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Abstract 

Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphinc-
ters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite 
intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improve-
ment. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery 
of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of 
growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomate-
rials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function 
recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single 
therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the 
methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical 
studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or 
sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.

Keywords Sphincter dysfunction, Incontinence, Cell-based therapy, Growth factors, Controlled release system, 
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Introduction
Backgrounds of sphincter dysfunction
Sphincters are unique circular muscles that control the 
passage of fluids or semi-fluids from one tissue to another. 
The intersection of the two tissues where the sphincter 
resides is richly innervated with α-adrenergic receptors 

which are the primary mechanism of continence control. 
The action of the sphincters is primarily involuntary and 
controlled by the autonomic nervous system, although 
there is modest voluntary control through the somatic 
nervous system. Despite the presence of more than ten 
types of sphincters in the body, dysfunctions in three of 
them, located at the proximal urethra or the bladder neck 
(urinary sphincter), the anus (anal sphincter), and the 
gastroesophageal junction (lower esophageal sphincter, 
LES), result in the majority of sphincter-related patholo-
gies. The decrease or loss of sphincter muscle tone due 
to aging, trauma, or inflammation results in symptoms 
such as stress urinary incontinence (SUI), fecal inconti-
nence (FI), or food reflux (gastroesophageal reflux dis-
ease, GERD), which significantly affect the quality of life 
of millions of people worldwide (Fig.  1). It is reported 
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that SUI affects about 50% of the female population 
over 45  years old and about 20% of men over 70  years 
old [1]. International population-based studies indi-
cated the prevalence of FI is 0.4 to 18% [2]. The burden 
of GERD continued to worsen with the prevalent cases 
increasing by 77.53% from 1990 to 2019 [3]. Despite the 

success of pharmacotherapy and surgical treatment, 
these approaches provide symptomatic relief only and fail 
over time since they do not address the underlying cause 
of the dysfunction- neuromuscular damage. Table  1 
summarizes the similarities and differences in dysfunc-
tion that occurs in the three types of sphincters. These 3 

Fig. 1 Schematic illustrations of three sphincter dysfunctions. Dysfunction in the urinary sphincter, the anal sphincter, and the lower esophageal 
sphincter

Table 1 Overview of similarity and difference in three sphincter dysfunctions

EMG electromyography, ENG electroneurography, LES lower esophageal sphincter, UPP urethral pressure profile, LPP leak point pressure, NMJ neuromuscular junction, 
PGP9.5 protein gene product 9.5, PPIs proton pump inhibitors, RUPP retrograde urethral perfusion pressure

Terminology Stress urinary incontinence Fecal
incontinence

Gastroesophageal
reflux disease

Incidence rate 50% (F, ≥ 45 yrs)
20% (M, ≥ 70 yrs)

11 to 15% 18 to 28%

Structure Urinary sphincter Anal sphincter LES

Location Between ladder and urethra Anorectum Gastroesophageal junction

Causes Vaginal childbirth
injury and aging in women; neuromus-
cular injury after radical prostatectomy 
in men

Obstetrical surgical injury Obesity

Mechanistic
Effect

Urethral sphincter impairment or weak-
ness due to pelvic floor muscles and 
nerve injure

Anal sphincter impairment or weakness Low LES pressure, transient LES relaxation

Function testing UPP, LPP, RUPP, EMG, ENG, bladder 
capacity, contractility test

EMG, anal pressure, contractility test LES pressure measurement,
pH monitoring

Histological evaluation H&E, Masson trichrome for college compound, picrosirius red for collagen networks, Hart elastin for elastin content, Gordon 
and Sweet staining for reticular (retic) fibers
Immunohistochemical stain: Muscle: desmin, myosin, α-SMA, myogenin, Myo D, Myf-5; Peripheral nerve: neurofilament, PGP9.5, 
βII-tubulin, S100; NMJ: neurofilament, α-Bungarotoxin, phalloidin

Symptoms Urine leakage when intra- abdominal 
pressure increases (e.g., coughing)

Stool leakage Frequent reflux of gastric contents into 
the esophagus causing heartburn, regur-
gitation, and esophageal chest pain

Complications Emotional and social distress,
skin irritation, and mixed urinary incon-
tinence

Emotional and social distress and skin 
irritation

Esophageal stricture,
Barrett’s esophagus, and
esophageal adenocarcinoma

Nonsurgical therapy
Surgical therapy

Pelvic floor exercises, behavioral modi-
fication

Pelvic floor exercises, biofeedback behavioral modifications, (e.g., lose 
weight), PPIs

SLING procedure or injectable bulking 
agents

Sphincteroplasty or
injectable bulking agents

Fundoplication surgery
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sphincter dysfunctions will be the primary focus of this 
review. 

The pathogenesis of sphincter dysfunction
Muscle weakness as a result of neuromuscular damage 
primarily originates from three sources: [1] Neuropa-
thy, or damage to the peripheral nerves, caused by dia-
betes, trauma, certain medications or toxins, alcoholism, 
inherited factors, etc.; [2] Myopathy, or dysfunction of 
muscle, caused by mitochondrial defects, certain medi-
cations or toxins, inflammation, infection, and metabolic 
or endocrine problems; and [3] Dysfunction of the neu-
romuscular junction (NMJ) at the interface of the nerve 
and muscle as a result of toxin exposures and inherited 
factors. The NMJ is a highly specialized chemical syn-
apse, capped by terminal Schwann cells and kranocytes, 
through which a motor neuron interacts with a muscle 

fiber. When an action potential reaches the synaptic cleft 
of the motor neuron, the neurotransmitter acetylcholine 
(ACh) is released from synaptic vesicles, which bind to 
and activate the ACh receptors on the muscle fiber. Bind-
ing of Ach to its receptor results in depolarization of the 
muscle fiber which triggers calcium release to induce 
contraction (Fig. 2) [4, 5]. A complex network of effectors 
and signaling pathways have been implicated in regulat-
ing NMJ development and maintenance [5–9]. Due to 
the essential role of NMJ in the excitation-contraction 
coupling of the neuromuscular response, the impairment 
of NMJ structure and function are hallmarks of various 
neuromuscular disorders including amyotrophic lateral 
sclerosis (ALS), muscular dystrophies (Duchenne’s mus-
cular dystrophy (DMD) and Becker’s muscular dystrophy 
(BMD)). Moreover, the NMJ is the site of action for vari-
ous intoxicating agents, such as botulism.

