of human genetic diseases. Despite there are
huge differences in inner ear size, gestation period, and
physiology between humans and mice, murine models
have been widely used for still better understanding the
pathogenic mechanism of human genetic HL and further
exploring the potential therapeutics for human HL.
Cochlea homeostasis is crucial for normal auditory
function, and mutations in HL-related genes can alter cell
and ion homeostasis, thus leading to hearing impairment.
For instance, G/B2 and GJB6 are adjacent genes encoding
Cx26 and connexin 30 (Cx30), respectively, with overlap-
ping expressions in the inner ear, which are both vital for
hearing development [131]. Previous studies reported
that Cx30 knockout mice had severe hearing loss along
with a 90% reduction in Cx26 [132], while another Cx30
knockout mouse model showed normal hearing with
almost half of Cx26 preserved [133]. These studies indi-
cated that Cx30 appeared to be dispensable for cochlear
functions and GJB6 might not be associated with HL.
Recently, Chen et al. used CRISPR/Cas9 technology to
establish a new Cx30 knockout mouse model (Cx307/7),
which retained approximately 70% of Cx26 [134]. They
found that the Cx30~'~ mouse models showed mild full-
frequency HL in 1, 3, and 6 months. Moreover, Cx30 defi-
ciency reduced the production of endocochlear potential
and the release of ATP, which may be responsible for the
induction of HL. This study suggested that Cx30 may
play an important rather than redundant role in hearing
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development. The pathogenic variants in KCNQ#4 cause
DENA2. However, the understanding of genotype—phe-
notype correlations between KCNQ4 and hearing is lim-
ited. KCNQ4 gene encodes a voltage-gated potassium
channel (Kv7.4) that is highly expressed in the basolateral
membrane of outer hair cells and mediates ionic home-
ostasis, in which the pathogenic mutations can lead to
DENA2 [135]. To understand the genotype—phenotype
correlation between a novel KCNQ4 mutation p.G228D
and hearing, Cui et al. used CRISPR/Cas9-mediated gene
knock-in technique to generate the Kcng4**P mouse
model [136]. Kcng49??*P mice showed progressive high-
frequency HL with progressive degeneration of outer
hair cells in the basal turn, which could recapitulate the
DENA2 phenotype of patients and contribute a better
understanding of the genotype—phenotype correlation
[136].

