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Abstract 

The aim of the present study was to elucidate the evolutionary trajectory of colon cells from normal colon mucosa, 
to adenoma, then to carcinoma in the same microenvironment. Normal colon, adenoma and carcinoma tissues from 
the same patient were analyzed by single-cell sequencing, which perfectly simulated the process of time-dependent 
colon cancer due to the same microenvironment. A total of 22 cell types were identified. Results suggest the pres-
ence of dominant clones of same cells including C2 goblet cell, epithelial cell subtype 1 (Epi1), enterocyte cell subset 
0 (Entero0), and Entero5 in carcinoma. Epi1 and Entero0 were Co-enriched in antibacterial and IL-17 signaling, Entero5 
was enriched in immune response and mucin-type O-glycan biosynthesis. We discovered new colon cancer related 
genes including AC007952.4, NEK8, CHRM3, ANO7, B3GNT6, NEURL1, ODC1 and KCNMA1. The function of TBC1D4, 
LTB, C2CD4A, AND GBP4/5 in T cells needs to be clarified. We used colon samples from the same person, which pro-
vide new information for colon cancer therapy.

Highlights 

• We performed single-cell transcriptome sequencing in one case carrying adenoma and carcinoma, and explored 
process of colon cancer progression.
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• Results suggest the presence of dominant clones of same cells including C2 goblet cell, epithelial cell subtype 1 
(Epi1), enterocyte cell subset 0 (Entero0), and Entero5 in colon carcinoma

• We discovered new colon cancer related genes including AC007952.4, NEK8, CHRM3, ANO7, B3GNT6, 
NEURL1, ODC1 and KCNMA1.

• The function of TBC1D4, LTB, C2CD4A, AND GBP4/5 in T cells needs to be clarified.

Keywords Single cell, Colon adenoma, Colon cancer, Cancer development

Introduction
The occurrence and development of colon cancer is a 
multi-stage process from adenoma to carcinoma. Colon 
cancer is an ideal model to study the multi-stages of 
carcinogenesis [1]. Adenomatous polyps are definite 
precancerous lesions [2]. Clinical research showed 
that the adenoma detection rate was inversely associ-
ated with the risks of interval colorectal cancer (CRC), 
advanced-stage interval cancer, and fatal interval can-
cer [3, 4].

Single-cell RNA sequencing (scRNA-seq) is a power-
ful analysis tool to reveal the gene expression state in a 
single cell. Research on colon cancer by scRNA-seq has 
been partially carried out. CRC showed obvious heter-
ogeneity in single-cell level [5]. Researchers have per-
formed scRNA-seq analyses on immune and stromal 
populations from patients with CRC and identified spe-
cific macrophage and conventional dendritic cell sub-
sets as key mediators of cellular cross-talk in the tumor 
microenvironment [6]. Li et  al. [7] performed scRNA-
seq on the tumors and normal mucosa of patients with 
CRC, developed a new clustering method called refer-
ence component analysis.

Existing scRNA-seq studies of colon cancer have 
limitations, that is, samples were collected from differ-
ent patients, and few works collected continuously dif-
ferent pathological stages of colon cancer in the same 
patient. The tumor microenvironment also varies indif-
ferent patients, and mixed-microenvironment cells 
must mask this difference. In this study, we obtained 
the normal colon, adenoma, and carcinoma tissues 
from the same patient which carries adenoma and car-
cinoma at the same time and explored via scRNA-seq. 
We analyzed the overall evolution during transition 
from normal colon to adenoma and to carcinoma and 
the cell numbers and expression change patterns of epi-
thelial cells, enterocyte cells, etc. Results describe the 
overall situation of transcriptome map in single-cell 
level and reflect the gradual change in colon cancer, 
which is of great significance to clarify dynamically the 
occurrence of colon cancer and patient’s individualized 
medical treatment.

Materials and methods
Specimen collection
The normal tissue, adenoma tissue, and colon cancer 
tissue of the same patient were collected. The patient 
had not received chemotherapy or radiotherapy before 
operation. Clinical information was obtained from the 
patient’s medical record. Patient’s informed consent 
was obtained. The study was approved by the ethics 
committee of Xi’an Jiaotong University.

Library construction and sequencing
The prepared single-cell suspension and the antibody 
solution with the sample label were incubated. The sam-
ple was loaded into the U-card chip of BD Rhapsody (BD, 
USA), the magnetic beads were spread, and the excess 
beads were washed off. After standing for a period of 
time, cell lysis was conducted to combine free mRNA 
with the magnetic beads. The magnetic beads carrying 
the mRNA of single cells were recovered, reverse tran-
scribed, and used to synthesize cDNA. After the comple-
tion of cDNA amplification, the enzyme sections were 
segmented, end repaired, added with A, and spliced. The 
amplified cDNA and library were evaluated by Agilent 
4200. Finally, the sequencing was completed by pe150 
strategy in Novaseq 6000 (Illumina, USA).