Fig. 2 Schematic representation of a biomaterials-based delivery system. The motor neuron, skeletal muscle, and neuromuscular junction (NMJ) 
contribute to a complete neuromuscular functional unit. The motor neuron axon branches as it comes into contact with the skeletal muscle to 
form a single NMJ with each individual muscle fiber. At the motor neuron terminal, Ach is released from the synaptic vesicles into the synaptic 
cleft where it binds to its receptors in the motor endplate to trigger muscle contraction. Injectable hydrogels with encapsulated stem cells and/or 
growth factors can be used to achieve controlled release into the area of tissue damage. ACh, acetylcholine; Mito, mitochondrion
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The pathophysiological process of muscle weakness 
in sphincter muscle is often multifactorial. For example, 
vaginal birth injury is the major cause of neuromuscular 
urinary continence in women leading to the pathogen-
esis of SUI. It has been demonstrated that vaginal birth 
injures the external urethral sphincter, the pudendal 
nerve which innervates the external urethral sphincter, 
and the intersecting NMJs [10–15]. In addition, several 
risk factors have been identified such as obesity, increas-
ing age, smoking, diabetes and hormonal changes [1, 
16]. For male SUI, surgical treatment of benign prostatic 
hyperplasia and prostate cancer that impair the inner-
vation or structural components of the internal and 
external urethral sphincters represent the most com-
mon scenarios [17]. At molecular level, many genes are 
involved in the pathogenesis of SUI which are associated 
with extracellular matrix metabolism, estrogen recep-
tors, oxidative stress, apoptosis, inflammation, neurode-
generative processes, and muscle cell differentiation and 
contractility [18]. Similarly, the most common cause of 
anal sphincter disruption is vaginal birth injury which 
involve the external anal sphincter, the internal anal 
sphincter, pudendal nerves, or a combination of these 
structures [19]. LES is the most important structure at 
the esophagogastric junction which creates a high-pres-
sure zone that prevents the reflux of gastric contents and 
bile into the esophagus. An abnormal LES pressure, fre-
quent transient LES relaxation and esophageal clearance 
impairment are generally thought to be key factors to the 
pathogenesis of GERD. Factors that decrease LES pres-
sure include hormones (e.g., progesterone in pregnancy), 
medications (e.g., calcium channel blockers) and specific 
food (e.g., fat, chocolate) [20, 21]. Taken together, effec-
tive restoration of the sphincter muscle and correspond-
ing nerves is essential to achieve a suitable unity of the 
structure and function of bladder, anus, and the gastroe-
sophageal junction.

The mechanism of neuromuscular regeneration 
after damage
Muscle tissue is divided into three basic types: smooth 
muscle, cardiac muscle and skeletal muscle. Skeletal and 
cardiac muscles are known as striated muscles [22]. For 
example, the urethral sphincter consists of the external 
urethral sphincter and the internal urethral sphincter. 
The internal urethral sphincter is made up of smooth 
muscle [23]. The external urethral sphincter is made up 
of skeletal muscle and is vulnerable to injury during vagi-
nal delivery [10–13, 23]. Skeletal muscle has the ability 
to regenerate after minor injury [24, 25]. The myogenic 
regeneration process relies on activation and prolifera-
tion of satellite cells, myoblast differentiation and fusion 
into multinucleated myotubes, and then myotubes 

hypertrophy and remodeling to generate mature muscle 
fibers [26]. Injured peripheral nerves also have the capac-
ity to spontaneously regenerate and reinnervate skel-
etal muscle. After injury, the distal stump of the nerve 
undergoes Wallerian degeneration. Macrophages are 
recruited into the injury site to clear the debris. Schwann 
cells actively proliferate, elongate and align in columns 
to create a nutrient-rich environment to guide and sup-
port the axonal regeneration towards the periphery with 
a velocity of about 1 mm/day [27–29]. However, the abil-
ity of skeletal muscle and peripheral nerve to regener-
ate is limited, especially when there is a large volume of 
muscle loss and a lack of guidance for axons across the 
gap lesion. In addition, the capacity for axonal regenera-
tion depends on the age of the patient, the type of injury 
and the proximity of the injury to the nerve cell body. 
In humans, axonal regeneration must occur over much 
longer distances than in rodents. During long periods 
without axon regeneration, the target tissues become 
chronically denervated, resulting in muscle atrophy, as 
evidenced by a reduced number of muscle fibres [30–32]. 
Despite significant advances in our understanding of 
peripheral nerve biology and the mechanisms of nerve 
regeneration, effective treatments for peripheral nerve 
injurie remain limited. This is due, in part, to the com-
plex structure of peripheral nerves and the challenges 
associated with promoting the regrowth and functional 
reconnection of nerve fibers across the site of injury. Sev-
eral approaches are being developed and tested to pro-
mote peripheral nerve regeneration, including the use 
of controlled release of neurogenic growth factors, stem 
cells, and nerve guidance channels [28, 31]. In addition, 
recent advances in biomaterials and tissue engineering 
offer new hope for the development of porous scaffolds 
coated with growth factors that may help promote nerve 
regeneration and functional recovery after injury [33, 34]. 
Much more research is needed to fully understand the 
complex process of peripheral nerve regeneration and to 
develop effective and reliable treatments for peripheral 
nerve injury.

At the molecular and biochemical level, the post-injury 
neuromuscular regeneration process is regulated by the 
coordinated activation of various intracellular signaling 
pathways, such as the Wnt, MAPK and PI3K-Akt-mTOR 
pathways, all of which are involved in the regulation of 
cell proliferation, cell differentiation, and protein synthe-
sis during skeletal muscle and peripheral nerve regen-
eration [35–44] (Fig.  3). In addition, Notch signaling is 
required to maintain quiescent state for satellite cells by 
the regulation of self-renewal and differentiation [45, 46] 
and required for perineurial migration and differentiation 
during nerve formation, but not regeneration [47]. The 
JAK-STAT pathway is activated to regulate the myoblasts 
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differentiation positively or negatively [48]. Hippo path-
way and YAP/TAZ are indicated to regulate Schwann 
cell proliferation and differentiation during peripheral 
nerve regeneration [49]. Thus, the precise orchestration 
of multiple cytokines and signaling cascades for repair of 
the different types of damaged tissue (muscle, nerve) is 
required to achieve full functional recovery of neuromus-
cular tissue.