Myosin VI (MYOS6) is also vital for proper differentia-
tion and development of stereocilia bundles. Pathogenic
variants in the MYO6 gene can cause either DFNA22
or DENB37 [137, 138]. The Myo6 ¢.1325G>A muta-
tion mouse model was generated by HDR of CRISPR/
Cas9 mediated DSB, which could mimic the p.C442Y
variant found in human DFNA22 patients [139]. The
results of immunohistochemistry experiments indicate
that auditory hair cells and degeneration of stereocilia
bundles on vestibular hair cells may underlie progres-
sive HL and vestibular dysfunction of patients harbor-
ing MYO6 p.C442Y mutations [139]. Mechanoelectrical
transduction plays a key role in transmitting sensory
information, and the abnormality of inner ear can affect
the perception of sound. Transmembrane channel-like 1
(TMC1) gene encodes a pore-forming subunit of mech-
anosensory transduction channels in inner hair cells,
which is important for hearing function, and TMCI
mutations are associated with DFNA36 and DFNB7/11
[140, 141]. However, a lack of appropriate mouse mod-
els of recessive DFNB7/11 HL bearing a human TMCI
mutation limited the development of gene therapy for
the type of genetic HL. To establish mouse models har-
boring recessive Tmcl mutations, CRISPR/Cas9 tech-
nology was used to specifically introduce an A>C
substitution, which resulted in a p.N193I point muta-
tion of Tmcl protein that is homologous to the p.N1991
mutation of human TMC1 protein [142]. The results of
hearing test showed that the TmcIN**3’* mice had nor-
mal hearing thresholds, while the Trnc V13 NISL e
were profoundly deaf with fewer outer hair cells at the
cochlea middle and base. Moreover, viral gene therapy
(AAV9-PHP.B-CB6-hTMC1 + WPRE) can restore audi-
tory function in mice, further demonstrating the crucial
role of TMCI1 protein in cochlear hair cells [142]. Cad-
herin 23 (CDH23) gene encoding CDH23 protein that is
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necessary for intercellular adhesion. Different mutations
in the CDH23 gene have been related to either syndromic
(USH1D) or non-syndromic (DFNB12) forms of deafness
in humans. Zhao et al. generated two novel mouse mod-
els with Cdh23 mutations in the CBA/CaJ mice, includ-
ing Cdh23V?%V?2, which consists of a single base pair
deletion (c.235delG), and Cdh23°?/*"2 which consists of
a missense mutation (c.208T > C) [143]. The two mutant
mice exhibit a broad frequency of hearing impairment.
Structural abnormalities in the stereocilia were observed
in the cochlear hair cells of the two mutant mice. The
two novel mutant mouse models provide novel data for
us to better understand the genotype—phenotype corre-
lation of mutant Cdh23 alleles. MYO3A encoding myo-
sin Illa is expressed in cochlear hair cells and retinal
cells, and MYO3A mutations are responsible for human
DENB30 [144]. To establish an animal model for studying
DENB30-type deafness and investigate its mechanism,
Li et al. generated a mouse model of Myo3a mutation
(c.410A>G) using the CRISPR/Cas9 tools [145]. The
results show that Myo3a is essential for normal hearing
by maintaining the intact structure of hair cell stereocilia,
and loss of Myo3a in mice can cause stereocilium degen-
eration in inner ear hair cells, which leads to progres-
sive HL [145]. Mutations in the human CIB2 (encodes
calcium and integrin-binding protein 2) gene have been
associated with DFNB48 and USH1J [146, 147]. To fur-
ther explore the function of the CIB2 gene in hearing,
Wang et al. used the CRISPR/Cas9 technique to estab-
lish Cib2 knockout mice [148]. They found that loss of
Cib2 in mice abolishes mechanoelectrical transduction
currents in auditory hair cells, resulting in HL [148]. In
humans, TPRN (encodes the taperin protein) muta-
tions lead to DFNB79 by an unknown mechanism [149].
To determine the role of Tprn in hearing function, Men
et al. generated Tprn-null mice by CRISPR/Cas9 technol-
ogy from a CBA/Ca] background, which could be ideal
models of human DFNB79 [150]. Functional assays reveal
that loss of Tprn in mice results in the disruption of the
stereociliary rootlet, which leads to damage to stereo-
ciliary bundles and hearing impairments [150]. ELMO
domain-containing 3 (ELMOD3) was identified as a new
deafness gene implicated in causing HL in humans [151,
152]. Nevertheless, the specific role of ELMOD3 in audi-
tory function remains to be elucidated. Li et al. used the
CRISPR/Cas9 technology to establish an Elmod3 knock-
out mice line in the C57BL/6 background to investigate
the role of Elmod3 in the cochlea and auditory function
[153]. Their finding reveals that Elmod3 deficiencies
might play roles in the actin cytoskeleton dynamics in
cochlear hair cells, relating to hearing impairment [153].
Glutaredoxin domain-containing cysteine-rich protein 2
(GRXCR?2) and chloride intracellular channel protein 5
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(CLIC5) are both localized at the base of stereocilia and
are required for normal hearing in humans and mice.
However, the detailed functions of GRXCR2 or CLIC5
in hair cells remain unclear. Using the CRISPR/Cas9 sys-
tem, Li et al. deleted 60 amino acids near the N-termi-
nus of GRXCR2 that are essential for its interaction with
CLIC5 [154]. More importantly, mice harboring this in-
frame deletion in Grxcr2 exhibit moderate low-frequency
HL and severe high-frequency HL but without significant
stereocilia morphogenesis. The study reveals that the
interaction between GRXCR2 and CLIC5 is crucial for
normal hearing.

Given most genes are expressed in diverse parts of the
body including the inner ear and have various physi-
ological functions in addition to the auditory function,
mutations in these genes will result in syndromic HL.
Rac/Cdc42 guanine nucleotide exchange factor 6 (ARH-
GEFb6) is the X-linked intellectual disability gene, and in
some cases, patients carrying ARHGEF6 mutations show
sensorineural HL [155]. However, the role of ARHGEF6
in inner ear development and hearing function remains
unclear. Zhu et al. established Arigef6 knockdown mice
using the CRISPR/Cas9 technique [156]. The results sug-
gest that ARHGEFG6 loss leads to the inhibition of the
Rho GTPases CDC42 and RAC1, which causes progres-
sive hair cell loss and subsequent HL [156]. Song et al.
characterized a family with deafness-dystonia-optic
neuronopathy syndrome, in which the affected mem-
bers carried a novel hemizygous variation (c.82C>T) in
translocase of the inner membrane 8A (TIMMS8A) gene
[157]. They then generated a mouse line with the hemizy-
gous mutation in the Timm8al gene using the CRISPR/
Cas9 technology, which bears loss-of-function mutation
in Timm8al. The results suggest that the Timm8al muta-
tion in mice leads to an abnormal mitochondrial struc-
ture in the brain, correlating with hearing and memory
impairment.

