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Abstract 

Background Alzheimer’s disease (AD) is characterized by a polyetiological origin. Despite the global burden of AD 
and the advances made in AD drug research and development, the cure of the disease remains elusive, since any 
developed drug has demonstrated effectiveness to cure AD. Strikingly, an increasing number of studies indicate a 
linkage between AD and type 2 diabetes mellitus (T2DM), as both diseases share some common pathophysiologi‑
cal features. In fact, β‑secretase (BACE1) and acetylcholinesterase (AChE), two enzymes involved in both conditions, 
have been considered promising targets for both pathologies. In this regard, due to the multifactorial origin of these 
diseases, current research efforts are focusing on the development of multi‑target drugs as a very promising option to 
derive effective treatments for both conditions.

In the present study, we evaluated the effect of rhein‑huprine hybrid (RHE‑HUP), a synthesized BACE1 and AChE 
inhibitor, both considered key factors not only in AD but also in metabolic pathologies. Thus, the aim of this study is 
to evaluate the effects of this compound in APP/PS1 female mice, a well‑established familial AD mouse model, chal‑
lenged by high‑fat diet (HFD) consumption to concomitantly simulate a T2DM‑like condition.

Results Intraperitoneal treatment with RHE‑HUP in APP/PS1 mice for 4 weeks reduced the main hallmarks of AD, 
including Tau hyperphosphorylation, Aβ42 peptide levels and plaque formation. Moreover, we found a decreased 
inflammatory response together with an increase in different synaptic proteins, such as drebrin 1 (DBN1) or synapto‑
physin, and in neurotrophic factors, especially in BDNF levels, correlated with a recovery in the number of dendritic 
spines, which resulted in memory improvement. Notably, the improvement observed in this model can be attributed 
directly to a protein regulation at central level, since no peripheral modification of those alterations induced by HFD 
consumption was observed.

Conclusions Our results suggest that RHE‑HUP could be a new candidate for the treatment of AD, even for individu‑
als with high risk due to peripheral metabolic disturbances, given its multi‑target profile which allows for the improve‑
ment of some of the most important hallmarks of the disease.
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Background
Alzheimer’s disease (AD) is defined as a chronic neu-
rodegenerative disease that involves a progressive and 
irreversible memory loss, followed by a state of total 
dementia, as well as behavioral disturbances [1, 2]. This 
neurodegenerative disorder considered the most com-
mon form of dementia worldwide [3], displays a high 
prevalence and increasing incidence, especially among 
elderly people. In fact, about 33.9 million people world-
wide are suffering from AD, and it is expected to triple 
over the next 40 years [4, 5].

AD is mainly characterized by the presence of abun-
dant extracellular amyloid-beta peptide deposits (Aβ) 
and intracellular hyperphosphorylated Tau protein 
(p-Tau), that accumulate to form senile plaques and neu-
rofibrillary tangles (NFTs) respectively, both contributing 
to neuronal loss [6, 7]. Aβ plaques are produced by the 
proteolytic cleavages of the amyloid precursor protein 
(APP) by the beta-secretase 1 (BACE1) enzyme activity 
and subsequently by γ-secretase, resulting in Aβ peptides 
of different length, including 38, 40 and 42 amino acids 
(aa). Specifically, those Aβ composed by 42 aa readily 
tend to aggregate, resulting in Aβ plaque formation [8, 
9]. Phosphorylation is the major modification of Tau pro-
tein and it has been described as a critical step in the for-
mation of NFTs [10]. Evidence suggests that Aβ plaques 
could be involved in the induction of aberrant Tau phos-
phorylation, thus supporting a causal crosslink between 
these two pathogenic processes [11–13]. In addition, 
the aggregation of Aβ into oligomers and fibrils in the 
brain is also modified by factors such as acetylcholinest-
erase (AChE), which precipitates the formation of toxic 
aggregates by accelerating Aβ deposition and increasing 
its neurotoxicity, contributing to neuroinflammation, 
oxidative stress and synaptic dysfunction [14, 15]. Addi-
tionally, the role of AChE in AD goes much further, since 
numerous studies have shown the existence of a cholin-
ergic deficit in AD patients due to the modification in the 
activity of AChE and the decrease in acetylcholine levels 
[16, 17]. In fact, some of the compounds used as anti-AD 
drugs like donepezil, galantamine and rivastigmine are 
AChE inhibitors [18]. However, none of them have been 
able to totally stop the progression of pathology. For this 
reason, new approaches to its etiology are being studied 
nowadays [19]. In addition, it has been described that 
elevated AChE concentrations could also trigger the sys-
temic inflammation, key in T2DM and AD, representing 
an interesting therapeutic target for both diseases, which 

support previous studies that described the possible rela-
tionship between AD and metabolic alterations [20–22], 
stressing AD as a multifactorial disease. In fact, obesity, 
type 2 diabetes mellitus (T2DM) and metabolic syn-
drome, all associated with insulin resistance, are recog-
nized risk factors for cognitive disturbances [23–25] and 
type 3 diabetes has been proposed as a term to describe 
the complex interlink between insulin resistance and AD 
[26–28].

Hence, the regulation of metabolic alterations could 
be an effective strategy to reduce cognitive decline and 
dementia [29]. In this way, some studies have shown the 
role of BACE1 in AD progression, not only as a key regu-
lator of the formation of the Aβ peptide but also its func-
tion in metabolic regulation [30, 31]. In fact, it has been 
demonstrated that subtle neuronal expression of human 
BACE1 resulted in AD phenotypes alongside systemic 
T2DM-like symptoms, suggesting that BACE1 inhibi-
tors could be used for the treatment of T2DM-associated 
pathologies [32].

Taken together, evidence suggests that AD is a complex 
disorder that arises from multiple molecular alterations, 
therefore, the design of drugs with multiple biological 
targets could be key for an effective treatment [33]. A 
recent developed multi-target RHE-HUP hybrid com-
pounds [34] combine the pharmacophores of rhein, a 
natural product structurally related to some hydroxy-
anthraquinones with tau anti-aggregating activity, and 
huprine Y, a strong AChE inhibitor. RHE-HUP displays 
a strong in vitro activity against its primary targets (tau 
aggregation and AChE) and a not less strong BACE1 
inhibitory activity. Studies conducted in  vivo [35] have 
demonstrated that RHE-HUP reduced Aβ levels, Tau 
phosphorylation and memory impairment in an APPswe/
PS-1dE9 double transgenic mouse model. However, the 
effect of RHE-HUP on metabolic dysregulation associ-
ated to AD has not been evaluated yet. For this reason, 
the aim of our study was to evaluate the efficacy of this 
new compound in the progression of AD when it is 
comorbid with metabolic alterations generated by the 
chronic consumption of a high-fat diet (HFD).