Single‑cell data processing
A single-cell software suite was used to process the raw 
data. FastQC software was used to evaluate the quality of 
the raw sequencing data, and FASTX-Toolkit was used to 
control the quality of fastq sequence. Seurat 3.0 (R pack-
age) was used for clustering. After filtering out cells with 
gene number < 200, gene number ranked in the top 1% or 
a mitochondrial gene ratio of > 25%. The dimension was 
reduced by principal component analysis (PCA), and the 
data were visualized by TSNE or UMAP.

Copy number variation analysis
InferCNV package (https:// github. com/ broad insti tute/ 
infer cnv, v1.3.3) was used to infer the profiles of copy 
number variations based on the average expression of 

https://github.com/broadinstitute/infercnv
https://github.com/broadinstitute/infercnv
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large group of genes in each chromosome. Single cell 
RNA-seq data of the normal tissue was served as the ref-
erence for CNV calling. Genes were arranged based on 
their chromosome coordinates. CNV for each cell was 
estimated by applying a moving average window with a 
length of 101 within each chromosome. Single cells from 
carcinoma tissue were clustered into three groups using 
the hierarchical clustering method. The cluster whose 
CNV pattern differs from that of reference cells and 
meanwhile displays high-frequency copy number altera-
tions was assigned as cancer cells.

Cluster marker recognition, cell type annotation 
and pseudotime analysis
SingleR was used to analyze cell type annotation. SingleR 
(https:// bioco nduct or. org/ packa ges/ devel/ bioc/ html/ 
Singl eR. html) was used for unbiased cell-type recogni-
tion from single-cell RNA sequencing data by leveraging 
the reference transcriptomic datasets of pure cell types to 
infer the origin of each single cell independently. Human 
Cell Landscape reference datasets were used.

Gene set variation analysis (GSVA)
Using hallmark gene sets in MsigDB as the gene set, we 
applied the standard settings in GSVA software to assign 
the estimated value of pathway activity to a single cell. 
We compared the activity score of each cell with the 
Limma software package and then evaluated the differ-
ential activity of pathways between cell subsets. The dif-
ferential activity of the pathways of each identified cluster 
was calculated.

Enrichment analysis
KEGG enrichment and DISEASE enrichment (human 
only) of cluster markers were performed with KOBAS 
software and Benjamini–Hochberg multiple testing 
adjustment by using the top 20 marker genes of the clus-
ter. The results were visualized using R package.

Gene expression profiling interactive analysis (GEPIA) 
analysis
GEPIA software can provide rapid and customiz-
able analysis using TCGA (The Cancer Genome Atlas, 
https:// www. cancer. gov/ about- nci/ organ izati on/ ccg/ 
resea rch/ struc tural- genom ics/ tcga) and GTEX data. We 
used GEPIA to detect the expression of (selected genes) 
in colon cancer and its relationship to the prognosis of 
colon cancer.

Hematoxylin–eosin staining (HE)
Paraffin sections of normal colon, adenoma, and carci-
noma tissues were prepared. The paraffin specimens were 

treated with xylene and gradient ethanol for dewaxing 
and hydration. Hematoxylin semen and subsequent 1% 
hydrochloric acid ethanol were added. Finally, neutral 
gum sealing was performed. Two pathologists deter-
mined the diagnosis independently.

Immunohistochemistry (IHC)
Some IHC results were obtained from The HPA (The 
Human Protein Atlas, https:// www. prote inatl as. org/). 
Some IHC were performed by our lab. In brief, the paraf-
fin sections were deparaffinized with xylene and hydrated 
using an alcohol gradient. Endogenous-peroxidase-
blocking and antigen retrieval were conducted sequen-
tially. The sections were then incubated with primary 
antibody followed by secondary antibody conjugated 
with horseradish peroxidase. Detection was conducted 
by 3,3′-diaminobenzidine (DAB) and hematoxylin. The 
score of immunostaining was evaluated by two inde-
pendent pathologists [8, 9].

Statistical analysis
R and SPSS 23.0 statistical software were used for data 
analysis. All data are presented as mean ± SD. Student’s 
t-test or one-way ANOVA was used to evaluate differ-
ences among groups. Data were considered to be statisti-
cally significant when P < 0. 05.