Zebrafish models

Since the inner ear of Zebrafish has similar functions
to that of humans, it has become an excellent model for
exploring the development of the inner ear. CRISPR/
Cas9 system has revolutionized the ability to generate
zebrafish mutants, and previous studies have been dis-
cussed by Vona et al. in detail [158]. Mafb is a component
of the Maf transcription factor family, which participates
in multiple biological processes, while its role in inner-
ear development remains unclear [159, 160]. To address
the specific mechanism of how mafba (homologous to
mammalian mafb) mutants cause inner-ear defects, Chen
et al. constructed a zebrafish mafba knockout (mafba='")
model using CRISPR/Cas9 technology [160]. Loss of
mafba impairs inner-ear development of zebrafish
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embryos. The inner-ear deficiencies in mafba™'~ embryos
are related to cell apoptosis and GO/G1 cell cycle arrest
caused by DNA damage. The study provides novel
insights into the pathogenic mechanisms of mafba, and
mafba™'~ zebrafish could be an ideal model for develop-
ing novel therapeutic approaches for inner-ear defects
[160]. CATSHL (camptodactyly, tall stature, and HL)
syndrome is caused by loss-of-function mutations in the
fibroblast growth factor receptors 3 (FGFR3) gene [161].
However, the pathogenesis of these phenotypes remains
poorly understood and there are no effective therapies.
Based on CRISPR/Cas9 technology, Sun et al. generated
fgfr3 knockout zebrafish exhibiting craniofacial bone
malformation with microcephaly and delayed closure of
cranial sutures, chondroma-like lesion, and abnormal
development of auditory sensory organs, which partially
resemble the clinical features of CATSHL patients [162].
Further experiments showed that loss of fgfr3 upregulates
canonical Wnt/p-catenin signaling, and the phenotypes
of fgfr3 mutants could be partially alleviated by phar-
macologically inhibiting Wnt/p-catenin [162]. The find-
ings provide the zebrafish model for CATSHL syndrome
to deepen our understanding of pathogenetic mecha-
nisms of the FGFR3 mutantions and explore the possible
therapies.

Zebrafish is also widely used to investigate candi-
date genes for human genetic HL. Recently, based on
CRISPR/Cas9 system, Gou et al. proposed a novel mul-
tiplex genome editing strategy that could simultane-
ously target five genes and rapidly generate individual
homozygous zebrafish mutants for functional genetics
research [163]. According to the results of the C-start
assay and the AMI-43 staining, a new gene mutation
(tmem183a) was identified to be associated with HL,
which may affect the normal state of mechanoelectri-
cal transduction channels in hair cells [163]. By linkage
analysis and exome sequencing, Rodrigo et al. identi-
fied a rare missense variant (¢.2810C > G) in the NCOA3
gene as the best candidate to be causative of bilateral,
progressive, non-syndromic, and sensorineural HL in a
large Brazilian family with autosomal dominant inherit-
ance [164]. CRISPR/Cas9 system was used to generate
a stable homozygous zebrafish mutant line (1coa3™")
that showed subtle and abnormal skeletal behavior (car-
tilage behavior and bone density) in the ears, suggesting
that skeletal abnormalities might be responsible for the
pathogenesis of NCOA3 mutations [164]. By genome-
wide linkage analysis and whole exome sequencing, a
heterozygous variant (c.547C>G) in THOCI was iden-
tified as the probable cause of the late-onset, progres-
sive, non-syndromic HL that segregates as an autosomal
dominant condition in a large family [165]. The Thocl
knockout zebrafish generated by the gRNA-Cas9 system
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lacks the C-startle response, indicating hearing impair-
ment. Functional studies showed that Thocl deficiency
promotes the expression of pro-apoptotic genes in the
p53 signaling pathway that induces hair cell apoptosis in
zebrafish, leading to late-onset progressive HL.

Other animal models

Compared to rodent animals, pigs are more similar to
humans in the otic structure and function, thus, the pig
model has become an important tool for otology and
audiology research [166, 167]. Through whole-exome
sequencing, oxysterol binding protein like 2 (OSBPL2)
was identified as a novel DFNA-causal gene in a large
affected Chinese family [168]. The OSBPL2-disrupted
porcine fetal fibroblasts (derived from Bama minia-
ture pigs) were obtained using CRISPR/Cas9-mediated
gene editing, and then the OSBPL2-disrupted piglets
were generated using somatic cell nuclear transfer and
embryo transplantation [169]. The OSBPL2-disrupted
pigs displayed the dual phenotypes of hypercholester-
olemia and progressive HL with degeneration/apoptosis
of cochlea hair cells and morphological abnormalities in
hair cell stereocilia. This work contributes to elucidating
the role of OSBPL2 in auditory function and the reveal-
ing potential pathogenesis of OSBPL2 deficiency. Mel-
anogenesis associated transcription factor (MITF) gene
encodes a transcription factor that is crucial for the pro-
liferation and differentiation of neural crest-derived mel-
anocytes [170]. Mutations in the MITF gene are related
to Waardenburg syndrome 2A (WS2A, characterized
by HL as well as hypopigmentation of the skin, hair, and
iris) [171]. CRISPR/Cas9 system targeting the MITF
locus near the ¢.740 T >C mutation on exon 8 was used
to create MITF bi-allelic knockout (MITF ") pigs [172].
Disruption of MITF causes anophthalmia, hypopigmen-
tation, and bilateral HL in mutant pigs, which mimics the
phenotype of human WS2A, suggesting the potential of
MITF/~ pigs for modeling human WS2A [172].