Methods
Animals and treatment
6  month old female APPswe/PS1dE9 (APP/PS1) double 
transgenic mice and wild-type (WT) littermates with 
the same genetic background (C57BL/6) were used. 
This animal model was chosen according to previous 
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studies reporting that female mice develop higher pro-
gressive memory impairment and AD-like neuropathol-
ogy compared to male mice [36, 37]. These transgenic 
mice express a Swedish (K594M/N595L) mutation of 
a chimeric mouse/human APP (mo/huAPP695swe), 
together with the human exon-9-deleted variant of 
PS1 (PS1-dE9). In all cases, animals were obtained 
from established breeding couples in the animal facil-
ity (Animal facility from the Faculty of Pharmacy and 
Food Sciences of the University of Barcelona; approval 
number C-0032). After the weaning, at 21 days old, and 
throughout their growth, animals were fed with conven-
tional chow (control diet, CT; ENVIGO, Madison, Wt 
53744–4220) or with a palmitic acid-enriched diet con-
taining 60% of fat mainly from hydrogenated coconut oil 
(HFD) (Research Diets Inc., NB, US). RHE-HUP hybrid 
(+)-(7R,11R)-N-{9-[(3-chloro-6,7,10,11-tetrahydro-9-
methyl-7,11-methanocycloocta[b]quinolin-12-yl)amino]
nonyl}-9,10-dihydro-4,5-dihydroxy-9,10-dioxoanthra-
cene-2-carboxamide was prepared as previously reported 
[38]. When animals were 5 months old, they were treated 
intraperitoneally (i.p.), either with saline solution or with 
RHE-HUP at a dose of 2.0  mg/Kg and diluted in bidis-
tilled water with 3% DMSO, three times per week during 
4  weeks (Fig.  1). Thus, the study included three experi-
mental groups: WT CT SALINE, APP/PS1 HFD SALINE 
and APP/PS1 HFD RHE-HUP.

All animals were kept under stable conditions of 
humidity and temperature, standard light-dark cycle 
(12 h light/dark cycle) and food and water ad libitum fol-
lowing the ethical guidelines defined by the European 
Committee (European Communities Council Directive 
2010/63/EU). Manipulation protocols were previously 
approved by the ethics committee from the University of 
Barcelona, and, at all times, it was made sure that animal 
numbers, their stress, and pain were kept under a neces-
sary minimum following the appropriate animal manipu-
lation ethical methodologies. All the experiments were 
performed in accordance with the European Community 
Council Directive 86/609/EEC and the procedures were 
established by the Department d’Agricultura, Ramaderia 
i Pesca of the Generalitat de Catalunya.

Glucose and insulin tolerance tests
Mice were fasted for 6 h and the tests were performed in 
a room preheated to + 28 ℃. For the glucose tolerance 
test (GTT), glucose was administered at a dose of 1 g/Kg 
i.p. For the insulin tolerance test (ITT), a dose of 0.75 IU/
Kg was used. Samples from the tail vein were extracted 
in consecutive periods. Glucose was measured using 
an Accu-check® Aviva glucometer at 5, 15, 30, 60 and 
120  min after glucose administration and at 15, 30, 45, 
60 and 90 min after the insulin administration. To those 
animals in which blood glucose levels dropped under a 

Fig. 1 Graphical representation of experimental design. 6 month‑old female APP/PS1 and WT littermates were used. After the weaning, animals 
were fed either control or HFD. When animals were 5 months old, they were treated intraperitoneally (i.p.), either with saline solution or with 
RHE‑HUP at a dose of 2.0 mg/Kg. Then, animals were subjected to two different behavioral tests: MWM and NORT. After that, GTT and ITT were 
performed and animals were sacrificed by cervical dislocation in order to obtain tissue samples and to perform Golgi Staining Kit, or by intracardially 
perfusion for immunochemistry/ThS
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concentration of 20 mg/dl in the ITT, a dosage of 1 g/Kg 
of glucose was administered i.p. 13 animals per group 
were used.

Behavioral tests assessments

• Morris water maze (MWM)

 Hippocampal spatial memory and learning memory 
were assessed by the Morris Water Maze (MWM) 
test, which was performed as previously reported 
[39]. Acquired data was analyzed using SMART V3.0 
(Panlab Harvard Apparatus, Germany) video track-
ing system. 13 animals per group were utilized.

• Novel object recognition test (NORT)

NORT was used to assess the hippocampal-dependent 
recognition memory. 13 animals per group were evalu-
ated in a room with a circular open-field arena of 40 cm 
in diameter surrounded by black curtains and constant 
illumination (30  lx) as it has been previously detailed 
[40]. Data were analyzed by discrimination index (DI) 
which was calculated using the following equation:

All spaces were properly cleaned with 96% ethanol 
between animals, in order to eliminate odor or other 
cues. Data was measured and represented in seconds.

Immunoblot analysis
At 6 months, 4–5 animals of each group were sacrificed 
by cervical dislocation and the liver and hippocampus 
were dissected and kept at − 80 °C until use. To perform 
hippocampi and liver extractions, tissues were homog-
enized in lysis buffer (Tris HCl 1  M pH 7.4, NaCl 5  M, 
EDTA 0.5  M pH 8, Triton, distilled H20) containing 
protease and phosphatase inhibitor cocktails (Complete 
Mini, EDTA-free; Protease Inhibitor cocktail tablets). 
Total protein concentration was determined using the 
 Pierce™ BCA Protein Assay Kit (Thermo ScientificTM). 
Samples containing 10  µg of protein were analyzed by 
Western Blot as previously described [41]. Measure-
ments were expressed in arbitrary units and all results 
were normalized with the corresponding loading control 
(Glyceraldehyde-3-phosphate dehydrogenase; GAPDH). 
The used antibodies are detailed in Table 1.