Results
Normal colon, adenoma, and carcinoma of the same 
patient via scRNA‑seq
We performed a time sequential single-cell transcriptome 
profile analysis of colonic lesions at three different patho-
logical stages including colon tissue, adenoma tissue, and 
carcinoma tissue (Fig. 1A, B). The sample diagnosis was 
conducted by Hematoxylin–eosin (HE) staining (Fig. 1A). 
A total of 17,397 cells were obtained. The results of the 
tSNE test showed the cell population distribution com-
posed of cells from different sample sources (Fig.  1C). 
According to the expression of canonical markers and 
T-distribution random neighbor embedding (tSNE), we 
divided the cells into T cells, B cells, macrophages, den-
dritic cells, mast cells (and other immune cells), as well as 
enterocyte cells, epithelial cell, granulocytes cells, fibro-
cyte cells (and other non-immune cells) (Fig. 1D). KEGG 
analysis showed, compared with normal samples, carci-
noma and adenoma tissues were preferentially enriched 
and suppressed the pathway of Th17 cell differentiation 
(Fig. 1E,F, G).

Cell annotation and number composition ratio
Colon cancer cells were identified by using copy num-
ber variation analysis, and 22 groups were identified 
(Fig. 2A, B). The marker genes of the different cell types 

https://bioconductor.org/packages/devel/bioc/html/SingleR.html
https://bioconductor.org/packages/devel/bioc/html/SingleR.html
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.proteinatlas.org/
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were presented in Fig.  2C, Additional file  2: Table  S1. 
We stratified 22 groups of cells from three samples 
(Fig.  2D) and counted the cell proportion (Fig.  2E–I, 
Additional file 2: Table S2). Firstly, we separate these cells 
into large clusters, including enterocyte cells, epithelial 
cells, malignant cells, immune cells, fibrocyte cells. The 
results showed that in carcinoma tissues, the proportion 
of enterocyte cells and malignant cells were increased, 

while the immune cells were decreased. Secondly, we 
performed the subclustering analysis. In enterocyte cells, 
the proportion of C2 goblet cells were increased in car-
cinoma tissues, and proportion of enteroendocrine cells 
were decreased. In epithelial cells, the proportion of C9 
absorptive cells were increased in carcinoma tissues. In 
immune cells, the proportion of C5 plasma cells, C10 B 
cells, C13 macrophage cells, C19 granulocyte cells were 

Fig. 1 Experimental design of single RNA-seq on 3 staged colonic lesions in the same patient. A. Hematoxylin–eosin (H&E) staining of the 
tissues with different stages of colonic lesions including normal mucosa, colonic adenoma and carcinoma in the same patient. B. Overview of 
the experimental design of single cell RNA-seq. Pathological lesions of the colonic tissue including normal mucosa, adenoma and carcinoma 
were dissected and digested into single-cell suspensions for further separation, followed by library construction, sequencing, clustering and 
cell identification. C. tSNE plot of all the cells based on three different samples. D. tSNE plot of all the cells based on different cell types. E. 
KEGG enrichment of Top signal pathway in adenoma tissue compare to normal tissue, the blue bar and red bar show the down-regulated and 
up-regulated pathway, separately. F. KEGG enrichment of Top signal pathway in carcinoma tissue compare to normal tissue, the blue bar and red 
bar show the down-regulated and up-regulated pathway, separately. G KEGG enrichment of Top signal pathway in carcinoma tissue compare to 
adenoma tissue, the blue bar and red bar show the down-regulated and up-regulated pathway, separately
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Fig. 2 Distinct cell populations and their expression signatures. A. CNV was performed to identify the colorectal cancer cells. B. tSNE plot of 
all the cells based on different cell types and clusters. C. tSNE plot of all the cells based on different stages and clusters. C. The marker genes in 
each cell type were presented. D. The stacked histogram shows the 22 different cell cluster compositions in 3 pathological stages. E. The cell 
proportions of enterocyte cells, epithelial cells, malignant cells, immune cells, fibrocyte cells comparing to total cells. F. The cell proportions of 
subcluster-enterocyte cells comparing to enterocyte cells. G. The cell proportions of subcluster-epithelial cells comparing to epithelial cells. H. The 
cell proportions of subcluster-immune cells comparing to immune cells. I. The cell proportions of subcluster-T cells comparing to total T cells
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increased in carcinoma tissues. In T cells, the proportion 
of C4 effector memory T cells, C14 CD8 + T cells, C16 
natural killer T (NKT) cells were increased in carcinoma 
cells, while C6 regulatory T (Treg) cells, C11 T helper cell 
were decreased in carcinoma cells.