Rhesus macaques are one of the most commonly used
nonhuman primate models for human diseases, which
share a high degree of genetic homology (~95%) with
humans [173]. Mutations in the MYO7A gene lead to
USHI1B, a disease characterized by deficits in hearing,
balance, and vision [174]. To establish a non-human pri-
mate USH1B model, CRISPR/Cas9 was used to disrupt
MYO7A in rhesus macaque zygotes, resulting in the birth
of one MYO7A knockout female macaque named “Mya”
[175]. Analysis of single peripheral blood leukocytes from
Mya revealed that half the cells carried mutant MYO7A
and the remaining cells possessed wild-type MYOZA.
Interestingly, Mya’s hearing thresholds were consistent
with age-matched controls at 3—12 months, and Mya’s
retinal structure and function also appeared normal at
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all ages tested. The lack of a USH1B phenotype in Mya
has clinical relevance, as it indicates that maintaining or
achieving ~50% of cells with normal MYO7A might be
sufficient to treat USH1B patients [175].

Auditory and non-auditory cell models provide an
in vitro platform for investigating the pathology of
genetic HL mutations. The hiPSCs-derived inner ear cul-
tures have been utilized as alternatives to the inner ear
tissue of patients, which provide patient-specific disease
models for the research of pathogenic mechanisms and
the development of gene therapeutic trials. However, cell
models cannot be used to elaborate on the relationship
between phenotype and genotype. Given experiment
ethics and sample availability, the animals, including
mice, zebrafish, pigs, and rhesus macaque, are often the
model of choices to reproduce phenotypes of genetic HL
caused by related mutations. Although the murine model
has similar developmental and transcriptional profiles to
humans [125, 176], the murine models bearing human
HL-associated orthologous mutations do not always
reproduce comparable phenotypes that can be seen in
HL patients, which mainly result from polymorphism in
protein-coding genes, the tissue-by-tissue discrepancy of
gene expression, as well as the ear morphological differ-
ences [177-179]. The zebrafish model can also undergo
genetic modifications for the research of genetic HL with
several advantages, such as a much faster life cycle than
that of the mouse and the transparency of the inner ear,
which facilitate their applications for hearing-related
research [180]. Nevertheless, the significant genetic
disparities between zebrafish and mammals make the
zebrafish-related certain data for the purpose of under-
standing human HL challenging [179]. The pig is the clos-
est species to humans in evolution except for primates,
and the structure of its auditory organ is highly similar
to that of humans, which makes the pig very suitable for
the model of auditory studies [181]. As a non-human pri-
mate, rhesus macaque is commonly used to study sen-
sory and perceptual processing [182]. However, these
larger mammalian models (pig and rhesus macaque) bear
inter-species differences to their human counterparts,
which may compromise the relevance of the gathered
data [177]. Despite all this, these cell and animal models
generated by CRISPR/Cas-based technique provide good
platforms to further study the molecular mechanism of
genetic HL and play a role in the identification of possible
HL-associated mutations, which might promise to revo-
lutionize curative approaches to hearing restoration and
improvement.

CRISPR/Cas in the treatment of genetic hearing loss
CRISPR/Cas9 technology, as a precise yet versatile
approach, is supposed to make accurate modifications
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and overcome the heterogeneity in genetic HL. Thera-
peutic approaches targeting genetic HL are based on an
increasingly detailed knowledge of the biological and
molecular mechanisms underlying auditory defects.
Here, this section details the recent CRISPR/Cas9-medi-
ated treatments that were applied to genetic HL (Table 3).