Combination therapy of stem cells and growth factors
Stem cells possess the potential for self-renewal and mul-
tilineage differentiation (potency) [50]. Under specific 
conditions stem cells can be differentiated into multiple 
types of functional cells and can be used to compensate 
for lost cells in damaged tissue, including skeletal and 
smooth muscle, and peripheral nerve tissue repair in the 
urethral sphincter. Therefore, stem cell transplantation 
provides a novel and promising therapeutic strategy for 

neuromuscular tissue regeneration. Most studies have 
focused on the use of autologous muscle derived stem 
cells (MDC) to improve urethral sphincter function. Sèbe 
et al. conducted a prospective study to evaluate the safety 
and efficacy of intrasphincteric injections of MDC in 12 
female SUI patients. The results showed that 3 patients 
were dry at the 12-month follow-up, 7 others had an 
improvement in their condition, and 2 patients had a 
slight worsening of their condition. No serious adverse 
effects were observed [51]. Another prospective study 
by Carr et  al. found that intrasphincteric injections of 
MDC improved SUI symptoms at the 12-month follow-
up, with better clinical outcomes observed in patients 
receiving higher doses [52]. Stangel-Wojcikiewicz et  al. 
published a 2-year follow-up study of MDC for SUI. The 
results showed a 75% success rate, with 50% of subjects 
cured and 25% of subjects achieving partial improvement 
[53]. Although encouraging results have been achieved 

Fig. 3 Schematic of the Wnt, MAPK, and PI3K-AKT-mTOR signaling pathways. The Wnt pathway is activated when Wnt proteins bind to Frizzled-LRP 
receptor complex composed of Frizzled and LRP resulting in translocation of β-catenin to the nucleus, ultimately targeting cell differentiation. 
The MAPK and PI3K-AKT pathways are initiated by the binding of various small proteins (growth factors, cytokines and insulin) to their respective 
receptor tyrosine kinase (RTK). The MAPK cascade results in translocation of the Erk1/2 complex to the nucleus and targets cell proliferation 
pathways, whereas the PI3K-AKT pathway results in mTOR activation and the regulation of protein synthesis. Green arrows indicate positive 
regulators, whereas red arrows indicate negative regulators
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in early clinical trials, wide variations in MDC isolation 
techniques, the route of administration and cell dosage 
prevent adequate comparison with MDC transplanta-
tion for sphincter dysfunction. Several limitations to 
the use of stem cells alone include poor cell retention 
and engraftment in the tissue after transplantation [54]. 
Implantation of growth factors combined with stem cells 
has shown potential for remarkably improving stem cell 
viability, differentiation potential, and function [55–61]. 
Thus, a combination therapy of stem cells and growth 
factors may provide optimal therapeutic impact in 
sphincter tissue regeneration and functional restoration.

Bioactive growth factors are soluble secreted proteins 
that participate in stem-cell-based tissue repair and 
regeneration and enhance stem cell therapeutic efficacy 
by interacting with cellular specific receptors to initi-
ate extracellular and intracellular signaling cascades 
responsible for cell physiological function. Concerning 
stem cell transplantation, many of these growth factors 
modify the microenvironment of the recipient tissue to 
support donor cell survival, proliferation, and differen-
tiation. However, the therapeutic use of growth factors is 
largely limited due to their inherent instability, short half-
life, and rapid deactivation in vivo [62, 63]. To achieve a 

sufficient therapeutic effect, direct injection of a supra-
physiological dose of growth factors may be required, 
which can lead to adverse effects, such as tissue edema, 
system hypertension, and an increased risk of cancer 
[64, 65]. An efficient control release system could bypass 
many of these limitations and result in improved growth 
factor therapy (Fig. 4).

Advanced delivery system for dual therapy
To overcome the shortcomings discussed above, genetic 
approaches and biomaterial-based strategies have been 
developed to optimize tissue regeneration in response to 
these therapies. Genetic modifications of cells to overex-
press the growth factor of interest prior to implantation 
has been used to sustain secretion of growth factors into 
injured tissue post-transplantation [54]. In addition, the 
use of different biomaterials, conjugated with growth fac-
tors, have been shown to support a microenvironment 
that mimics the ideal native extracellular matrix for a 
particular cell type.

Injectable hydrogels are good materials for the con-
trolled release of growth factors, as well as a stem cell 
delivery system, by offering protection against growth 
factor degradation, a reduction of growth factor dose 

Fig. 4 The working model of stem cell-growth factor therapy. A combination therapy of stem cells and controlled release of growth factors 
enhances cell viability and differentiation potential, stimulates endogenous stem cells and provides an optimal microenvironment for sphincter 
tissue repair and regeneration
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leading to decreased adverse side effects, and enhanced 
retention and survival of the encapsulated cells [63, 66, 
67] (Fig. 2). Biomaterials can generally be classified into 
two major types according to their origin: natural materi-
als and synthetic materials. Natural materials are derived 
from naturally occurring polymers and include proteins 
(e.g., collagen, gelatin, silk and fibrin), polysaccharides 
(e.g., alginate, starch, chitosan, hyaluronan, and chon-
droitin sulphate) and tissue extracellular matrix (e.g., 
small intestinal submucosa). Synthetic materials, or 
materials synthesized in a lab, include polyacrylic acid 
(PAA), poly lactic-co-glycolic acid (PLGA), polycaprolac-
tone (PCL) and polyethyleneglycol (PEG) [68, 69].

Natural materials are highly biocompatibility and eas-
ily degrade over time after transplantation. Hydrogels, 
one of the more commonly used natural materials, swell 
to form 3D structures that provide an ideal environment 
to support cell adhesion and tissue formation [70]. How-
ever, natural materials, especially hydrogels, have rela-
tively poor mechanical properties and controlling their 
physicochemical properties is difficult. Synthetic mate-
rials have the ability for photopolymerization, they have 
adjustable mechanical properties, and thus, easily modi-
fied architectural and chemical properties; but bioactivity 
is lacking. To take advantage of the bioactivity of natural 
scaffolds and the modifying properties of synthetic mate-
rials, natural-synthetic polymer hybrids are being studied 
for tissue engineering purposes [71, 72].

Stem cell therapy
Mechanisms of stem cell therapy
The most common types of stem cells that have been 
used and evaluated in preclinical and clinical studies for 
neuromuscular tissue repair and regeneration include: [1] 
pluripotent stem cells (PSC), including embryonic stem 
cells (ESC) and induced pluripotent stem cells (iPSC); 
[2] mesenchymal stem cells (MSC), including bone mar-
row-derived mesenchymal stem cells (BMSC), adipose-
derived mesenchymal stem cells (ASC), human umbilical 
cord mesenchymal stem cells (HUMSC), endometrial 
mesenchymal stem cells (EMSC), and dental-derived 
mesenchymal stem cells (DMSC); and [3] adult stem cells 
including MDC and urine derived stem cells (USC).

Stem cells remain quiescent in normal healthy tissue. 
After injury, stem cells become activated in response to 
cytokines and other bioactive molecules secreted by the 
tissue and immune cells at the site of injury at which 
point they begin dividing and differentiating to replace 
the damaged tissue. In animal models of neuromuscu-
lar tissue injury, stem cells have been demonstrated to 
enhance functional recovery after transplantation via 
a couple of different mechanisms. In addition to differ-
entiation and integration into host tissue, transplanted 

stem cells can interact with the host tissue without dif-
ferentiation through intercellular interactions with host 
cells and microenvironment, and the secretion of par-
acrine factors including neurotrophic support, immune 
regulation, and modulation of metabolic signaling [73, 
74].