Enzyme‑linked immunosorbent assay (ELISA)
BDNF (Cusabio, China; CSB-E04505m) and amyloid β1-

42 (ThermoFisher Scientific; kit KHB3441) levels in the 

DI =

B exploration time − A exploration time

Total exploration time cerebral cortex homogenate were detected by ELISA 
according to manufacturer’s instruction. In both cases, 
7 animals per group were analyzed and absorbances 
were read in a Varioskan LUX Multimode Micro-
plate Reader (Thermo Fisher Scientific). Amyloid β1-42 
data is expressed in pg/μg protein and BDNF levels are 
expressed in pg/mg protein.

β‑secretase activity assay kit
Hippocampal tissue from 7 animals were homogenized 
according to the manufacturer protocol (Abcam; Kit 
ab282921), and 35 µL of each sample were placed into a 
96 well black plate. BACE1 Positive Control and EDANS 
Standard Curve were also added to the plate. Following 
the addition of the Reaction Mix, the plate was measured 
at Ex/Em = 345/500 nm in a kinetic mode for 60 min at 
37 °C. Data was treated as specified in the manufacturer’s 
instructions.

Immunofluorescence and thioflavin‑S staining
15 animals were previously anesthetized by i.p. injec-
tion of ketamine (100 mg/Kg) and xylazine (10 mg/Kg). 
When they were in the no-pain sleep phase, they were 
intracardially perfused with 4% paraformaldehyde (PFA) 
diluted in 0.1 M phosphate buffer (PB). After perfusion, 
brains were removed and stored in 4% PFA at 4 °C over-
night (O/N). The next day, the solution was replaced 
by 4% PFA + 30% sucrose. Coronal sections of 20  μm 

Table 1 Primary and secondary antibodies for Western Blotting

Protein Antibody

ADAM10 ab124695 (abcam)

App SIG‑39152 (Convance)

App C terminal fragment SIG‑39152 (Convance)

DBN1 ABN 207 (Merck Millipore)

GAPDH MAB374 (Merck Millipore)

GSK3β #9315 (Cell Signaling Technology)

P‑GSK3β (TYR216) ab75745 (abcam)

IDE ab32216 (abcam)

IRS2 4502S (Cell Signaling)

Neurexin ab34245 (abcam)

PTP1B GTX55767 (Genetex)

sAPPβ SIG‑39138‑0 (Covance)

Synaptophisin M0776 (Dako)

Tau GTX112981 (Genetex)

P‑Tau(ser396) 44752G (Invitrogen)

P‑Tau(ser404) 44‑758G(Invitrogen)

TLR4 Sc‑293072 (Santa Cruz Biotechnology)

Β‑actin A5441 (Sigma)

2nd‑ary Goat anti‑Rabbit 31460 (Invitrogen)

2nd‑ary Goat anti‑Mouse 31430 (Invitrogen)
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were obtained by a cryostat (Leica Microsystems, Wet-
zlar, Germany) and they were kept in a cryoprotectant 
solution and stored at −  20  °C until use. To perform 
the experiments, the free-floating technique was used. 
Briefly, free-floating sections were rinsed in 0.1 M phos-
phate-buffered saline (PBS) pH 7.35, and after that in 
PBS-T (PBS 0.1 M, 0.2% Triton X-100). Then they were 
incubated in a blocking solution (10% fetal bovine serum 
(FBS), 1% Triton X-100, PBS 0.1  M + 0.2% gelatin) for 
1–2 h at room temperature. Later, sections were washed 
with PBS-T and incubated O/N at 4  °C with the corre-
sponding primary antibody (Table  2). Brain slices were 
washed with PBS-T and incubated with the correspond-
ing secondary antibody (Table  2) for 2  h at room tem-
perature. Thioflavin-S (ThS) protocol was carried out as 
previously described [42]. Finally, sections were treated 
with 0.1  μg/mL Hoechst (Sigma-Aldrich, St Louis, MO, 
United States), used for cell nuclei staining, for 8 min in 
the dark at room temperature and washed with 0.1  M 
PBS. All reagents, containers and materials exposed to 
Hoechst were properly handled and processed to avoid 
any cytotoxic contamination. Ultimately, all the samples 
were mounted in  Superfrost® microscope slides using 
Fluoromount medium (EMS) and were left to dry O/N. 
Image acquisition was obtained using an epifluorescence 
microscope (BX61 Laboratory Microscope, Melville, NY 
OlympusAmerica Inc.) and quantified by ImageJ. 5 ani-
mals per group were analyzed.

Hippocampal dendritic spine density analysis
To carry out the spine density analysis, 5 mice in each 
group were sacrificed by cervical dislocation. Brains were 
isolated and processed following the instructions of the 
GolgiStainTM Kit purchased from FD Neurotechnolo-
gies, Inc. (FD Rapid GolgiStainTM Kit; Cat #PK401). 
Images were obtained with a Leica Thunder Microscope 
(Leica Thunder Imager; Leica Microsystems). The quanti-
fication was carried out in 2 different zones, dentate gyrus 
(DG) and CA1, and 5 neurons per zone and animal were 
selected. DG was quantified in the secondary branches 
of the final fragment of the dendrites. In the DG, when 
analyzing the terminal fragment, 20 µm of dendrite were 
always left uncounted, and the counting was performed 

in the following 30  µm. In secondary branches, 20  µm 
from the ramification were left uncounted and the fol-
lowing 30  µm were analyzed. In CA1, two zones of the 
neuron were distinguished: CA1 basal and CA1 apical. 
In CA1 basal, the final part of the dendrite was selected, 
and again 20 µm of dendrite were always left uncounted, 
and the counting were performed in the following 30 µm. 
In CA1 apical, the secondary branches were selected, 
leaving 20 µm uncounted and analyzing the next 30 µm. 
Spine density was expressed as the number of spines per 
30 μm of dendrite. 5 animals per group were analyzed.

Statistical analysis
All results are presented as mean ± standard deviation 
(SD). Normality test was performed, when data followed 
a parametric distribution and more than two groups 
were compared, significant differences were determined 
by one-way analysis of variances (ANOVA), followed 
by Tukey’s post hoc test for comparison among groups. 
When only two groups were compared, Student’s t test 
was performed. However, when data followed a non-par-
ametric distribution, Mann–Whitney and Kruskal–Wal-
lis tests were performed to compare two or more than 
three groups, respectively. All analyses were obtained 
using Graph Pad Prism software for Mac version 6.01; 
Graph Pad Software, Inc.