NHEJ-based treatment
NHE] as the major DSB repair mechanism tends to lead
to the formation of small insertion or deletion mutations
[183]. Therefore, the common use of CRISPR/Cas9 in the
treatment of dominant genetic HL is the direct silencing
of dominant negative pathogenic mutations via the NHE]
pathway. As mentioned above, the KCNQ4 mutations are
associated with DENA2.To explore whether in vivo gene
editing is applicable to the treatment of DFNA2, a Kcn-
g4""?7%5* mouse model that exhibited progressive HL
accompanied with outer hair cell degeneration was cre-
ated and used as the mouse model of DFNA2 [184]. To
disrupt the dominant-negative allele in Kcng4, CRISPR/
SpCas9-based gene therapy was applied to prevent pro-
gressive HL in the Kcng4" %% mouse models. The
results suggest that in vivo gene editing targeting outer
hair cells significantly improved auditory thresholds
in auditory brainstem response (ABR) and distortion-
product otoacoustic emission (DPOAE) [184]. Another
research reported that the treatment of SaCas9-KKH-
sgRNA-g3 agents targeting the Kcng4%?*P allele could
significantly improve the auditory function of the
Keng4/6%2°P mouse models [185]. As mentioned previ-
ously, pathogenic variants in the MYO6 gene can cause
DENA22 [137, 138]. In a recent study, Xue et al. explored
a possible treatment approach for the dominant inherit-
ance of MYO6 gene mutations (p.C442Y) in Myo6""
“H42Y mouse models [186]. The CRISPR-SaCas9 therapeu-
tic system was delivered into Myo6" 7 “*2Y mouse ears
at PO-2, where it specifically knocked out the Myo6“*#?Y
mutant allele. Consequently, specific disruption of
Myo6“**?Y alleles results in an overall hearing improve-
ment in the treated Myo6" 7 “**?Y mice, including shorter
latencies of ABR wave I, lower DPOAE thresholds,
increased cell survival rates, more regular hair bundle
morphology, and recovery of inward calcium levels [186].
Dominant genetic HL involves a heterozygous muta-
tion that results in a distinct mutant allele and an unaf-
fected wild-type allele. To achieve allele-specific CRISPR/
Cas9 binding, different sgRNAs or novel PAM sites are
used to distinguish the mutant allele from the wild-type
allele. As mentioned previously, TMC1 mutations are also
associated with DFNA36 [140]. As a model for DFNA36,
Beethoven mice harbor a point mutation (c.1253T>A,
namely Bth mutation) in the Tmcl gene, which is identi-
cal to the TMC1 p.M412K mutation of human DFNA36
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patients [187]. Injection of Cas9-sgRNA-lipid complexes
targeting the Tmc1®®Y7T allele into the cochlea of neo-
natal Beethoven mice substantially reduced progressive
HL, with higher hair cell survival rates and lower ABR
thresholds [112]. To expand the targeting range, vari-
ants of Cas9 have also been engineered to recognize dif-
ferent PAM sites [43, 52]. It has been reported that the
PAM sequence itself might distinguish mutant from
wild-type alleles [188]. Recently, Bence et al. screened 14
Cas9/sgRNA combinations for specific and efficient dis-
ruption of a nucleotide substitution in TMCI that causes
DFNA36 [189]. A PAM variant of SaCas9 (SaCas9-KKH)
was identified to selectively and efficiently disrupt the
mutant allele, but not affect the wild-type Tmcl/TMCI
allele, in Beethoven mice and a DFNA36 human HAP1
cell line. Moreover, treated Beethoven mice exhibited nor-
mal or near-normal thresholds at 5-8 kHz at 24 weeks,
while untreated mice were profoundly deaf. This study
suggested that the PAM-selective strategy has the poten-
tial and broad application to selectively target dominant
human mutations [189]. Additionally, Wu et al. used the
synthetic AAV9-PHP.B dual vectors to deliver CRISPR-
Cas9 systems into the inner ear of Beethoven mice, which
could effectively and selectively target the Timci®"™T
allele, thus rescuing hair cell survival and preserving the
hearing function of Beethoven mice [190].

Recombinant protocadherin 15 (PCDH15) is one
of two constituents that form the tip junction to gate
the mechano-transduction channel in hair cells [191].
Homozygous Pcdh15”~3/ mice with deficient Pcdh15 are
used as the mouse model of DFNB23, which show pro-
found congenital HL and vestibular dysfunction [192].
Based on the CRISPR/Cas9-induced precise cleavage,
the NHEJ-mediated frame-restoration strategy was
reported to partially correct frameshift mutations in the
postmitotic cells of an organ, which is helpful to improve
auditory responses and restore balance function in the
Pedh15%~¥ mice [192].

HDR-based treatment

CRISPR/Cas9-mediated HDR-based therapies have the
potential to cure many genetic diseases because this
class of therapeutics can achieve arbitrary base changes
as well as the insertion or deletion of designated nucleo-
tides [183]. The Cdh23™" allele refers to a synonymous
single nucleotide polymorphism influencing the last
nucleotide of exon 7 of the Cdh23 gene, resulting in an
increased frequency of exon 7 skipping, which predis-
poses inbred mouse strains carrying this allele to HL
[193]. C57BL/6NTac mice strains are generated in a sin-
gle inbred strain background (Cdh23°"/ahl) that exhibits
a high-frequency HL at 3—-6 months. Joffrey et al. used
targeted CRISPR/Cas9-mediated HDR to successfully
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repair the Cdh23"" allele repair in C57BL/6NTac zygotes
[194]. For their experimental design, in-vitro transcribed
offset-nicking Cas9 (D10A) nickase mRNA with two
paired sgRNA and a single-stranded oligonucleotide
(ssODN) as a donor template were co-injected into one-
cell-stage mouse embryos. Their sequencing data suggest
the approach is highly specific, with no lesions identified
at any of the predicted off-target sites. Importantly, the
authors demonstrated that the repair Cdh23*/7534>G
mice exhibited normal hearing function, without either
the progressive HL or sensory cell degeneration pheno-
types common to the Cdh23°H/#! mice [194].