Although studies have shown that stem cell transplan-
tation promotes regeneration of striated and smooth 
muscle layers, as well as nerve fibres in the sphincter [75–
80], the mechanisms of stem cell function differ in each 
cell type. The regenerative abilities of MSC are mainly 
mediated by paracrine activity of trophic factors, transfer 
of mitochondria by tunneling nanotubes, and transfer of 
molecules from exosomes or microvesicles [81–84]. Of 
note, the directed differentiation of MSC into damaged 
tissue after transplantation remains controversial. Some 
studies have shown that a small number of transplanted 
MSC differentiate into striated and smooth muscle cells 
[76, 85]. However, other studies have confirmed that cell 
fusion rather than MSC transdifferentiation appears to 
be responsible for tissue regeneration [86]. The regen-
erative abilities of MDC and USC are mainly attributed 
to their multilineage differentiation capabilities, which 
can differentiate not only into myogenic lineage but also 
into neurogenic lineage [87–93]. In addition, the parac-
rine effects of USC have been demonstrated, suggesting 
an immunomodulatory property similar to that of MSC 
[94, 95]. PSC are theoretically capable of differentiating 
into any cell type, providing an unlimited source for the 
generation of myogenic and neural precursors. The iPSC 
are adult cells reprogrammed by the introduction of spe-
cific pluripotency factors. They share many of the char-
acteristics of ESC, while offering many advantages over 
ESC, including simplified ethical concerns and reduced 
risk of immune rejection. In addition, they would allow 
the generation of autologous patient-specific stem cells 
[96]. Studies have shown that transplantation of human 
ESC-derived and iPSC-derived smooth muscle progeni-
tor cells facilitates the restoration of smooth muscle tis-
sue and urethral sphincter function [97–99]. Although 
iPSC and ESC can differentiate into each cell type of the 
sphincter tissue, including smooth muscle, skeletal mus-
cle cells, peripheral never cells, neuromuscular junc-
tion, and endothelial cells [100–105], studies combining 
all of these cells together to form the sphincter have not 
been reported yet. This is an exciting area of research 
with great potential for therapeutic applications using 
iPSC derived from the patient’s somatic cells, but there 
are still many technical and scientific challenges that 
need to be overcome in order to fully realize the poten-
tial of iPSC and ESC to regenerate functional sphincter 
tissue. The main concerns are the safety of the use of 
iPSC/ESC and the precise connection of the implanted 
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tissue-engineered sphincter tissue to the host tissue via 
vessel to vessel, nerve to nerve, or muscle to muscle, 
respectively.

Pre‑clinical data in sphincter dysfunction
In preclinical animal models of sphincter dysfunction, 
stem cell transplantation has been tested with variable 
degrees of success. Improved sphincter function includ-
ing increased leak point pressure, bladder capacity and 
anal pressure were observed after stem cell application 
(Table 2). However, most of these studies were focused on 
the urinary and anal sphincter, partly due to the difficulty 
of administering stem cells into the LES. In one study, 
endoscopic injection of skeletal muscle-derived cells into 
the LES of a canine model reported a significant increase 
in LES pressure. The transplanted cells were shown to 
differentiate into mature skeletal muscle in the sphincter 
[106]. In another study, the investigators observed that 
transplanted bone marrow-derived cells induced epithe-
lial regeneration in the gastrointestinal tract. Although 
LES function was not assessed in these experiments, 
this study provided a proof-of-concept that systematic 
application of stem cells for the treatment of esophageal 
ulcers which are mostly caused by GERD [107, 108]. In 
the selection of stem cell sources, MDC, BMSC, and 
ASC were the most commonly used in these studies due 
primarily to their relative ease of harvest. From the per-
spective of clinical practice, an ideal cell source should 
be ethically acceptable, non-invasive and inexpensive to 
collect. As a by-product of human metabolic waste, USC 
are easily obtained from urine. USC have a high prolif-
erative capacity due to their higher telomerase activity 
than BMSC. A USC clone can expand to generate a large 
number of cells, which is a great advantage for cell-based 
therapy in tissue repair and regeneration [87, 109]. USC 
have been shown to have the capacity for multipotent dif-
ferentiation and immunomodulation with strong parac-
rine effects [87, 94, 110]. It has been reported that USC 
were able to differentiate into neuronal lineage cells after 
transplantation into the rat brain [111]. When implanted 
subcutaneously in nude mice, myogenic differentiated 
USC can form multiple layers of smooth muscle cells 
[87]. In a rat model of SUI, USC exosomes were effective 
in improving the urodynamic parameters and repairing 
damaged muscle [112]. These encouraging results from 
animal studies provided a solid basis for further develop-
ment of USC-based therapy in neuromuscular regenera-
tion. However, the lack of standard procedures for USC 
isolation and quality control hinders the progress of USC 
into clinical applications [94]. How to obtain clinical-
grade USC, optimal cell dosage and delivery method 
should be the focus of future research.

Isolation and purification processes of MSC from the 
tissues are complex and critical endeavor. To confirm the 
stemness, isolated cells are usually tested for osteogenic 
and adipogenic capacity with Alizarin Red S and Oil Red 
O staining after appropriate cultivation; flow cytometry 
analysis is performed to examine the expression of mes-
enchymal makers (CD44, CD73, CD90, CD105, CD106) 
[113–116]. In addition, MSC are a heterogeneous mix-
ture of cells, and their relatively low purity limits further 
clinical applications. A more homogeneous population of 
MSC would be more likely to exhibit consistent proper-
ties and behaviors, making it easier to control the differ-
entiation process and generate a population of target cells 
with the desired properties and functions. In contrast, if 
the MSC are highly heterogeneous, it may be more dif-
ficult to control the differentiation process and achieve a 
consistent population of target cells. In addition, it may 
be more difficult to identify the subset of MSC with the 
best characteristics for differentiation into the desired 
target cells, which could negatively impact the efficiency 
and effectiveness of the differentiation process. There-
fore, reducing the heterogeneity of MSC through selec-
tion or manipulation may be a useful strategy to enhance 
the ability of the stem cells to differentiate into specific 
target cells, which may be beneficial for tissue regenera-
tion and other applications. Several methods have been 
proposed to purify MSC and improve transplantation 
efficiency. The membrane filtration method showed that 
the primary cell solution was permeated through mem-
branes, and then the culture medium was permeated to 
detach the ASC into the culture medium. The isolated 
ASC showed a superior capacity for osteogenic differenti-
ation [117]. The membrane migration method combined 
the membrane filtration method and the culture method. 
The primary cell solution was permeated through mem-
branes, and the membranes were incubated in cell cul-
ture medium, and then the ASC migrated out of the 
membranes which showed high purity and pluripotency 
[118, 119]. Magnetically activated cell sorting isolated 
MSC depending on their surface antigens, such as CD90, 
CD146 and CD271 [120–122]. In addition, a thermore-
sponsive cationic block copolymer brush-grafted bead-
packed column was developed to achieve ASC separation 
by altering the temperature without cell surface modifi-
cation and cellular activity reduction [123, 124]. With the 
development of single-cell RNA sequencing, MSC sub-
populations have been identified, indicating their respec-
tive distinct functions [125, 126]. Future research will aim 
to improve the purification of MSC to provide more spe-
cific stem cells at the cell subset level for the cell-based 
therapy. Immunohistochemical staining of specific mak-
ers of muscle, nerve and NMJ (Table 1) was performed to 
evaluate the effectiveness of stem cell therapy [76, 114]. 
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However, the dynamic changes in differentiation of stem 
cell after transplantation in the recipient area have not 
been well controlled. Although green fluorescence pro-
tein (GFP) or PKH26 were used to label or track the fate 
of stem cell in recipient tissues, the physiology functional 
change of stem cell with time needs more investigations 
in the future.