C2 goblet cells are the key cell group in the process 
of carcinogenesis
DISEASE enrichment results showed that C2 cells sig-
nificantly enriched in intestinal cancer, biliary tract can-
cer, appendix cancer, pseudomyxoma peritonei, bile duct 
adenocarcinoma, cholangiocarcinoma, bile duct can-
cer, bile duct carcinoma, colon cancer, et al. (Additional 
file 1: Fig.S1A). Hence, C2 goblet cells may be the main 
carcinogenic cell group. KEGG analysis showed that C2 
group cells were significantly enriched in mucin-type 
O − glycan biosynthesis, Vibrio cholerae infection, com-
plement and coagulation cascades, cardiac muscle con-
traction, hypertrophic cardiomyopathy (HCM). The main 
enriched functional genes are MUC2 [10], ST6GAL-
NAC1 [11], SERPINA1 [12], and TPM1 [13] (Additional 
file 1: Fig.S1B). And the 6 coincident genes significantly 
enriched in adenoma and carcinoma were DEFA6 [14], 
SOX9 [15, 16], ID1 [17], L1TD1 [18], CXCL3 [19], and 
ODC1 [20] (Additional file 1: Fig.S1C, S1D). In addition, 
the similar analysis was performed in C3 cancer cells 
(Additional file 1: Fig.S2). The main enriched functional 
genes in C3 groups are SLC12A2 [21], ATP1B1 [22], 
PLA2G2A [23], and HBEGF [24]. (Additional file 1: Fig.
S2B). And the 9 coincident genes significantly enriched in 
adenoma and carcinoma were APCDD1, DUOX2, NKD1, 
LYZ, CXCL1, TFF3, MSX1, CCL20, and IFI6 (Additional 
file 1: Fig.S2C, S2D).

Gene expression and characteristics of epithelial 
cells during the progression of normal to adenoma 
and to carcinoma
We identified 402 epithelial cells in all three stages 
(Fig. 3A), which were divided into four subtypes, named 
as Epi0, Epi1, Epi2, and Epi3 (Fig. 3B). Epithelial cells in 
three different pathological stages were analyzed in lay-
ers (Fig.  3C), and the number of cells in each layer was 
counted (Fig. 3D). In addition, we homogenized the pro-
portion of cells between different groups compared with 
the normal group (Additional file 3: Table S2). Compared 
with normal tissues, the proportion of Epi1 cells in the 
adenoma tissues increased significantly and continued 
to increase in the carcinoma tissues, while the propor-
tion of Epi3 cells was only increased slightly in carcinoma 
tissues. In addition, compared with normal tissues, the 
proportion of cells in Epi0 and Epi2 groups decreased in 
adenoma tissues and continued to decrease in carcinoma 
tissues (Fig. 3E). We made a histogram of the expression 

of top marker genes in different cell subsets at three path-
ological stages (Fig. 3F) and the heatmap of marker gene 
in all subsets (Additional file  1: Fig.S3A). We used the 
data of TCGA and HPA to verify the expression of these 
marker genes in colon cancer (Fig. 3H). The main marker 
genes are AQP8 [25], CA7 [26], MS4A12 [27], LRMP 
[28], LCN2 [29], and PI3 [30], BEST4, SH2D6 (no report 
is available about BEST4, SH2D6 and colon cancer).

We also conducted enrichment analysis of the four sub-
sets of epithelial cells by GSVA method. Epi0 cells were 
enriched in myc targets, G2M check point, and E2F tar-
gets. Epi1 cells were enriched in bile acid metabolism. 
Epi2 and Epi3 cells showed similar expression patterns, 
Co-enriched in hypoxia, TNFa signaling via NFKB, KRAS 
signaling up, estrogen response, inflammatory response, 
apical junction, p53 pathway, UV response, interferon 
gamma response, IL2 stat5 signaling, epithelial mesen-
chymal transition, and bile acid metabolism (Fig. 3G). We 
also showed the expression of several marker genes in 
different epithelial cell subsets in the form of violin dia-
gram (Fig. 3I).

As shown in Fig.  3D, E, the proportion of Epi1 cells 
increased significantly in the carcinoma tissue, suggest-
ing that this group of cells may play a more important 
role in the evolution of tumor. The marker gene of the 
Epi1 subgroup is shown in Additional file  4: Table  S3, 
Additional file 1: Fig.S3B. Some of them are involved in 
immuno reaction, such as IGKC [31], IGHA1, IGHA2, 
and JCHAIN [32]. In addition, evidence of involvement 
in carcinogenesis was found,some of them function as 
oncogenes in colon cancer including LCN2 [29], DUOX2 
[33], CEACAM6 [34], CD55 [35], MUC5B [36], TM4SF1 
[37], REG4 [38], TFF1 [39], GDF15 [40], and ANXA2 
[41]. Some genes function as tumor suppressor including 
PLA2G2A [23, 42], PI3 [30], and NOS2 [43]. An associa-
tion was found between TNFRSF6B SNP with Crohn’s 
disease susceptibility [44].