Solute carrier family 26, member 4 (SLC26A4) gene
encoding the multifunctional anion exchanger pendrin is
abundantly expressed in the inner ear, thyroid, and kid-
ney. SLC26A4 mutations are one of the most frequent
causative factors of congenital HL, including Pendred
syndrome and DFNB4, and the splicing mutation (c.919-
2A>@G) in intron 7 of SLC26A4 is a hotspot mutation
among Asian populations [195]. Candidate SaCas9-spe-
cific sgRNAs were designed to target c.919-2A within the
Slc26a4 locus [13]. In vitro experiments show that the
introduction of a plasmid co-expressing SaCas9 and engi-
neered sgRNAs would suffice to induce HDR-mediated
genome modification of the ¢.919-2A splicing site in the
Slc26a4 gene. Importantly, ex vivo experiments in pri-
mary mouse embryonic fibroblasts reveal that CRISPR/
Cas9 system can be used to precisely edit the causative
gene of HL [13].

In a current study, based on a pig model that car-
ries the ¢.740T > C mutation in the MITF gene with an
inheritance pattern and clinical pathology that mim-
ics Waardenburg syndrome 2A (WS2A), Yao et al
performed precise gene correction with CRISPR/Cas9-
mediated HDR therapy [15]. Using ssODN and plas-
mid DNA with long homology arms as donor DNAs,
precise correction of the ¢.740T >C point mutation was
achieved, and the corrected cells were then used as the
donor cell for somatic cell nuclear transfer to produce
piglets. The results showed that the CRISPR/Cas9-medi-
ated HDR therapy successfully rescued the anophthalmia
and HL phenotype of WS2A in pig models [15].

HMEJ-based treatment

Recently, a homology-mediated end joining (HME]J)-
based strategy has been devised to generate animal mod-
els and for targeted gene therapies [196]. This strategy
is based on CRISPR/Cas9-mediated cleavage of both
transgene donor vector that contains guide RNA target
sites and ~800 bp of homology arms, and the targeted
genome [196]. Kelch-like family member 18 (KLHL18)
gene, encoding a 574 amino acid protein with a BTB/
POZ domain, a BACK domain, and six Kelch repeats,
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play roles in extracellular communication, cell morphol-
ogy, and actin binding [197]. Homozygous KI/l18"" mice
were used as a model of recessive genetic HL. Klhl18""
mutant allele contains a missense point mutation of the
Kihl18 gene that leads to the dysfunction of inner hair
cells [197]. However, the KIhl18"°* mutant allele cannot
be corrected using current base-editing strategies [14].
Using the HME]J-based strategy, the Kihl18""/ muta-
tion sites in inner hair cells in vivo could be accurately
corrected [14]. In the treated cochleae of homozygous
mutants, a part of the inner hair cells in the apical and
middle turns exhibited normal or near normal stereo-
cilia bundles, and the sustained inner hair cell exocytosis
after 200 ms depolarization pulses were restored. Moreo-
ver, the HME]J-based therapies significantly improve the
auditory function of KIhl18"" mice up to 6 months after
treatment [14]. This study shows promise for further
development of HME]J-based strategies for the repair of
point mutations that cause genetic HL as well as other
human genetic diseases.

Base editor-based treatment

Base editors can provide therapeutic restoration of gene
function by efficiently and permanently correcting patho-
genic mutations without disrupting the target gene [198].
Recently, in vivo base editing by CBE (SpCas9-based
AID-BE4max) has been used to genetically correct the
Tmcl c.A545G point mutation in Baringo mice [114].
The Baringo (Tmcl¥182<Y182C) mouse is a mouse model
of recessive HL that harbors a recessive loss-of-function
c.A545G mutation in Tmcl that substitutes p.Y182C and
shows profound deafness by 4 weeks of age [199]. In vivo
delivery of dual AID-BE3.9max AAVs resulted in~51%
base editing efficiency in hair cells in Baringo mice, which
preserved the stereocilia morphology of inner hair cells
and restored hair cell sensory transduction current [114].
However, the results of ABR tests showed that CBE-
mediated gene therapy partially and transiently rescued
the auditory function of Baringo mice, which might arise
from incomplete base editing [114]. Therefore, further
improvements in the base editor are needed to enhance
editing efficiency for the permanent recovery of audi-
tory function. In addition, Gao et al. summarized a list
of HL-associated gene variants that is base-editable with
a 5-NGG/NG-3’ PAM positioned appropriately [179],
which will inspire more research on base editor-based
treatment for genetic HL.