Clinical trial data and challenges
In order to bypass graft rejection, the use of autologous 
cells from the patient is the ideal treatment scenario for 
functional restoration of the damaged sphincter muscle. 
Clinicals studies using stem cell therapy for sphincter 
dysfunctions have been previously summarized as part 
of several recent reviews [127–129]. Garcia-Arranz et al. 
evaluated the safety and feasibility of ADSC for the treat-
ment of male or female SUI. Urinary incontinence was 
significantly improved in 3 out of 8 men and 5 out of 10 
women, with no adverse effects reported in any patient. 
Clinical improvement was maintained for more than 12 
to 15  months of follow-up [130]. A recent randomized 
clinical trial compared the effects of autologous adult 
mucosa stem cell therapy with the mini-sling procedure 
for female SUI. Results at 6 and 26 months of follow-up 
showed that periurethral injection of autologous adult 
mucosa stem cells was not inferior to the mini-sling 
procedure, while the stem cell group had a shorter pro-
cedure time and hospital stay, as well as fewer complica-
tions [131]. In another randomized clinical trial, Boyer 
et al. reported on the efficacy and safety of MDC injec-
tion for the treatment of FI. The results showed a greater 
than 30% reduction in the Cleveland Clinic Incontinence 
(CCI) score in 58% of patients in the MDC group com-
pared to 8% in the placebo group at 12  months post-
treatment, with excellent tolerability and safety [132]. A 
systematic review including 11 clinical studies found that 
stem cell therapy for SUI and FI was a safe procedure with 
few mild adverse side effects [133]. However, the num-
ber of patients was limited. The outcome measures and 
time points were very heterogeneous. Larger targeted 
studies with control arms needed to be performed to 
give clear evidence for the beneficial impact of stem cell 
therapy. Another systematic review analyzed published 
data on the clinical therapeutic benefit and safety of ure-
thral injections of autologous stem cells for the treatment 
of SUI [134]. These clinical studies showed encourag-
ing results with minimal side-effects and complications. 
However, long term safety and efficacy data still needed 
to be investigated because the mean follow-up was less 
than 12  months in the available studies. Another chal-
lenge identified in this study was the relatively short life 
span of stem cells after transplantation. Indeed, the low 
survival rate of cells transplanted into the damaged area 

has long been a major challenge in the translation of stem 
cell therapy.

Improving the survival rate of cell transplantation is a 
key challenge in the field of regenerative medicine and 
cell therapy. The success of cell transplantation depends 
on several factors, including the type of cells used, the 
method of transplantation, and the environment in 
which the cells are transplanted. Here are some of the 
strategies that have been used or proposed to improve 
the survival rate of cell transplantation: i), Cell selec-
tion: Selecting the right type of cells for transplanta-
tion is critical for success. Stem cells, for example, have 
a greater potential for survival and differentiation than 
fully differentiated cells. However, stem cells cultured 
in vitro for long periods of time generally show low sur-
vival and tissue engraftment, reduced paracrine effects, 
and poor homing and differentiation rates [58]. This may 
be partly due to over expansion of cells during in  vitro 
culture, which leads to senescence and loss of potency; 
ii), Transplantation method: The method of transplan-
tation can affect the survival rate of cells. Transplanting 
cells in a hydrogel or scaffold can provide a supportive 
environment that increases cell survival and promotes 
tissue regeneration [135, 136]; iii), Microenvironment: 
The microenvironment of the transplanted cells is impor-
tant for their survival. Cells need to be in an environ-
ment that is conducive to their growth and survival, with 
adequate oxygen and nutrients. When cells are isolated 
from the tissue, they lose their original microenviron-
ment resulting in decreased viability and DNA instability 
after long-term culture [137, 138]; iv), Delivery of growth 
factors: Supplementing the transplantation with growth 
factors or other biological molecules can help improve 
cell survival. Growth factors can help promote cell sur-
vival, growth, and differentiation [139–141]; v), Immune 
response: The immune response can also affect the sur-
vival of transplanted cells [142]. Strategies to reduce the 
immune response and prevent cell rejection include the 
use of immune-suppressive drugs, the use of cells derived 
from the same individual as the transplant recipient, and 
encapsulation of cells in hydrogels or other materials 
[143, 144]. Further research is needed to fully understand 
the complex mechanisms involved in cell survival and to 
develop new and more effective strategies to improve the 
survival rate of cell transplantation in the treatment of 
sphincter dysfunction.

Growth factor therapy
Growth factors in sphincter dysfunction
Growth factors are signaling molecules that play a critical 
role in regulating cellular processes such as proliferation, 
differentiation, and survival. In the context of sphincter 
dysfunction, growth factors have been investigated as a 
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potential therapy to improve sphincter function and pro-
mote tissue regeneration. Several growth factors have 
been studied for their potential role in sphincter dysfunc-
tion, including:

Platelet‑derived growth factor (PDGF)
PDGF is a potent mitogenic and angiogenic factor that 
promotes cell proliferation and survival. It has been 
shown to regulate the proliferation, migration, and dif-
ferentiation of mesenchymal cells and to promote muscle 
and nerve regeneration [145–149], making it a potential 
therapeutic option for sphincter dysfunction.

Transforming growth factor‑β (TGF‑β)
TGF-β is a growth factor that regulates cell prolifera-
tion, differentiation, and extracellular matrix produc-
tion. It has been shown to promote the differentiation 
of mesenchymal stem cells into smooth muscle cells and 
to stimulate smooth muscle cell proliferation [150–154], 
making it a potential therapeutic option for sphincter 
dysfunction.

Fibroblast growth factor (FGF)
FGFs are a family of growth factors that play a role in 
cellular proliferation, differentiation, and angiogenesis. 
They have been shown to enhance satellite cell prolifera-
tion in vitro [155, 156] and to promote peripheral nerve 
regeneration after injury [157–159], making them a 
potential therapeutic option for sphincter dysfunction.