Gene expression and characteristics of enterocyte 
cells during the progression of normal to adenoma 
and to carcinoma
We identified 4835 enterocyte cells in all three stages 
(Fig. 4A). These enterocyte cells were divided into 11 sub-
types named Entero0 to Entero10 (Fig. 4B). The entero-
cyte cells in three different pathological stages were 
analyzed in layers (Fig.  4C), and the number of cells in 
each layer was counted (Fig. 4D). In addition, we homog-
enized the proportion of cells in different groups in this 
sample (Additional file  3: Table  S2, Fig.  4E). Compared 
with the normal tissue, the proportion of Entero4 and 
Entero5 groups in the adenoma tissue increased signifi-
cantly and continued to increase significantly in the car-
cinoma tissue. The proportion of cells in Entero7 group 
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increased significantly in adenoma and carcinoma tis-
sues, while the proportion of cells was very close. Com-
pared with the normal tissue, the proportion of Entero0 
cells in the adenoma tissue increased significantly but 
decreased in the carcinoma tissue.

We made a histogram of the top gene expression of 
marker genes in different cell subsets at three pathological 

stages (Fig.  4G) and a heat map of marker genes in all 
subsets of cells (Additional file 1: Fig.S4A). We used the 
data of TCGA and HPA to verify the expression of these 
marker genes in colon cancer (Fig. 4H). The main marker 
genes are DUOX2 [33], OLFM4 [45], MUC2 [10], DEFA6 
[14], MKI67, GDF15 [40], SELENBP1 [46], IGLC1 (no 

Fig. 3 Identification of epithelial cell clusters and their expression features. A. tSNE plot of all the epithelial, colored by different stages. B. tSNE plot 
of all the epithelial, colored by clusters. C. tSNE plot of all the enterocyte, colored  by different stages and clusters. D. The stacked histogram shows 
the 4 different cell cluster compositions in 3 pathological stages. E. The bar chart shows each enterocyte cell cluster composition of 3 pathological 
stages. F. The expression of marker genes of the enterocyte cells in different stages. G. Expression-based pathway activities scored by GSVA per 
enterocyte cluster, the red color indicates enrichment and blue color indicates not enrichment. H. The Top marker gene expression and cell location 
of epithelial clusters by TCGA and the Human Protein Atlas. I Violin plots of Top marker gene expression in enterocyte clusters
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related study with colon cancer has been reported), CA1 
[47], CHGA [48], and GCG [28].

Moreover, CA1, CHGA, and GCG decreased sig-
nificantly from normal to adenoma and continued to 
decrease significantly from adenoma to carcinoma, 
indicating that these genes continued to play a role in 
inhibiting the process from normal to adenoma then to 
carcinoma. We also conducted enrichment analysis of 
11 subsets of enterocyte cells by GSVA method. Cells 
in Entero0 and Entero5 groups had similar expression 
patterns, Co-enriched in EMT, TNFa signaling via 
NFKB, inflammatory response, UV response, hypoxia, 

apoptosis, p53 pathway, KRAS signaling, et al. and oth-
ers. Entero1 was enriched in DNA repair, androgen 
response, MYC targets, and oxidative phosphoryla-
tion (Fig. 4F). We also showed the expression of several 
marker genes in different enterocyte cell subsets in the 
form of violin diagram (Fig. 4I).

As shown in Fig.  4E, the proportion of Entero0 and 
Entero5 cells increased significantly in the adenoma tis-
sue, suggesting that these group of cells may play an 
important role in the evolution of tumor. The marker 
gene of Entero0 and Entero5 subgroups are shown in 
Additional file 4: Table S3, Additional file 1: Fig.S4B, S5A.

Fig. 4 Identification of enterocyte cell clusters and their expression features. A. tSNE plot of all the enterocyte, colored by different stages. B. tSNE 
plot of all the enterocyte, colored by clusters. C. tSNE plot of all the enterocyte, colored by different stages and clusters. D. The stacked histogram 
shows the 11 different cell cluster composition in 3 pathological stages. E. The bar chart shows each enterocyte cell cluster composition of 3 
pathological stages. F. The expression of marker genes of the enterocyte cells in different stages. G. Expression-based pathway activities scored by 
GSVA per enterocyte cluster, the red color indicates enrichment and blue color indicates not enrichment. H. The top marker gene expression and 
cell location of enterocyte clusters by TCGA and the Human Protein Atlas. I. Violin plots of top marker gene expression in enterocyte clusters
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Gene expression and characteristics of T cells 
during the progression of normal to adenoma 
and to carcinoma
We identified 1555  T cells in all three stages (Fig.  5A). 
These T cells were divided into nine subtypes, named T0 
to T8 (Fig. 5B). The T cells in three different pathological 
stages were analyzed in layers (Fig. 5C), and the marker 
gene heat map of all subpopulations of cells was prepared 
Additional file  1: Fig.S6A. The number of cells in each 
layer was counted (Fig. 5D). In addition, we homogenized 

