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Abstract 

Background  The placenta, as a unique exchange organ between mother and fetus, is essential for successful human 
pregnancy and fetal health. Preeclampsia (PE) caused by placental dysfunction contributes to both maternal and 
infant morbidity and mortality. Accurate identification of PE patients plays a vital role in the formulation of treatment 
plans. However, the traditional clinical methods of PE have a high misdiagnosis rate.

Results  Here, we first designed a computational biology method that used single-cell transcriptome (scRNA-seq) 
of healthy pregnancy (38 wk) and early-onset PE (28–32 wk) to identify pathological cell subpopulations and predict 
PE risk. Based on machine learning methods and feature selection techniques, we observed that the Tuning ReliefF 
(TURF) score hybrid with XGBoost (TURF_XGB) achieved optimal performance, with 92.61% accuracy and 92.46% 
recall for classifying nine cell subpopulations of healthy placentas. Biological landscapes of placenta heterogene-
ity could be mapped by the 110 marker genes screened by TURF_XGB, which revealed the superiority of the TURF 
feature mining. Moreover, we processed the PE dataset with LASSO to obtain 497 biomarkers. Integration analysis of 
the above two gene sets revealed that dendritic cells were closely associated with early-onset PE, and C1QB and C1QC 
might drive preeclampsia by mediating inflammation. In addition, an ensemble model-based risk stratification card 
was developed to classify preeclampsia patients, and its area under the receiver operating characteristic curve (AUC) 
could reach 0.99. For broader accessibility, we designed an accessible online web server (http://​bioin​for.​imu.​edu.​cn/​
place​nta).

Conclusion  Single-cell transcriptome-based preeclampsia risk assessment using an ensemble machine learning 
framework is a valuable asset for clinical decision-making. C1QB and C1QC may be involved in the development and 
progression of early-onset PE by affecting the complement and coagulation cascades pathway that mediate inflam-
mation, which has important implications for better understanding the pathogenesis of PE.
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Background
The placenta plays a central role in the health of the fetus 
and mother, profoundly affecting humankind’s future 
well-being [1]. The dysregulation of the placenta may lead 
to adverse pregnancy, such as preeclampsia, the birth of 
small gestational age neonates, fetal growth restriction 
and intrauterine placental abruption, which significantly 
influence the lifelong health of mothers and offspring [2, 
3]. Preeclampsia is one of the most terrifying complica-
tions of pregnancy that has severe morbidity and mortal-
ity [4]. The statistics show that preeclampsia affects an 
estimated 4–5% of pregnancies and leads to more than 
70,000 maternal deaths and 500,000 fetal deaths annually 
[5].

The current diagnosis of preeclampsia is based on the 
examination of hypertension (> 140/90 mm Hg) and 
proteinuria (> 0.3 g/24 h) after 20 weeks of gestation [6]. 
These clinical indicators, however, have a high misdiag-
nosis rate for preeclampsia, which can add to medical 
expenses and lead to patient anxiety. In recent years, ani-
mal models have demonstrated that placental dysfunc-
tion including oxidative stress, abnormal natural killer 
cells at the maternal-fetal interface, and genetic factors, 
is strongly associated with preeclampsia [4]. Tsang and 
colleagues found the cellular dysfunction of extravillous 
trophoblasts in preeclampsia placentas, suggesting a 
potential association between disorders of placental cell 
subpopulations and preeclampsia [7]. The analysis of the 
interwoven relationship between placental cell subpopu-
lations and preeclampsia will be helpful for the diagnosis 
of preeclampsia.

High-throughput sequencing technology is a power-
ful tool for revealing cellular heterogeneity and has been 
employed to reveal the placenta’s cellular composition [8] 
and predict pregnancy complications [9]. Liu et  al. per-
formed single-cell transcriptome (scRNA-seq) of human 
placentas from the first and second-trimester and iden-
tified new subtypes of trophoblasts, Hofbauer cells, and 
mesenchymal stromal cells [10]. Besides, changes in gene 
expression associated with the pathogenesis of preec-
lampsia are readily detected throughout pregnancy. 
Moufarrej et al. found changes in cell-free RNA (cfRNA) 
expression between normal and preeclamptic mothers 
[11]. Based on comprehensive transcriptome data, Ras-
mussen et al. further demonstrated the ability of plasma 
cfRNA to reveal patterns of normal pregnancy progres-
sion and determine the risk of developing preeclampsia 
months before the clinical presentation [12]. They con-
structed a machine learning model to predict preec-
lampsia with a sensitivity of 75%. Ngo et  al. found that 
the measurement of nine cfRNA transcripts in maternal 
blood can predict gestational age with comparable accu-
racy to ultrasound but at a substantially lower cost [13]. 