Vascular endothelial growth factor 
(VEGF): VEGF is a known promoter of angiogenesis 
[160]. The vasculature serves as a conduit for nutrients 
and oxygen and performs perfusion-independent func-
tions as an essential component of the stem cell niche for 
many adult stem cells [161, 162]. Therefore, the applica-
tion of VEGF to the stem cell niche may rejuvenate the 
microenvironment resulting in modulation of stem cell 
behavior during tissue regeneration [163, 164]. VEGF 
has also been shown to stimulate the proliferation and 
survival of smooth muscle cells [165, 166], and to exert 
provide neurotrophic and neuroprotective effects in the 
peripheral nervous system [167]. This makes it a poten-
tial therapeutic option for sphincter dysfunction.

Neurotrophic Factors (NF)
 The most well studied neurotrophic family members 
include brain-derived neurotrophic factor (BDNF), nerve 
growth factor (NGF), neurotrophin-3 (NT-3), and neu-
rotrophin-4/5 (NT-4/5) [168]. Increasing evidence sug-
gests that NF not only support neuronal survival, growth, 
and damage repair but are also involved in the develop-
ment and differentiation of myoblasts and muscle fibers 

[169–173]. These studies highlight the therapeutic poten-
tial of NF for sphincter dysfunction.

Insulin‑Like Growth Factor 1
(IGF-1): IGF-1 is a growth factor that is similar in struc-
ture to insulin. As an important anabolic growth factor 
expressed in muscle and nerve tissue, IGF-1 has been 
shown to promote neuronal survival, axon growth, and 
muscle growth [174–177], making it a potential thera-
peutic option for sphincter dysfunction.

It’s important to note that these growth factors are still 
being studied for their potential role in sphincter dys-
function, and more research is needed to determine the 
optimal combination, dosage, duration, and frequency of 
growth factors for therapeutic use. In addition, the use 
of growth factors for sphincter dysfunction is still in the 
early stages of development, and more studies are needed 
to determine the safety and efficacy of this approach.

Overall, the mechanisms of growth factor therapy can 
be summarized as follows. First, growth factors directly 
participate in tissue repair and regeneration by activat-
ing intrinsic growth programs of damaged neuromus-
cular tissues through the regulation of intracellular 
transcription factors. Second, growth factors enhance the 
therapeutic efficacy of stem cells. They interact with cell-
specific receptors to initiate extracellular and intracellu-
lar signaling cascades responsible for the physiological 
function of stem cells. Third, application of growth fac-
tors to the stem cell niche may rejuvenate the microen-
vironment, resulting in modulation of stem cell behavior 
during tissue regeneration. Therefore, focusing on how 
to maximize the benefits of growth factors and how to 
maintain the bioactivity of growth factors may guide us 
in the search for a promising therapeutic strategy for the 
treatment of sphincter dysfunction.

Methods of controlled release
Genetic modification
Gene therapy is the transfer or modification of genetic 
material to a patient to treat a disease [178]. In addition 
to correcting an existing abnormality to elicit a thera-
peutic effect, gene therapy can also be a tool to deliver a 
gene of interest into cells in order to restore or increase 
expression of a protein [179]. Various non-viral and viral 
vectors have been used for gene delivery in order to 
modify the genome of the target cell. Non-viral systems 
generally utilize physical and chemical systems. Physi-
cal methods of delivering the desired gene of interest 
include the use of naked DNA, the gene gun, electropo-
ration, hydrodynamic or ultrasound transfection, and 
magnetofection, and chemical methods include the use 
of cationic liposomes and cationic polymers [180, 181]. 
The benefits of the non-viral methods include safety, 
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cost-effectiveness, low host immunogenicity, and an 
unlimited transgene size. However, the efficiency of these 
methods is limited.

Viral methods of gene delivery, by contrast, is a very 
efficient method of introducing exogenous DNA into 
cells. Viral vectors that have been used for this purpose 
include retrovirus, adenovirus, adeno-associated virus 
(AAV), herpes simplex virus (HSV), lentivirus, and pox-
virus [178, 180]. In our previous work, we genetically 
modified stem cells to express growth factors such as 
VEGF [56], FGF2 [182] or pigment epithelium-derived 
factor (PEDF) [183] via lentiviral transduction for in vivo 
tissue repair in the urinary tract system. The exogenous 
growth factors were continually secreted from the trans-
fected stem cells over 30 days [56]. In a rat model of erec-
tile dysfunction, the application of genetically modified 
ASC/USC significantly improved erectile function, com-
pared to stem cell implantation alone [56, 182, 183].

All viral vector genomes have been modified so that 
they are reproduction incompetent to ensure their safety. 
However, issues associated with viral use such as compli-
cated processes of vector production, limitations in the 
size of transgenic DNA, potential deleterious immune 
responses, and in rare cases, loss of life remain [178–180, 
184]. Better genome editing techniques (i.e., CRISPR/
Cas9 system) have been developing at a rapid pace, 
which enables targeted genome modifications in cells 
and reduces the risks of genotoxicity in viral vector-based 
gene therapy. However, the off-target activity and the 
induction of DNA modifications at unintended sites cur-
rently limits their utility in gene therapy [185, 186].

Biomaterial‑based delivery systems
In recent years, biomaterial-based delivery systems have 
become an increasingly popular method for use with 
cell transplantations. Multiple properties of biomateri-
als, including crystallinity, glass transition temperature, 
solubility, molecular weight, dispersity, surface charge, 
degradation rates, diffusion rates, and dissolution rates 
are crucial factors that can influence the successful deliv-
ery of growth factors [187]. To achieve acceptable growth 
factor release kinetics, the biomaterials used should have 
good biocompatibility, loading efficiency, molding prop-
erties, the ability to protect growth factors from decom-
position, and the ability for continuous growth factor 
release [68, 70].

Various structures, including microspheres, nanopar-
ticles, liposomes, extracellular vesicles, etc., have been 
studied as carriers in delivery systems. Among these 
delivery devices, alginate hydrogel microspheres, often 
used with microbeads, is widely studied for its biocom-
patibility, biodegradability, tunability in mechanical 
property, and sustained release ability [188–191]. In our 

previous work, we developed injectable alginate micro-
beads encapsulating three growth factors (i.e., VEGF, IGF 
and FGF-1). To control the release of growth factors from 
the microbeads, a semi-permeable membrane of poly-L-
ornithine (PLO) was used to decrease the porosity of the 
alginate microbeads from 600 kDa to about 70–80 kDa. 
The release kinetics of VEGF, IGF, and FGF-1 from the 
alginate microbeads showed as a stable and continuous 
curve for 30 days in vitro. The bioactivity of growth fac-
tors was preserved as evidenced by the angiogenic dif-
ferentiation of USC in the presence of VEGF embedded 
microbeads [55]. To enhance the retention of microbeads 
at a local site, we developed microbeads coated with mul-
tiple layers of hydrogel. We used gelatin as the outer layer 
of the microbeads, as the hydrophilicity of gelatin aids 
in the binding of microspheres to the host tissue [192]. 
The results showed better retention of alginate-PLO-gel-
atin (A-PLO-G) microbeads around urethral tissue after 
periurethral injection, and A-PLO-G microbeads loaded 
with IGF-1 significantly promoted skeletal regeneration 
and angiogenesis in the SUI rat model [193].