Results
RHE‑HUP does not reverse the body weight increase 
and glucose pathway alterations induced by HFD 
at peripheral level
As it has been widely described, the consumption of HFD 
is related to the increase in body weight, as well as to 
hyperglycemia and insulin resistance in mice [43, 44]. As 
expected, animals following a HFD showed a significant 
6 month increased body weight compared with WT CT 
SALINE group (p < 0.0001) (Fig. 2a). The RHE-HUP treat-
ment did not attenuate the weight gain induced by the 
HFD. Regarding glucose and insulin metabolism, HFD 
feeding showed a significant effect in both GTT (WT 
CT SALINE vs APP/PS1 HFD SALINE p < 0.001; WT CT 
SALINE vs APP/PS1 HFD RHE-HUP p < 0.001) and ITT 
(WT CT SALINE vs APP/PS1 HFD SALINE p < 0.001; 
WT CT SALINE vs APP/PS1 HFD RHE-HUP p < 0.001), 
regardless of the treatment (Fig. 2b–e). Because the insu-
lin receptor substrate protein 2 (IRS2) is a key target 
in the hormonal control of metabolism, we measured 
the hepatic IRS2 protein level. A significant decrease in 
APP/PS1 HFD SALINE compared with WT CT SALINE 
(p < 0.01) was detected. However, no significant reduction 
was observed after the RHE-HUP treatment (Fig. 2f ) sug-
gesting that RHE-HUP does not regulate metabolic alter-
ations observed after HFD consumption.

Table 2 Primary and secondary antibodies for 
Immunofluorescence

Protein Antibody

GFAP Z0334 (Dako)

IBA1 O19‑19741 (Wako)

2nd‑ary Alexa Fluor 488 (Goat‑AntiMouse) A11001 (Life Technologies)

2nd‑ary Alexa Fluor 594 (Goat‑Anti Rabbit) A11080 (Life Technologies)
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RHE‑HUP treatment improves brain insulin signaling 
and attenuates Tau hyperphosphorylation
Alterations in the insulin signaling pathway have been 
observed in brains of AD patients [45, 46], in which IRS2 
represents an important component. Our results dem-
onstrated that the hippocampal levels of IRS2 were sig-
nificantly decreased in the group APP/PS1 HFD SALINE 
compared with the control group (p < 0.05). Surpris-
ingly, a recovery in IRS2 was observed after RHE-HUP 
treatment (p < 0.05) (Fig.  3). Since the increase in IRS2 
levels has been related with an attenuation in Tau hyper-
phosphorylation [47], we evaluated the glycogen syn-
thase kinase-3β (GSK3β), a main Tau kinase converging 
between AD and insulin resistance. Our results displayed 
a non-significant upward trend in the group APP/PS1 
HFD SALINE when compared with WT CT SALINE. 
By contrast, those animals treated with RHE-HUP 
showed a significant decrease of GSK3β phosphoryla-
tion levels in tyrosine 216 when compared to the APP/
PS1 HFD SALINE mice (p < 0.05) (Fig. 3). Regarding Tau 

phosphorylation in the hippocampus, our results showed 
a significant increase in P-Tau levels at serine 404 and 
serine 396 in APP/PS1 HFD SALINE mice when compar-
ing with WT CT SALINE (P-Tauser404 p < 0.05; P-Tauser396 
p < 0.001) and this effect was significantly reduced after 
RHE-HUP treatment (P-Tauser404 p < 0.01; P-Tauser396 
p < 0.05). Our data did not show any significant changes 
in total Tau protein levels (Fig. 3).

RHE‑HUP reduces Aβ plaques by regulating APP 
processing and Aβ degradation in APP/PS1 mice fed 
with HFD
To assess the state of Aβ burden in the hippocampus 
and cortex, ThS was used for detection of senile plaques. 
Our results demonstrated a significant decrease in the 
number of plaques after treatment in both regions, as 
shown in the images (Fig. 4a–c) and in the graphic rep-
resentation (p < 0.05) (Fig.  4d–e). This result was cor-
roborated with the significant reduction of Aβ (1–42) 
levels (p < 0.05) observed in the cortex after RHE-HUP 

Fig. 2 a. Analysis and representation of changes in body weight (n = 13 animals per group). b. GTT and d. ITT experiment profiles (n = 13 animals 
per group). Area under curve (AUC) data were calculated from the time point 0 until the end of the experiment for both c. GTT and e. ITT. f. 
Semi‑quantification of IRS2 levels in the liver where two representative samples out of four or five per group are shown (n = 4–5). All results were 
represented as mean ± SD. Statistical analysis was conducted through one‑way ANOVA and Tukey post‑test, except in the case of the analysis of 
weights, where the Kruskal–Wallis test was performed. In all cases, ** p < 0.01, *** p < 0.001 and **** p < 0.0001
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Fig. 3 Semi‑quantification of hippocampal insulin signaling pathway related proteins and Tau. Two representative samples out of four or five per 
group are shown (n = 4–5). All results were represented as mean ± SD. Groups were compared against each other using one‑way ANOVA and Tukey 
post‑test, except in the case of Tau protein, where Kruskal–Wallis was performed. In all cases, * p < 0.05, ** p < 0.01 and *** p p < 0.01

Fig. 4 a–c. Illustrative images of Aβ plaques in the hippocampus and cortex. Scale bar: 200 µm. Graphic representation of Aβ plaques 
quantification in d. hippocampus and e. cortex (n = 5 independent samples per group, with at least 5 slices analyzed per sample). In hippocampus 
analysis, Mann–Whitney test was performed, * p < 0.05. In cortex analysis, t‑test was performed, where * p < 0.05. f. Measurement of the levels 
of Aβ42 peptide in the cortex (n = 7). Statistical analysis was performed by T‑test, where * p < 0.05. g. Determination of β‑secretase activity in the 
hippocampus (n = 7). Data were analyzed by one‑way ANOVA and Tukey’s post‑test, where * p < 0.05 and ** p < 0.01 h. APP processing related 
protein levels. Two representative samples out of four or five per group are shown (n = 4–5). All results were represented as mean ± SD. Groups 
were compared against each other using one‑way ANOVA and Tukey post‑test, * p < 0.05, ** p < 0.01 and **** p < 0.0001



Page 8 of 18Espinosa‑Jiménez et al. Cell & Bioscience           (2023) 13:52 

administration (Fig.  4f ). To elucidate the mechanisms 
by which RHE-HUP induced Aβ reduction, the analysis 
of APP processing and Aβ degradation was performed. 
Regarding the first one, full-length APP was analyzed. As 
expected, non-treated transgenic mice showed a signifi-
cant increase in this protein level (p < 0.05) whereas these 
levels were reduced in those animals treated with RHE-
HUP (p < 0.05) (Fig. 4h). In this line, BACE1 activity also 
showed a significant increase in APP/PS1 HFD SALINE 
when compared with WT CT SALINE (p < 0.01) and 
decreased after treatment (p < 0.05) (Fig. 4g).