The inherent complexity and scale of omics data have 
encouraged researchers to build automated analytical 
models and solve associated tasks by machine learning 
[14–21]. Nevertheless, to our knowledge, the study of 
identifying placental cell subpopulations and assessing 
the risk of PE based on scRNA-seq expression profiles 
implemented by machine learning is still poor.

In this study, machine learning algorithms were 
employed to identify preeclampsia biomarkers and 
assess the risk of preeclampsia based on scRNA-seq 
data (Fig.  1 and Additional file  1: Fig. S1). A series of 
prediction analyses demonstrated that the Tuning Reli-
efF (TURF) score combined with the eXtreme Gradient 
Boosting (XGBoost) strategy achieves better classifica-
tion performance on the cell identification, and that the 
identity of nine cell subpopulations in the placenta could 
be described using only 110 marker genes. Moreover, 
we found some new biomarkers that might help biolo-
gists better understand placental cell subpopulations and 
pathological differences between early-onset PE patients 
and healthy controls. We developed an ensemble model-
based risk stratification card to classify early-onset PE 
patients. By employing this card for PE patients, imme-
diate intervention and treatment can be implemented at 
the optimum time, and the overall mortality of patients 
can be significantly reduced. Based on the proposed 
model, the webserver for predicting placental cell sub-
populations and evaluating the risk of PE was established 
and was freely accessible at http://​bioin​for.​imu.​edu.​cn/​
place​nta.

Results
Identify marker genes of placental cell subpopulations 
by machine learning
For identifying marker genes related to nine placental cell 
subpopulations, five feature selection methods (maxi-
mal information coefficient: MIC, principal component 
analysis: PCA, F-score, tuning relief: TURF, analysis of 
variance: ANOVA) were employed to evaluate the impor-
tance of the 35,636 genes, and genes with importance 
score less than or equal to zero were excluded. The MIC, 
ANOVA, PCA, and F-score extracted 21,981 important 
genes, while the TURF identified 8878 important genes. 
Next, the machine learning models combined with 
incremental feature selection (IFS) were used to deter-
mine the optimal gene subsets and the best machine 
learning model. The single-cell gene expression profiles 
of important genes were used as input features to train 
four machine learning models (Support Vector Machine: 
SVM, Random Forest Classifier: RFC, XGBoost, K-Near-
est Neighbor: KNN) with five-fold cross-validation 
(Fig. 2A and Additional file 1: Table S1).

http://bioinfor.imu.edu.cn/placenta
http://bioinfor.imu.edu.cn/placenta
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The results of the independent test set showed that 
TURF combined with XGBoost (TURF_XGB) with the 
top 110 genes achieved optimal performance with accu-
racy, precision, recall and F1-measure of 92.61%, 92.98%, 
92.46 and 92.65%, which could be used to identify pla-
cental cell populations (Table 1). Notably, KNN’s perfor-
mance on placental cell subpopulation classification was 
significantly poorer than the other three machine learn-
ing models. This can be attributed to KNN is not good 
at handling single-cell datasets with high feature dimen-
sions single-cell datasets [22, 23].

Furthermore, the Uniform Manifold Approximation 
and Projection (UMAP) [24] and correlation analysis 
showed that the overall performance of the 110 marker 
genes is significantly better than all genes (Fig.  2B, C). 
We successfully captured some reported population-
specific marker genes, such as CGA, COL1A1, FAR2, and 
CYP19A [25, 26]. In addition, several novel marker genes 
were identified, such as IDO1, STMN1, CRIP2, COX7A1, 
and CCNDBP1 (Additional file  1: Fig. S2). These genes 
can be used to classify placental cell subpopulations and 
provide some guidelines for further biological findings.

The confusion matrix further validated the predic-
tive performance of the model for each cell subpopula-
tion, and the low misclassification rate demonstrated the 
power of the XGBoost model (Fig.  2D). How individual 
genes influence XGBoost to make decisions was deter-
mined by calculating the average absolute Shapley’s 

addition operation (SHAP) values for 110 genes. For 
example, the genes C1QA and CYP19A1 have strong 
positive effects on model prediction of decidual cells and 
syncytiotrophoblast (Fig. 2E).