As growth factors are usually unable to efficiently bind 
to biomaterials, a bridge for covalent crosslinking is 
required. Heparin, a highly sulfated anionic glycosami-
noglycan, contains a growth factor binding domain that 
allows it to bind growth factors with high affinity and 
control the release while protecting them from thermal 
denaturation and enzymatic degradation. This interac-
tion occurs partly due to shape recognition, but mainly 
due to the electrostatic attraction between N- and O-sul-
fated residues of heparin and the lysine/arginine resi-
dues of growth factors [194–196]. Zhao et al. developed 
tissue-engineered nerves based on a VEGF-heparin sus-
tained controlled release system to promote peripheral 
nerve defect regeneration and repair in rats [197]. The 
results showed early vascularization and restored blood 
supply in the nerve graft area. Our previous work showed 
that in vivo delivery of growth factors from a hyaluronic-
heparin hydrogel maintained the bioactivity of growth 
factors, as well as increased the resulting myogenic and 
angiogenic responses over 28  days, through long-term 
localized release [58].

Tissue-specific ECM, which provides an in vitro micro-
environment that is similar to the in vivo environment, is 
able to promote cell growth and retention of cellular phe-
notypes [198]. However, growth factors in the ECM are 
rapidly degraded or washed-out during culture in  vitro. 
To achieve controlled release of bioactive growth fac-
tors from ECM, heparin linked with hydrogel was used. 
Our studies demonstrated that tissue-specific ECM com-
bined with heparin conjugated hyaluronic acid hydro-
gel was capable of binding growth factors for sustained 
release and maintenance of a constant level of growth 
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factor-cell signaling in the local environment [199, 200]. 
This resulted in better outcomes in cell viability, prolif-
eration, and differentiation than hydrogel or ECM appli-
cation alone.

Pre‑clinical data in sphincter dysfunction
Multiple preclinical studies have investigated the use 
of growth factors to improve sphincter dysfunction 
(Table  3). These investigations indicated that the use of 
growth factors, either on their own or in conjunction 
with controlled release methods, have the potential to 
improve sphincter function. Although evidence from 
preclinical studies supported that growth factor therapy 
serve in multiple capacities of neuromuscular repair and 
regeneration, there remains a big gap between injury 
models and clinical scenarios. The use of growth factors 
in delivery system still presents major challenges due to 
their unstable bioactivity and uncertain safety. Up till 
now, few clinical data about growth factor therapy alone 
for sphincter dysfunctions has been published. VM202 
 (Engensis®), developed by Helixmith, is a plasmid DNA 
product designed to produce two isoforms of hepatocyte 
growth factor (HGF). VM202 has been studied in experi-
mental models and clinical trials for therapeutic ben-
efit in several diseases, including critical limb ischemia, 
myocardial infarction, amyotrophic lateral sclerosis, and 
painful diabetic peripheral neuropathy [201–209]. The 
mechanism of action may be attributed to the restora-
tion of damaged nerves and blood vessels via the neuro-
trophic and angiogenic activities of HGF [210–212]. This 
provides a glimpse into the potential of growth factor 
therapy in neuromuscular repair and regeneration.

Combination therapy of stem cells and controlled 
released of growth factors
Neuromuscular regeneration using dual therapy
In a controlled release system, stem cells, growth factors, 
and biomaterial carriers come together to form a geo-
metric unit. Growth factors released from biodegradable 
microbeads or gels can be locally applied to improve cell 
retention, viability, differentiation, and paracrine signal-
ing of the grafted stem cells. In addition, they can stimu-
late and recruit endogenous stem cells to facilitate tissue 
injury repair and regeneration. Stem cell therapy com-
bined with a controlled release of growth factors has the 
potential to result in increased neuromuscular regenera-
tion by increasing tissue and graft angiogenesis, myogen-
esis, and innervation, compared to treatment alone.

Pre‑clinical data in sphincter dysfunction
To date, there are few combination therapies for anal 
sphincter and LES dysfunction, and few pre-clinical 
studies that have shown only modest progress in the 

treatment of urethral sphincter dysfunction [55, 57–59]. 
The standard treatment of SUI, for example, requires res-
toration of a functional urethral sphincter which requires 
a vascularized urethral submucosal layer, striated and 
smooth muscle components, and effective innervation to 
maintain urinary continence [213]. Zhao et  al. reported 
that periurethral injection of autologous ASC with con-
trolled-release nerve growth factor (NGF) enhanced the 
therapeutic efficacy of ASC in a rat model of SUI [59]. 
In this study, NGFs encapsulated in PLGA microspheres 
were demonstrated to improve ASC viability in vitro and 
in vivo. The combination of ASC and PLGA loaded with 
NGF significantly improved bladder capacities as evi-
denced by enhanced abdominal leak point pressure and 
retrograde urethral perfusion pressure. Histologic evalu-
ation of the urethra showed increased muscle and neu-
ronal density after ASC and PLGA-NGF treatment.

In our previous work, we studied the combination ther-
apy of un-differentiated USC with controlled release of 
growth factors from a heparin-hyaluronic acid (hp-HA) 
gel via subcutaneous injection in mice [58]. The growth 
factor cocktail released from the hp-HA gel contain-
ing IGF1, HGF, PDGF, NGF, FGF and VEGF increased 
USC retention at the site of injection and enhanced 
the recruitment of resident cells into the graft. Addi-
tionally, the myogenic differentiation potential of USC 
was increased in the combination therapy group, as 
evidenced by increased expression of early myogenic 
markers (Desmin, Myf-5 and Myo-D) in the graft. More-
over, increased vasculature (marked by CD31, vWF) 
and nerves (marked by neurofilament) in the graft were 
detected in the combination group as compared to the 
growth factor alone treated group. Lastly, the combined 
use of growth factors and cells required 1/3 the dose than 
that of the growth factor alone. The use of decreased 
doses of growth factors may reduce the risk of side effects 
due to supra-physiological doses when used alone [58]. 
In another study, we used USCs combined with growth 
factors embedded in alginate microspheres. The growth 
factors included IGF1, HGF, PDGF, NGF, FGF and VEGF. 
After subcutaneous injection into mice, the histologic 
analysis showed enhanced myogenesis, angiogenesis, and 
peripheral nerve formation in the graft [55].