APP-C-terminal fragment (APP-CTF) was significantly 
increased in non-treated transgenic mice compared to 
control group whereas soluble amyloid precursor pro-
tein β fragment (sAPPβ) did not show differences in WT 
vs APP/PS1 HFD. However, both proteins were reduced 
after treatment (APP-CTF: WT CT SALINE vs APP/PS1 
HFD RHE-HUP p < 0.05; APP/PS1 HFD SALINE vs APP/
PS1 HFD RHE-HUP p < 0.0001; sAPPβ: WT CT SALINE 
vs APP/PS1 HFD RHE-HUP p < 0.05; APP/PS1 HFD 
SALINE vs APP/PS1 HFD RHE-HUP p < 0.05).

The insulin-degrading enzyme (IDE) is one of the main 
proteases involved not only in the degradation of insulin 
but also in that of Aβ peptide [48]. Our results showed 

a significant reduction in the hippocampus of APP/PS1 
HFD SALINE mice compared to WT CT SALINE, lev-
els which were recovered after RHE-HUP treatment (WT 
CT SALINE vs APP/PS1 HFD SALINE p < 0.01; APP/
PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP p < 0.05).
Similarly, ADAM10, a neuroprotective protein involved 
in the non-amyloidogenic pathway, experimented a sig-
nificant reduction in APP/PS1 HFD SALINE (p < 0.05) 
when compared with WT CT SALINE mice, levels that 
were recovered after RHE-HUP treatment, reaching val-
ues similar to those of controls (p < 0.05) (Fig. 4h).

RHE‑HUP treatment decreases glial reactivity in APP/PS1 
HFD mice
Increasing evidence correlates neuroinflammation with 
the development of AD [49, 50]. In our study, the evalua-
tion of astrocytes and microglial reactive profile was stud-
ied in the dentate gyrus of the hippocampus by detecting 
glial fibrillary acidic protein (GFAP) and ionized calcium-
binding adapter molecule 1 (IBA1), astrocyte and micro-
glial markers, respectively (Fig. 5a–f). Our results showed 
a glial activation in those transgenic animals fed with 
HFD compared to WT and a clear reduction of this reac-
tivity after the RHE-HUP treatment. These results were 

Fig. 5 Evaluation of inflammatory responses. Representative images for the detection of astrocytes a–c, and microglia d–f, co‑stained with Hoechst 
for the detection of cellular nucleus (blue). Scale bar: 200 µm. Graphic representation of fluorescence intensity quantification for GFAP g and IBA1 h. 
In both cases, statistical analysis was performed through one‑way ANOVA (n = 5) and Tukey’s post hoc test, * p < 0.05. ** p < 0.01 and *** p < 0.001. i. 
protein levels for TLR4 and PTP1B where two representative samples out of four or five per group are shown (n = 4–5). All results were represented 
as mean ± SD. Groups were compared against each other using one‑way ANOVA and Tukey post‑test, * p < 0.05 and ** p < 0.01



Page 9 of 18Espinosa‑Jiménez et al. Cell & Bioscience           (2023) 13:52  

corroborated by the fluorescence intensity quantification 
data. A significant increase in astrogliosis and microglial 
activation in transgenic mice fed with HFD in compari-
son to the WT CT SALINE groups was found (p < 0.001). 
By contrast, this increase was significantly attenuated 
when these animals were treated with RHE-HUP (GFAP: 
APP/PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP 
p < 0.05; IBA1: APP/PS1 HFD SALINE vs APP/PS1 HFD 
RHE-HUP p < 0.01) (Fig. 5 g–h).

Toll-like receptor 4 (TLR4) and protein tyrosine phos-
phatase (PTP1B), both related with neuroinflamma-
tion, were analyzed in the hippocampus. In agreement 
with glial profile, our results showed a similar pattern 
where concentrations of both proteins were significantly 
increased in the APP/PS1 HFD SALINE group compared 
to WT CT SALINE (TLR4: p < 0.01; PTP1B: p < 0.05), 
returning to baseline levels after treatment with RHE-
HUP (p < 0.01, in both cases) (Fig. 5i).

RHE‑HUP increases dendritic spines density and synaptic 
biomarkers in APP/PS1 HFD mice
The reduction in the number of dendritic spines 
together with alterations in cognition has been widely 

demonstrated in AD patients, suggesting that they could 
play a key pathogenic role [51, 52]. Optical microscope 
images of the hippocampus are shown in Fig.  6a–c, 
accompanied by a representative magnification image of 
dendritic spines of each experimental group (Fig. 6d–f). 
A significant decrease in the number of dendritic spines 
was observed in APP/PS1 HFD SALINE when compar-
ing with the control group (Fig. 6g–j), while in those ani-
mals treated with RHE-HUP, this reduction was reverted 
reaching levels similar to the control regardless of the 
studied area in the hippocampus (DG TERMINAL: WT 
CT SALINE vs APP/PS1 HFD SALINE p < 0.001; APP/
PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP p < 0.05. 
DG RAMIFICATION: WT CT SALINE vs APP/PS1 
HFD SALINE p < 0.0001; APP/PS1 HFD SALINE vs 
APP/PS1 HFD RHE-HUP p < 0.01. CA1 BASAL: WT 
CT SALINE vs APP/PS1 HFD SALINE p < 0.0001; APP/
PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP p < 0.001. 
CA1 APICAL: WT CT SALINE vs APP/PS1 HFD 
SALINE p < 0.001; APP/PS1 HFD SALINE vs APP/PS1 
HFD RHE-HUP p < 0.01.).