the proportion of cells among different groups com-
pared with the normal group (Additional file 3: Table S2, 
Fig. 5E). Compared with the normal group, the propor-
tion of cells in T1, T2, T4, and T7, especially T4 and 
T7 groups, decreased significantly, suggesting that the 
number of cells in T4 and T7 groups decreased during 
carcinogenesis. Compared with the normal group, the 
proportion of cells inT0, T3, T5, and T8, especially T8 
group, increased significantly, suggesting that the number 
of cells in the T8 group increased during carcinogenesis.

Fig. 5 Identification of T cell clusters and their expression features. A. tSNE plot of all the T cell, colored by different stages. B. tSNE plot of all the 
T cell, colored by clusters. C. tSNE plot of all the T cell, colored by different stages and clusters. D. The stacked histogram shows the 9 different cell 
cluster composition in 3 pathological stages. E. The bar chart shows each T cell cluster compositions of 3 pathological stages. F. The expression of 
marker genes of the T cells in different stages. G. Bubble chart showed the top marker gene expression and percentage in different T cell clusters. H. 
tSNE plot showed the top marker gene expression in different T cell clusters
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In Fig.  5F, we selected the top 2 gene in the marker 
gene of different subpopulations of cells, including 
CCR6, FOS, CD69, CCL5, CD40LG, GZMK, MIAT, 
PIM2, KCNQ1OT1, and HES1. Among them, CCR6, 
FOS, CD69, CCL5, CD40LG, GZMK, MIAT, PIM2 have 
lower expression in carcinoma tissues compared with 
normal tissues. However, KCNQ1OT1 and HES1 have 
higher expression in the carcinoma tissue compared 
with normal tissues. We selected the top 2 gene of each 
subgroup marker gene, prepared a bubble chart based 
on the positive expression cells and expression level 
(Fig.  5G), and selected the top gene of each subgroup 
marker gene by tSNE method for display (Fig. 5H).

In addition, based on the significant increase in the 
proportion of cells in the T8 group in cancer tissues, 
we further analyzed the marker gene of cells in the T8 
group (Additional file 4: Table S3, Additional file 1: Fig.
S6B). Among them, CTLA4 [49], TIGIT [50], and ICOS 
[51] are treated as immune checkpoint. GBP4 might be 
as potential novel immune checkpoint genes of CRC 
[52]. TTN [53], NAMPT [54], GBP4 [52], CTSC [55], 
and PIM2 [56] may be potential immunotherapy target. 
FOXP3 [57], CTLA4 [49], and PIM2 [56] mainly play 
inhibitory role to T cells. ICOS [51], MAF [58] mainly 
activate or preserve the function of Treg cells. Moreover, 
the function of TBC1D4, LTB, C2CD4A, GBP4/5 in T 
cells needs to be clarified further.

Cell fate differentiation based on enterocyte cells
Basing on the trajectory plots of enterocyte cells differ-
entiated by sample, we can observe bifurcation (Fig. 6A). 
Pseudotime trajectory analysis reveals 9 states of entero-
cyte cells (Fig.  6B). 5 distinct cell clusters are present in 
enterocyte cells. Trajectory plots differentiated by cluster 
reveal the distribution of each cluster in pseudotime tra-
jectory (Fig. 6C), and data showed that colon cancer cells 
were derived from enterocyte progenitor cells. By pseudo 
temporal trajectory analysis of the single-cell transcrip-
tomes, we can observe the evolution of cells. (Fig.  6D). 
The top100 differentially expressed gene heatmap by 
pseudotime which might be associated with cancer line-
age is shown (Fig. 6E). We found lots of them might play 
a key role in the transformation of enterocyte progeni-
tor cells to cancer cells such as MALAT1 [59], B2M [60], 
EEF1A1 [61], RPL5 [62], B3GNT7 [63], RHOB [64] and 
ACTB [65] might play a key role in the transformation 
of enterocyte progenitor cells to cancer cells. Transcrip-
tion factor regulated these cancer-related genes were pre-
sented in Fig. 6F. In addition, cell fate differentiation based 
on all the cells are shown in Additional file 1: Fig.S7.