CRISPR/Cas13-based treatment

Since DNA editing might induce off-target mutations
in the genome, its therapeutic and clinical applications
are limited. RNA editing technologies only modify the
expression of target RNA without affecting the DNA,
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providing potential therapeutic approaches for genetic
HL. As a novel RNA targeting tool, CRISPR/Cas13 sys-
tem has been used to explore the potential therapeutic
effects for genetic HL [113, 200]. Given that CRISPR/
Casl3 system can specifically and precisely cleave sin-
gle-strand RNAs without significant off-target effects
compared to RNA interference knockdown [84], it can
be applied to downregulate the mutant gene expression,
which provides a promising strategy for autosomal domi-
nant HL. To test the CRISPR/RfxCas13d (CasRx)-based
treatment on Beethoven mice, AAV-PHP.eB-CasRx-
sgRNA3 was delivered into the inner ears of Beethoven
mice to reduce the expression of the TmcI®" transcript
[200]. Based on the analysis of targeted deep sequencing
from whole cochlear tissues, the cochleae from AAV-
PHP.eB-CasRx-sgRNA3 treatment mediated the efficient
and selective in vivo RNA knockdown of the TmcI1®"
mutation [200]. More importantly, CasRx-mediated
RNA knockdown of TmcI®" prevented progressive HL
and improved the morphology of hair cells and stereo-
cilia bundles without detectable off-target effects. These
results suggest that CRISPRCas13-mediated RNA knock-
down is a potential clinical approach for treating genetic
HL.

In addition, CRISPRCas13-mediated RNA base editing
provides a complementary strategy to RNA knockdown
strategy. Currently, the RNA base editor composed of a
Cas13X variant and the RNA editing enzyme adenosine
deaminase (AAV-PHP.eB-mxABE) was delivered in the
cochlea of Myo6“*2Y/WT mice for in vivo correction of
Myo6“**?Y [113]. Compared with the untreated ears, the
treated ears exhibited significantly decreased ABR and
DPOAE threshold with more outer hair cells in the mid-
dle and basal turns of the cochlea, which suggested that
CRISPR/Cas13-mediated RNA correction could improve
hearing function in Myo6“**?¥'WT mice [113]. Further-
more, the results of the scanning electron microscope
and electrophysiology analysis showed that AAV-PHP.
eB-mxABE treatment prevents the degeneration of hair.
bundle morphology and preserves the electrophysiologi-
cal property of Myo6“**¥WT mice [113]. This study of
RNA base editing therapy might inform the future devel-
opment of RNA correction treatment for more genetic
HL.

Overall, this section summarizes remarkable achieve-
ments in the studies of in vivo CRISPR/Cas-based treat-
ment for genetic HL in the last several years, which have
opened new prospects to fight genetic HL. NHE]-based
treatment is suitable for the treatment of autosomal
dominant HL via directly disrupting target point muta-
tions. Meanwhile, the NHE] can mediate frame restora-
tion, leading to its application for developing treatments
for frameshift mutations. Although the efficiency of



Wau et al. Cell & Bioscience (2023) 13:93

HDR remains low [201], HDR-based treatment demon-
strates its therapeutic potential via precisely correcting
the mutation in HL-associated genes. Moreover, newly-
developed base editing tools (e.g., CBEs) and RNA tar-
geting tools (CRISPR/Casl3 system) have also been
successfully utilized for the treatment of genetic HL in
animal models. In addition, other new technologies,
including PEs and CRISPR/Cas12 systems, may provide
more opportunities to improve the efficiency and effec-
tiveness of gene therapies. Taken together, these findings
make us believe that the use of CRISPR/Cas-mediated
genome editing technologies will increase our knowledge
of genetic HL processes and contribute to the develop-
ment of their treatment in the near future.

Challenges and perspectives

Although CRISPR/Cas-mediated gene editing has been
reported to have the potential for the treatment of
genetic HL in many studies, there is still a long way to go
before its clinical application.

Editing efficiency and safety of CRISPR/Cas-mediated
therapy. The efficiency of CRISPR/Cas-mediated in vivo
gene editing is likely to be key to sustained hearing recov-
ery. The editing efficiency may be influenced by the type
of Cas, the design of the sgRNA, the delivery method, the
disease model, and other factors [34]. It is reported that
the application of fully chemically modified sgRNAs with
improved stability contributes to increasing the editing
efficiency of CRISPR/Cas-based therapeutics [202]. Novel
delivery modalities, including viral vectors, liposomes,
and nanoparticles, have been applied to improve trans-
duction efficiencies and safety and reviewed by Philipp
et al. [203]. Moreover, off-target effects of the CRISPR/
Cas technique remain a major concern, which might
reduce the specificity of gene editing, possibly leading to
unwanted mutations and potential toxicity. To reduce the
off-target effects and enhance the editing specificity, the
Cas9 proteins have been modified to alter PAM prefer-
ences or enhance target DNA recognition [43, 45, 48, 52].
Moreover, the immunogenicity of Cas proteins is another
potential limitation to their clinical application. Theoreti-
cally, transient delivering the appropriate number of Cas
proteins might help to reduce immunogenicity-induced
immune responses [204, 205]. Regardless of the success
rate of the CRISPR/Cas gene editing, in vivo studies of
CRISPR/Cas treatment are reporting improvements in
auditory function [14, 113, 114, 184, 189, 192, 194, 200],
suggesting its positive impacts on a patient’s quality of
life.