Different synaptic proteins involved in memory process 
and plasticity, such as drebrin 1 (DBN1), synaptophysin 

Fig. 6 Optical microscope images of the hippocampus a–c and representative magnification images of dendritic spines of each experimental 
group d–e. g–j. Quantification of dendritic spines of each 30 µm of dendrite in different areas of the hippocampus (n = 5). Groups were compared 
against each other using one‑way ANOVA and Tukey post‑test, * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 k. Representative images 
of synaptic proteins levels were determined, where two representative samples out of four or five per group are shown (n = 4–5). Graphs barts 
represent mean ± SD. Data were analyzed by one‑way ANOVA and Tukey’s post‑test, * p < 0.05, ** p < 0.01 and *** p < 0.001. l. Quantification of BDNF 
protein levels in the cortex (n = 7). Data were analyzed by one‑way ANOVA and Tukey’s post‑test, ** p < 0.01
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and neurexin, were measured by Western Blot. Our 
results showed a significant decrease in DBN1 protein 
levels in the APP HFD SALINE group when they were 
compared with the control group (p < 0.001), while DBN1 
levels were rescued after RHE-HUP administration 
(p < 0.01). A similar pattern was observed for the other 
synaptic proteins studied, but in the case of synaptophy-
sin the values did not reach statistical significance, and 
only a positive trend was observed (Synaptophysin: APP/
PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP P < 0.05; 
Neurexin: WT CT SALINE vs APP/PS1 HFD SALINE 
p < 0.01; APP/PS1 HFD SALINE vs APP/PS1 HFD RHE-
HUP p < 0.05) (Fig. 6k).

Moreover, one protein that deserves special men-
tion is BDNF plays a critical role not only in the growth 
and development of the nervous system, but also as a 
modulator of synaptic plasticity, suggesting that its reg-
ulation could play a key role in the preservation of cog-
nitive function [53]. In this line and, in accordance with 
the results shown above, the analysis of BDNF levels in 
the cortex demonstrated a significant decrease in APP/
PS1 HFD SALINE in comparison with WT CT SALINE 
(p < 0.01). Nevertheless, the treatment with RHE-HUP 
resulted in an increase of BDNF (p < 0.01) (Fig. 6l).

The treatment with RHE‑HUP improves the cognitive 
process in APP/PS1 HFD mice
It has been described that one of the most important 
features of APP/PS1 mice is cognitive decline in terms 
of memory and spatial memory [54, 55]. To demon-
strate the efficacy of RHE-HUP treatment in the recov-
ery of cognitive decline, MWM and NORT tests were 
performed. Regarding MWM, APP/PS1 HFD SALINE 
mice showed an obviously more erratic trajectory, being 
unable to find the platform compared with WT CT 
SALINE mice. However, after RHE-HUP treatment, the 
trajectory of APP/PS1 HFD RHE-HUP tended to return 
to normality (Fig.  7a–c). In Fig.  7d, the escape latency 
of all groups throughout the training period is shown. 
The training performed by the different groups demon-
strated an improvement of the learning ability in those 
animals treated with RHE-HUP in comparison to those 
treated with saline. In the same line, the results obtained 
on the test day showed a significant increase in escape 
latency in the APP/PS1 HFD SALINE when they were 
compared with control group (p < 0.05), effect which was 
reverted in those animals treated with the drug (p < 0.05) 
(Fig. 7e). Moreover, other parameters studied in the same 
test, such as the number of entries on the platform or 
the mean distance traveled to reach it, showed the same 
tendency toward improvement of cognitive function 
after RHE-HUP administration. Regarding the num-
ber of entries, the time of crossing through the target 

platform was significantly reduced in non-treated ani-
mals (p < 0.01), whereas after treatment that number was 
recovered, reaching similar values to WT CT (p < 0.01) 
(Fig.  7f ). In the case of the mean distance traveled to 
find the platform, non-treated animals swam a longer 
distance compared to the control group (p < 0.05), while 
after treatment, they reached the platform more easily 
(p < 0.05) (Fig. 7g). In agreement, in the NORT APP/PS1 
HFD SALINE mice presented a decreased DI compared 
to the control group (p < 0.001), whereas the DI was 
recovered after treatment (p < 0.001), clearly indicating 
that RHE-HUP rescued mice from the memory deficit 
observed in this pathological model (Fig. 7h).

Discussion
AD is nowadays recognized as a multifactorial and het-
erogeneous disease in which metabolic alterations play 
an important role [56–58]. Previous work has shown that 
RHE-HUP improves the main hallmarks of AD in APP/
PS1 mice [35]. However, the effect of RHE-HUP in an AD 
familial model of mice with a metabolic syndrome-like 
was not evaluated, yet. Our results demonstrated that 
RHE-HUP significantly reduces neuroinflammation, Aβ 
deposition and Tau phosphorylation, considered some of 
the main underlying disease mechanisms. Additionally, 
RHE-HUP treatment succeeded in increasing the levels 
of BDNF and other synapse-related proteins in the brain, 
which resulted in an increase in the number of dendritic 
spines, improving memory and learning. However, these 
changes were not associated with modifications in the 
metabolic peripheral parameters.

HFD consumption leads to metabolic alterations, 
including insulin resistance and T2DM [59, 60], both 
conditions frequently associated with the develop-
ment of dementia [41, 61]. T2DM is a complex disorder 
that begins with a state of insulin resistance, leading to 
hyperinsulinemia and hyperglycemia, which is known to 
cause different alterations in the brain. Our study con-
firmed that HFD induces an increase in body weight, 
hyperglycemia and insulin resistance in APP/PS1 mice 
accompanied by the downregulation of IRS2 protein 
levels in the liver, a protein involved in insulin signaling 
regulation. However, the treatment with RHE-HUP did 
not reverse these effects, leading us to the conclusion 
that the observed benefits provided by RHE-HUP may 
not be due to a peripheral metabolic regulation, rather 
to a central effect. One of the possible answers could be 
that this molecule was designed to hit multiple targets 
involved in the pathogenesis of AD, i.e., to reach biologi-
cal targets located at the central nervous system. Indeed, 
studies performed in parallel artificial membrane per-
meability assays for blood-brain barrier (PAMPA-BBB) 
clearly demonstrated that this compound was able to 
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enter the brain [34]. This fact was supported by the 
results obtained in previous studies where a reduction of 
Aβ levels and Tau phosphorylation leading to a memory 
amelioration, was observed after chronic administration 
of RHE-HUP to APPswe/PS-1dE9 mice [35]. Moreover, 
ex  vivo [62–64] and in  vivo biodistribution [65] stud-
ies with other hybrid compounds, closely related to 
RHE-HUP in terms of chemical structure and physico-
chemical properties, have demonstrated that this type of 
compounds readily enters the brain, some of them with 
more favorable brain/plasma ratio than the most pre-
scribed anti-Alzheimer drug donepezil [65]. Very likely, 
this could be also the case for RHE-HUP, which might 

account for its preferential central vs peripheral effects 
observed in this work using the familial AD mouse 
model, challenged by high-fat diet.