The expression and clinical significance of the new 
discovered genes in colon cancer
We collected the resected carcinoma tissues from CRC 
patients and conducted immunohistochemical (IHC) 
staining analysis to examine the expression of some 
representative genes including NEK8, CHRM3, ANO7, 
B3GNT6, NEURL1, ODC1 and KCNMA1 in colon nor-
mal tissue, adenoma tissue and carcinoma tissues. The 
immunohistochemistry images below showed that all of 
these proteins were highly expressed in carcinoma tissues 
compared with the corresponding normal and adenoma 
tissues (Fig. 7A–G).

Discussion
In this study, we used high-throughput scRNA-seq anal-
ysis and drew a complete atlas of transitional fate cells, 
characterized the transcriptome characteristics of cell 
clusters from normal colon to adenoma, then to carci-
noma, and clarified the possible evolution trajectory of 
cells in the multi-step process. In the evolution process of 
colon cancer, we mainly focused on the expression trans-
formation of epithelial cells, intestinal cells, and T cells 
related to tumorigenesis since how they change from 
normal colon to adenoma to carcinoma phenotype is a 
long-standing problem.

The constituent ratio of C2 goblet cells was significantly 
higher in cancer tissues than in normal tissues, suggest-
ing that it may be a key group of carcinogenic cells. DIS-
EASE enrichment results clearly showed that these cells 
were significantly enriched in a variety of tumors, includ-
ing gastrointestinal tumors. KEGG analysis showed that 
C2 goblet cells were specially significantly enriched in 
the function of mucin type O-glycan biosynthesis (Addi-
tional file  1: Fig.S1B). MUC2 [10], ST6GALNAC1 [11], 
SERPINA1 [12], and TPM1 [13] play key roles in C2 gob-
let cells. In C2 goblet cells, during the process from nor-
mal colon to adenoma and from adenoma to carcinoma, 
several continuously highly expressed genes were found, 
including DEFA6 [14], SOX9 [15, 16], ID1 [17], L1TD1 
[18], CXCL3 [19], and ODC1 [20]. No report is available 
about ODC1, and colon cancer. Further studies should 
explore the association among ODC1, and colon cancer.

By analyzing the subsets of epithelial cell, the cells in 
Epi1 group highly increased in cancer tissue, suggesting 
that Epi1 group cells may play a key carcinogenic role 
in epithelial cell population. GO enrichment analysis of 
marker gene of Epi1 group cells found that, IGKC, LCN2, 
PI3, JCHAIN, IGHA1, PLA2G2A, CD55, and IGHA2 
are related to humoral immune response. LCN2, PI3, 
JCHAIN, IGHA1, PLA2G2A, and IGHA2 are related 
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to antimicrobial humoral response. IGKC, LCN2, PI3, 
JCHAIN, IGHA1, PLA2G2A, IGHA2, and NOS2 are 
related to defense response to bacterium. IGKC, HBA2, 
HBA1, JCHAIN, IGHA1, IGHA2, and ANXA2 are 
related to receptor-mediated endocytosis (Additional 
file  1: Fig.S3C). KEGG analysis showed that LCN2, 
MUC5B are related to IL-17 signaling pathway (Addi-
tional file  1: Fig.S3D). These enrichments suggesting 
that antimicrobial and IL-17 signaling pathway are very 
important in Epi1 cells, and IGKC, LCN2, PI3, JCHAIN, 
IGHA1, PLA2G2A, CD55, IGHA2, NOS2, ANXA2, and 
MUC5B are the key oncogenes in Epi1 cells.

By analyzing the subsets of enterocyte cells, we found 
that most of these subsets are involved in the process of 

carcinogenesis. We think Entero0 and Entero5 subsets 
were the more important cell groups of enterocyte cells, 
since the cell percentages were significantly increased 
in Entero0 and Entero5 in carcinoma tissues compare 
to normal colon. Observing the top 20 marker genes of 
Entero0, GO analysis showed that LCN2, PI3, NOS2, 
PLA2G2A, CCL20 are related with defense response to 
bacterium. LCN2, PI3, CXCL1, PLA2G2A are related 
with humoral immune response and antimicrobial 
humoral response (Additional file  1: Fig.S4C). KEGG 
analysis showed that these genes enriched in IL-17 sign-
aling pathway, pancreatic secretion, and amoebiasis 
(Additional file 1: Fig.S4D). These findings suggested that 
antimicrobial and IL-17 signaling pathway are the most 