Clinical trial data
Although there are currently no clinical trials of combi-
nation therapy for sphincter dysfunction, the combina-
tion therapy has shown positive results in the treatment 
of other diseases.  NurOwn®, developed by BrainStorm 
Cell Therapeutics, is a therapy that combines the admin-
istration of MSC and NF to treat patients with ALS. 
Autologous MSC are harvested from the bone marrow 
and then induced to secrete NF. These MSC-NF cells 
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have the potential to protect motor neuron survival and 
promote neuromuscular junction reinnervation. Clinical 
results suggest that the MSC-NF cells transplantation is 
safe and well tolerated, with improvements in ALS Func-
tional Rating Scale-Revised score and forced vital capac-
ity [214–216]. A randomized controlled clinical trial was 
conducted to evaluate the efficacy of MSC cultured on 
beta-tricalcium phosphate in combination with recombi-
nant human PDGF-BB in the treatment of human infra-
bony defects. The results showed that clinical parameters 
such as pocket depth, clinical attachment level, and radi-
ographic bone volume tended to improve after com-
bination therapy at 6-month follow-up [217]. Another 
clinical trial showed that combination therapy with stem 
cells and activated platelet-rich plasma growth factor 
concentrate was promising for cartilage regeneration, 
as evidenced by improved MRI data in 45 of 48 patients 
with avascular necrosis of the femoral head [218]. The 
information gained from these combination studies is 
expected to lead to the development of new neuromus-
cular regeneration therapies.

Animal models of sphincter dysfunction
As shown in Table  2 and Table  3, various animal mod-
els of sphincter disorders can be useful for studying cell 
therapy or growth factor therapy for these conditions, 
but they also have advantages and disadvantages. Advan-
tages include: (i), Relevance: animal models can provide 
a relevant and physiologically accurate representation of 
the human condition, making them useful for testing cell 
therapy or growth factor therapy for sphincter disorders; 
(ii), Control: in animal models, it is possible to control 
various environmental and experimental factors, such as 
diet, hormonal status, and disease state, which may be 
difficult to control in human studies. This can provide a 
more controlled and standardized experimental setting 
for studying the efficacy of cell therapy or growth factor 
therapy for sphincter disorders; (iii), Cost: animal mod-
els can often be less expensive than human studies, espe-
cially if they involve complex procedures or expensive 
drugs or devices. Disadvantages include: (i), Species dif-
ferences: there may be differences between humans and 
the animal models used, such as differences in anatomy, 
physiology, or disease mechanisms, which may limit the 
generalizability of the results to humans; (ii), Ethical con-
siderations: the use of animal models for research may 
raise ethical concerns, particularly when the animals are 
subjected to procedures that cause pain or distress; (iii), 
Limited representation: animal models may not accu-
rately represent all aspects of the human condition, espe-
cially if the sphincter disorder being studied is rare or 
has complex underlying mechanisms; (iv), Interpretation 
of results: interpreting the results of animal studies can 

be challenging, especially if the results are not directly 
comparable to human studies. This may limit the ability 
to draw meaningful conclusions about the potential effi-
cacy of cell therapy or growth factor therapy in humans; 
(v), Limited cell transplantation methods: The methods 
available for cell transplantation in animal models may be 
limited and may not accurately reflect the methods that 
would be used in humans.

In the preclinical studies, several animal models have 
been developed to injure different aspects of the sphinc-
ter function. For example, SUI animal models can be 
induced by vaginal dilation (VD), pudendal nerve injury 
or dual injury, which simulates the vaginal birth trauma 
[219, 220]. However, these animal models have several 
unavoidable limitations. First, sphincter dysfunction is a 
complex and usually multifactorial process, sometimes 
involving a combination of denervation, muscle degen-
eration, atrophy and fibrosis [221]. It is almost impossible 
for an in vivo model to integrate all the pathophysiologi-
cal factors that fully simulate the human situation. Sec-
ond, some models are unique in their reversibility feature. 
This means that the sphincter dysfunction resolves spon-
taneously, making it difficult to observe the long-term 
effects of cell-based therapy. For example, the VD model 
has a limited duration of the sphincter functional and 
structural sphincter defects, with a recovery of leak point 
pressure within 10  days, and up to 6  weeks [221–223]. 
Third, the assessment of sphincter dysfunction relies 
heavily on subjective symptoms reported by patients via 
questionnaires, such as urine leakage on cough in SUI 
patients and frequency of heartburn in GERD patients. 
This in not possible in animal models. Surrogate outcome 
measures in animal models may not accurately reflect the 
effect of therapy.

Overall, animal models of sphincter disorders can be 
valuable tools for studying cell therapy or growth factor 
therapy for these conditions. However, it is important to 
carefully consider the advantages and disadvantages of 
these models when designing and interpreting research 
studies, and to validate the results in human studies 
before moving to clinical applications.

Conclusion and future prospects
Sphincter dysfunction is a consequence of neuromus-
cular impairment that occurs with aging, trauma and 
inflammation in various lumen tissues. Undoubtedly, 
stem cell-based therapies aimed at restoration of neu-
romuscular function have emerged as an attractive 
approach in regenerative medicine. Compared to the 
use of stem cells alone, combination therapy of stem 
cells with controlled release of growth factors signifi-
cantly enhances cell viability of the implanted cells by 
increasing paracrine effect and recruiting the host stem 
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cells to participate to the internal tissue regeneration. 
Preclinical studies displayed that combination thera-
pies are promising and safe in short-term experiments. 
However, its long-term efficacy and safety remain 
unknown that needs to be further investigated. If it is 
successful, stem cell therapy with consistently delivered 
growth factors can be used in the other sphincter dis-
orders (i.e. vesicoureteral reflux and sphincter of oddi 
dysfunction) and muscular dystrophy.

The biomaterial-based delivery system provides an 
effective controlled-release vehicle for multiple growth 
factors to improve stem cell survival and function. It 
should also be noted that stem cell adhesion and dif-
ferentiation can be influenced by the stiffness of the 
hydrogel used [224–226] suggesting that the effects 
of the mechanical properties of the hydrogel on stem 
cells needs to be considered. The fate of cells grown on 
various hydrogels needs to be investigated while tak-
ing into consideration the biophysical cues from the 
dual microenvironment of the hydrogel and the native 
environment of the recipient after transplantation. 
Additionally, neuromuscular regeneration is a dynamic 
process that is regulated by numerous growth factors 
that coordinate with each other to regulate this process 
[141].

To achieve ideal functional repair of damaged muscles 
and nerves that mimic the body’s physiological process, 
the delivery of multiple growth factors using various car-
rier biomaterials in specific spatial and temporal ways 
needs to be considered. Recently, extracellular vesicles 
have emerged as promising drug carriers. Advantages 
of exosomes as carriers include high biocompatibility, 
enhanced stability, and limited immunogenicity [227, 
228]. Wang et al. loaded recombinant human NGF pro-
tein and mRNA into exosomes. The engineered exosome 
showed long-term stability, effectively delivered NGF into 
the ischemic region and reduced ischemic injury in mice 
[229]. In another study by Li et  al., delivery of VEGFC, 
via engineered exosomes in a sodium alginate hydrogel, 
improved lymphedema in mice [230]. Therefore, a vesi-
cle-based delivery strategy may also hold promise as an 
advanced platform for assisting stem cell therapy.
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