Brain insulin, apart from controlling energy metab-
olism, is also involved in other multiple functions 
including synaptogenesis, synaptic remodeling, and neu-
rotransmitter level modulation. Thus, unbalanced insulin 
signaling, and metabolism may lead to cognitive decline 
and AD [66]. IRS2, a major component of the insulin/
insulin-like growth factor-1 signaling pathway and a key 
factor in T2DM, also has a role in synaptic plasticity, 
learning and memory. A study carried out by Tanoka-
shira and colleagues found that young adult C57BL/6  J 

Fig. 7 a–c. Representative swim paths on the memory test. Learning curves of MWM during the spatial acquisition phase d and escape latency e, 
entries in platform f and mean distance traveled g on test day (n = 13). One‑way ANOVA and Tukey’s post‑ test were performed, except in the case 
of the analysis of entries in the platform where Krushal‑Wallis was conducted. In all cases, * p < 0.05 and ** p < 0.01. h. NORT, Discrimination Index 
(DI) expressed in seconds (n = 13). Statistical analysis was performed by one‑way ANOVA and Tukey post‑test, *** p < 0.001
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mice lacking IRS2 displayed hippocampus-associated 
behavioral alterations due to IRS2 deficiency-induced 
impairments of brain energy metabolism [67]. Our 
results agree with these data, since a IRS2 reduction was 
observed in the APP/PS1 HFD SALINE group recovering 
its levels after the RHE-HUP treatment. It has been also 
described that IRS2 signaling promotes the dephospho-
rylation of Tau, suggesting that failure on this pathway 
could lead to an hyperphosphorylation of Tau protein, 
considered one of the main early mechanisms of AD. 
Therefore, Tau phosphorylation might be a direct con-
sequence of reduced insulin–IGF signaling during aging 
[47, 68]. Likewise, one of the main kinases responsible for 
Tau phosphorylation is GSK3β [69]. The phosphorylation 
of this kinase in Tyr216 leads to its own activation which 
results not only in the increase in Tau phosphorylation 
levels [70], but also contributes to neuronal death inde-
pendently of Tau [71]. In agreement with this, the pre-
sent study demonstrated that RHE-HUP administration 
significantly reduced Tau phosphorylation, by IRS2 and 
p-GSK3β regulation, which could explain the restoration 
of dendritic spine number and the resulting behavioral 
improvement observed in A PP/PS1 HFD mice after the 
treatment.

In addition to hyperphosphorylated Tau, another well-
known hallmark of AD is the accumulation of β-amyloid 
deposits. Several studies have interconnected both pro-
cesses defining Aβ plaques as the main triggers of Tau 
hyperphosphorylation and Tau tangle formation, as a 
result of an imbalance between Aβ production and Aβ 
clearance [14, 72]. In agreement with these previous data, 
we observed a significant reduction in the number of hip-
pocampal and cortical Aβ plaques induced by RHE-HUP 
due to BACE1 inhibition. In turn, this correlated with 
the reduction of the levels of Aβ42, the most hydropho-
bic and aggregation-prone form of this peptide and, the 
predominant one in senile plaques [73, 74]. This event 
also explained the reduction in hyperphosphorylated Tau 
observed in this group.

As described by Pérez-Areales and coworkers, RHE-
HUP seems to inhibit AChE [38], a prime target in AD, 
since the cholinergic deficit has been widely observed 
in AD patients and is directly responsible for the cog-
nitive decline [75, 76]. However, the importance of this 
enzyme in the disease goes much further, since it has 
been described that it might bind to Aβ and promote its 
deposition [77], turning the combination of AChE + Aβ 
into more toxic to cells than Aβ alone [78].

Taking all this into account and according to our find-
ings, the effect of RHE-HUP on decreasing the Aβ 
production and subsequent accumulation might be 
attributed to four main factors: (i) the inhibition of AChE, 
avoiding the interaction with Aβ and the consequent 

formation of the toxic aggregates; (ii) the inhibition of 
the amyloidogenic pathway by decreasing hippocampal 
BACE1 activity; (iii) the direct reduction of APP pro-
tein levels and (iv) the activation of the non-amyloido-
genic pathway by increasing ADAM10 levels [79–83]. 
In addition, our results show that RHE-HUP treatment 
increased IDE levels in the hippocampus, an enzyme that 
not only participates in Aβ elimination, but also plays a 
key role in insulin degradation, all together contributing 
to a reduction in Aβ deposition and cognitive improve-
ment [84].