Fig. 6 Cell fate differentiation based on enterocyte cells. A. Trajectories of enterocyte cells differentiated by samples. B. Trajectories of the 
enterocyte cells differentiated by states. C. Trajectories of the enterocyte cells differentiated by clusters. D. Pseudo temporal trajectory analysis of 
enterocyte cells. E. The top100 different expressed gene heatmap by pseudotime. F. Transcription factors regulated the cancer-related genes
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important signaling in Entero0, and LCN2, PI3, NOS2, 
PLA2G2A, CCL20, and CXCL1 were the key onco-
genes. Observing the Top 20 marker genes of Entero5, 
the GO analysis showed that DEFA6, LCN2, WFDC2, 
and SPNS2 are related to humoral immune response 
(Additional file  1: Fig.S5B). KEGG analysis showed 
that genes including ST6GALNAC1 and B3GNT6 are 
enriched in mucin type O-glycan biosynthesis, CLCA1 
and KCNMA1 enriched in renin secretion and pancre-
atic secretion (Additional file  1: Fig.S5C). These find-
ings suggested that immune response and mucin type 
O-glycan biosynthesis are the very important signaling in 
Entero5. And DEFA6, LCN2, WFDC2, SPNS2, ST6GAL-
NAC1, B3GNT6, CLCA1, and KCNMA1 may play key 
roles in colon carcinogenesis. Moreover, the association 
between KCNMA1, B3GNT6, and colon cancer needs 
to be explored further. we performed copy number vari-
ation (CNV) analysis and identified cancer cells harbor-
ing chromosomal abnormalities. These cancer cells were 
grouped together with the enterocyte progenitor, goblet, 
and enteroendocrine cells at low resolution (Fig. 1D).

As a whole, the number of T cell subsets decreased sig-
nificantly from normal to adenoma to carcinoma, sug-
gesting that the decline of T cell function is an important 
factor in the development of tumor. While observing 
the cell number composition ratio of T cell subsets, we 
found the composition ratio of cell number were varied 
from normal colon to adenoma to carcinoma. Compared 
with the cell proportion in normal colon, T1, T2, T4, and 
T7 cell sets were significantly decreased in carcinoma 
tissues, especially T4 and T7, while the cell proportion 
of T0, T3, T5 and T8 cell sets increased significantly, 

especially T8. Observing the marker gene of T8 group 
cells (Additional file  4: Table  S3, Additional file  1: Fig.
S6B), GO enrichment analysis showed that FOXP3, 
CTLA4, TIGIT, TNFRSF1B, and ICOS are enriched in T 
cell activation and regulation of T cell activation, FOXP3, 
BIRC3, CTSC, TNFRSF1B, and C2CD4A are enriched in 
regulation of inflammatory response (Additional file  1: 
Fig.S6C). KEGG analysis showed that BIRC3, NAMPT, 
GBP4, and GBP5 are enriched in NOD-like receptor 
signaling pathway. LTB, TNFRSF1B, CXCR6, and CCL20 
are enriched in cytokine–cytokine receptor interaction 
(Additional file 1: Fig.S6D).

In conclusion, we performed single-cell transcrip-
tomic analysis on the same patient who carried normal 
colon tissue, adenoma tissue, and carcinoma tissue at the 
same time. Due to the same microenvironment, we per-
fectly revealed the evolution process of time-dependent 
colon cancer. By analyzing various cell types at different 
pathological stages, we drew the detailed evolution map, 
and some key expression characteristics were identified. 
Our results confirmed that there were dominant clones 
of similar cells in the process of carcinogenesis, and the 
dominant cloned cells in this study were C2 goblet cell 
group. In addition, there were also dominant clones of 
similar cells in epithelial cells and enterocyte cells, Epi1, 
Entero0, and Entero5 groups. After comprehensive anal-
ysis of the enriched genes of the dominant cloned cells 
in this study, we found that mucin type O-glycan bio-
synthesis, antibacterial, and IL-17 signaling pathway are 
important pathways of colon carcinogenesis, especially 
mucin type O-glycan biosynthesis, which deserves atten-
tion in further study. Mucins are the main components 

Fig.7 The expression and clinical significance of the new discovered genes in colon cancer. A–G. Immunohistochemical staining was performed 
of 7 selected genes including NEK8, CHRM3, ANO7, B3GNT6, NEURL1, ODC1 and KCNMA1 in colon normal tissue, adenoma tissue and carcinoma 
tissues
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of mucus, which is secreted by goblet cells and forms a 
protective homeostatic barrier between the resident 
microbiota and the underlying immune cells in the 
colon, mucin type O-glycan and goblet cells have made 
great contributions to maintaining the homeostasis of 
colonic mucosa [66, 67]. It is suggested that if we focus 
on the function of goblet cells and mucin-type O-glycan-
biosynthesis, there may be important discoveries in the 
prevention and treatment of colon cancer. At the same 
time, some genes including AC007952.4, NEK8, CHRM3, 
ANO7, B3GNT6, NEURL1, ODC1, and KCNMA1 may 
play critical role in colon carcinogenesis, which need to 
be studied further.
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