Specific delivery towards the inner ear Since most
HL-related genes are uniquely expressed in specific
inner-ear cell types and play roles in specific inner-ear
environments, the specific delivery towards the inner ear
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is of importance. The inner ear-specific delivery facili-
tates CRISPR/Cas genome-editing agents to reach target
inner ear hair cells. Several approaches of inner ear-spe-
cific delivery have been established, including perilymph
delivery via a cochleostomy, canalostomy, or trans-round
window membrane; as well as endolymph delivery via
cochleostomy of the scala media space [206]. Although
the cochleostomy-based approach promotes the distribu-
tion of therapeutic agents, the inevitable cochlear damage
makes it clinically unfeasible [206]. The round window
membrane injection carries a risk of perilymphatic leak-
age [1]. The canalostomy-based approach is relatively
safe, and it is reported to result in robust transduction
of hair cells throughout the cochlea [207]. Moreover,
the cochlear aqueduct makes possible the leakage of the
therapeutic agents from the perilymph into the cerebro-
spinal fluid and the vasculature [208], which may cause
off-target editing of the brain or whole body, leading to
unintended outcomes. Therefore, further investigations
are needed to evaluate the security of inner ear-specific
delivery.

The regeneration of auditory hair cells CRISPR/Cas-
mediated therapy can correct mutation genes to pre-
vent cell death and rescue dying cells. However, the loss
of auditory hair cells still limits the recovery of the ear-
ing threshold. The iPSCs derived from patients provide
potential cell sources for replenishing the hair cells that
are lost before therapeutic intervention. The results of
the combination of iPSC technology and CRISPR/Cas
technology currently underway show promising thera-
peutic prospects for genetic HL [122-124]. However,
regenerated hair cells are needed to establish appropri-
ate mechanical coupling with the surrounding support
cells (e.g., fibrocytes, epithelial cells, mesenchyme cells)
and innervating neurons to reproduce cochlear tonotopy
[209]. The approaches and technologies of tissue engi-
neering, including biomedical materials and bioreac-
tors, may help to accelerate the development of inner ear
organoids.

The appropriate personalized CRISPR/Cas-mediated
therapy is needed Since the heterogeneity of HL-related
genes with diverse protein functions and different spa-
tiotemporal expressions, the appropriate personal-
ized CRISPR/Cas-mediated therapy for each type of
HL-related gene still needs more discussion [210]. It
is necessary to further investigate more details of each
HL-related gene variant, including the age at onset, the
natural course, the genotype, the pathophysiological
mechanism, and the target cell populations. Such knowl-
edge raises hopes for the possibility of future personal-
ized CRISPR/Cas-mediated therapeutic Intervention
with appropriate operations, specific therapeutic agents,
and the optimal temporal window.
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Despite these limitations, CRISPR/Cas-mediated ther-
apies remain a tempting strategy in genetic HL research
because they are a promising option to restore or
improve hearing. More and more researchers from mul-
tidisciplinary fields put their efforts together to accelerate
the development of CRISPR/Cas-mediated gene therapy.
It is worth expecting that the ultimate goal in the clinical
application of the CRISPR/Cas9 technique for the treat-
ment of genetic HL may not be far away.

Conclusions

CRISPR/Cas is promoting a broad range of innova-
tive applications from basic biology to biotechnology
and medical interventions. Its favorable characteristics
(e.g., easy use and high efficiency) distinguish it from
other existing genome editing technologies, and its great
advances in hearing research are foreseeable. Different
types of genetic hearing diseases are likely to be one of
the ideal targets of CRISPR/Cas-mediated therapy. With
CRISPR/Cas genome editing tool, various disease mod-
els of genetic HL have been established to further study
the mechanism of these diseases and explore the way
to restore impaired hearing. Besides, increasing in vivo
studies demonstrate that CRISPR/Cas-mediated therapy
could be a promising approach to tackling these debili-
tating diseases. However, there are still many challenges
before its clinical application, such as editing efficiency,
off-target effect, immunogenicity, and so on. Given the
unremitting efforts of the researchers and the rapid pro-
gress in the field, we fully anticipate that these challenges
will be overcome in the future, thus potentiating novel
therapeutic strategies for genetic HL.
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