The glial activation in the brain is also an important 
pathological feature of neurodegenerative diseases, 
including AD [85–87]. Although early in the disease neu-
roinflammation may represent a protective response, an 
excessive reaction can cause or contribute to the pathol-
ogy [88]. Several reports have described that the presence 
of Aβ and Tau hyperphosphorylation activate microglia 
and astrocytes [89–91], demonstrating that microglia can 
play dual roles in Aβ pathogenesis. Microglia may help to 
eliminate Aβ aggregation, and it may facilitate Aβ accu-
mulation through the release of neurotoxic proteases and 
pro-inflammatory factors, which contribute to the neuro-
inflammation [92–96]. Thus, it generates a vicious circle 
in which Aβ plaques potentiate the release of inflamma-
tory molecules and, at the same time, these molecules 
stimulate the formation and accumulation of Aβ [97, 98]. 
Moreover, it is well-known that the chronic consumption 
of HFD increases stress in different pathways including 
neuroinflammation [99], contributing to the development 
of cognitive impairment. In this line, Wieckowska-Gacek 
et  al. demonstrated that 4-months-old APPswe trans-
genic mice fed with western diet exhibited such brain 
neuroinflammation and accelerated amyloid pathol-
ogy comparable to that induced by the administration 
of pro-inflammatory lipopolysaccharide (LPS). Hence, 
it highlighted the role that diet can play in neuroinflam-
mation and, consequently, in AD [100]. In this sense, 
the observed decrease in the activation of microglia and 
astrocytes after RHE-HUP treatment might be due to 
the reduction in Tau phosphorylation and in Aβ deposi-
tion, but also to the improvement in the insulin signal-
ing pathway at the central level observed upon treatment. 
Toll-like receptors play a pivotal role in brain injury 
and neurodegeneration, and, in CNS, they are mainly 
expressed in glial cells [101]. Specifically, the activa-
tion of TLR4 triggers the downstream stimulation of the 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NFK-β) and the induction of genes that encode 
inflammation-associated molecules and cytokines, such 
as IL-6 and TNF-α [102, 103]. Furthermore, it has been 
demonstrated that TLR4 deficiency protects against eth-
anol-induced glial activation, induction of inflammatory 
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mediators, and apoptosis [101]. For this reason, the 
attenuation of the neuroinflammation observed after the 
RHE-HUP treatment could be related with the decrease 
of TLR4 levels, in agreement with previous studies which 
demonstrated that the treatment with resveratrol attenu-
ated the increase in protein levels and the downstream 
activation of the pathway [104, 105].

In the same way, PTP1B also demonstrated a signifi-
cant decrease in the RHE-HUP treated mice. Several 
studies have reported that the inhibition of PTP1B favors 
the inactivation of unfolded protein response (UPR) and 
neuroinflammation, thereby protecting against cogni-
tive decline [106]. For this reason, PTP inhibitors have 
been suggested as a promising therapeutic modulation 
of microglial activation in neuroinflammatory diseases, 
including AD [107]. In addition, PTP1B not only has 
been related to this group of pathologies, but also repre-
sents a convergent point between AD and T2DM. In fact, 
preclinical studies have demonstrated that mice lacking 
PTP1B were resistant to weight gain and remained sensi-
tive to insulin after HFD consumption [108, 109] suggest-
ing that PTP1B downregulation could be key in order to 
improve the features observed in AD pathogenesis by the 
regulation of insulin signaling pathway and neuroinflam-
matory processes [110].

Moreover, in a pathological environment the released 
cytokines and chemokines contribute to an excessive 
pruning of synaptic terminals causing synaptic dysfunc-
tion and neuronal loss [111]. In fact, another important 
pathway in which PTP1B is involved is the BDNF/TrkB 
pathway [112]: PTP1B down-regulates neuronal BDNF-
TrkB pathway, whereas the PTP1B inhibition stimulates 
BDNF signaling [113, 114]. Considering that preclini-
cal studies suggest that the increase in BDNF levels is a 
suitable strategy to enhance the cognitive process [115], 
the decrease in PTP1B levels induced by RHE-HUP 
treatment observed in our results and the consequent 
increase in BDNF levels could explain the recovery in 
dendritic spines number caused by the treatment. In 
addition, dendritic spines loss is also related with Aβ and 
Tau pathology, since a study performed by Bittner et al., 
demonstrated that mice coexpressing mutant APP, PS1 
and Tau, presented a strong loss of dendritic spines with 
accumulation of hyperphosphorylated Tau protein as 
well as soluble Aβ [116]. Therefore, the reduction already 
discussed in Aβ accumulation and Tau hyperphospho-
rylation caused by the treatment might also be contrib-
uting to the recovery of dendritic spines. These results 
were also accompanied by an increase in DBN1 levels. 
DBN1 is typically located in postsynaptic regions of 
excitatory synapses, and it is responsible for controlling 

spine function and morphology [117, 118]. Its preserva-
tion has been related to neuroprotection, and, by con-
trast, its reduction in the hippocampus has been linked 
to cognitive deficits [119, 120]. Thus, our data confirm 
that the increase in DBN1 could be associated with the 
improvement observed in cognitive functioning. In the 
same way, synaptophysin and neurexin showed a similar 
profile. Synaptophysin is a glycoprotein present in synap-
tic vesicles which is related to synaptic plasticity. Thus, a 
decrease in its levels has been related to cognitive impair-
ment [121]. At the same time, neurexin downregulation 
has also been associated with cognitive impairments 
since it has been found to be active in synapse matura-
tion and adaptation of synaptic strength [122]. In addi-
tion, it has been demonstrated that Aβ42 oligomers bind 
to neurexin, and this interaction leads to a decrease in its 
expression, inducing synapse pathology [123]. This would 
explain the increase in neurexin protein levels produced 
by the decrease in Aβ42 levels observed after treatment 
with RHE-HUP.

Recent postmortem studies in people with AD have 
shown that the number of dendritic spines is lower in 
patients with clinically evident AD compared to con-
trols, and similar between control subjects and subjects 
that are cognitively normal but present the underlying 
biological features of AD. Thus, these observations pro-
vide cellular evidence supporting the hypothesis that 
dendritic spine plasticity provides a mechanism of cog-
nitive resilience that protects people with an early stage 
of dementia from developing AD [124, 125]. In fact, 
numerous preclinical studies have related the loss of den-
dritic spines with hippocampus-dependent learning and 
memory ability impairments [126–128]. In the present 
study, RHE-HUP treatment induced the recovery in the 
number of dendritic spines, which was accompanied by 
an improvement in hippocampal-dependent recognition 
memory assessed by NORT, as well as spatial and learn-
ing memory evaluated by MWM.

In conclusion, the present study demonstrates that the 
multi-target compound RHE-HUP restores the number 
of dendritic spines and enhances cognition in APP/PS1 
mice, whose pathology is exacerbated with HFD con-
sumption, by regulation of brain insulin signaling and 
neuroinflammation, which contributes to the reduction 
of hyperphosphorylated Tau and Aβ levels (Fig. 8). How-
ever, we did not observe peripheral metabolic regulation 
induced by the drug administration, suggesting that the 
improvement observed in our model is exclusively due 
to a regulation at central level. These results support 
RHE-HUP as a new promising molecule for the treat-
ment of AD, also in those individuals with metabolic 
disturbances.
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