Biological interpretation of marker genes for cell 
subpopulations
Further, we explored the representational capacity of 110 
genes in the biological landscape. Partition-based graphi-
cal abstraction (PAGA) was applied to 110 genes and all 
genes to describe the relationships among cell subpopu-
lations [27]. Interestingly, the same topological structure 
was shown, such as the strong connections between nat-
ural T and stromal cells, which further demonstrated that 
TURF_XGB captured marker genes and removed noise 
information (Fig. 3A). By embedding the RNA velocities 
[28] of all samples in UMAP, we revealed the complex 
dynamics among placental cell subpopulations. We found 
that natural T and stromal cells mainly existed in a stable 
state and had similar migration trajectories, consistent 
with the PAGA results (Fig. 3B).

Then, the expression levels of 110 genes were quanti-
fied using Seurat to identify expressed features of marker 
genes for subpopulations of placental cells. For example, 
IDO1 is specifically expressed in endothelial cells [29], 
CGA​ is strongly expressed in syncytiotrophoblast cells 
and ACAT2 is associated with vascular smooth muscle 
cells [30] (Fig.  3C and Additional file  1: Fig. S2). Using 

Fig. 1  The workflow of construction and validation for the computational framework
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multiple genes to characterize placental cell subpopula-
tions allowed for greater ability to mark. Based on 110 
genes screened by TURF_XGB, the top three specific 
genes with the highest expression levels in each cell sub-
population were selected using Scanpy (Fig. 3D). Further, 
we compared the expression levels of the top 12 genes in 
each cell subpopulation with the overall expression levels 
of these genes in the remaining eight cell clusters (Addi-
tional file 1: Fig. S3). In summary, we presented potential 
biomarkers for nine placental cell subpopulations.

Crosstalk between placental cell subpopulations may 
play a critical role in placental development, metastasis, 
and therapy. Based on the 110 genes obtained above, we 
used iTALK to analyze and visualize ligand receptor-
mediated intercellular crosstalk signaling in nine subpop-
ulations of placental cells [31]. Network analysis showed 
ligand-receptor pairings between highly transcribed 
genes on decidual and vascular smooth muscle cells and 
the most significantly expressed genes on dendritic cells 

and extravillous trophoblasts (Fig. 3E). Overall, dendritic 
cells were major ligands that played an essential role in 
regulating other lineages. However, the natural T cell 
communication was not captured.

Furthermore, enrichment analysis of 110 genes indi-
cated that EZR, HMGB3, TMEM176B, COL3A1, and 
C1QC genes were the main contributors to the negative 
regulation involved in immune system processes (Addi-
tional file  1:  Fig. S4). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis showed that these 
genes are mainly enriched in the pathways of “comple-
ment and coagulation cascades,“ “ferroptosis,“ “mineral 
absorption,“ “proteoglycans in cancer” and “staphylococ-
cus aureus infection” (Additional file 1: Fig. S4).

Identify discriminating genes of preeclampsia by LASSO 
regression
Cellular abnormalities in the placenta of PE affect cell 
renewal, and the origin of the abnormal cells can be 

Fig. 2  Evaluation and analysis of machine learning classifiers based on different feature selection strategies. A IFS results of five feature selection 
strategies in four machine learning algorithms. B UMAP shows the clustering of nine placental cell subpopulations in all gene sets (right) and TURF 
optimal gene sets (left). C The heatmap shows the correlation of subpopulations of placental cells. D Based on the TURF optimal gene set, the 
Confusion matrix of XGBoost on the independent dataset. E The bar graph shows the mean absolute value of the SHAP values of the first 20 genes 
for the TURF_XGB
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uncovered by comparing the expression levels of spe-
cific genes in placental cell subpopulations of PE patients 
with those of healthy pregnant controls [7]. To reveal 
abnormal cell subpopulations, we constructed a suf-
ficiently large PE dataset (Additional file  1:  Table  S4). 
Based on these single-cell expression profiles, 497 poten-
tial PE marker genes were identified by LASSO regres-
sion (Fig. 4A). Some of these genes have been discussed 
to have potential as PE marker genes, including UBB, 
RARRES2, PRDX2, C19orf10, KRT19, RPL13, FTH1, 
DPM2, and DHX29 (Fig.  4B) [32]. A total of 17 in 497 
genes from the LASSO screen overlapped with 110 
maker genes screened by the TURF_XGB, indicating that 
the expression levels of these 17 genes were abnormal 
between normal pregnancy and PE. Seven of the 17 genes 
were highly expressed in dendritic cells, indicating that 
dendritic cells were closely associated with early-onset 
PE and were potential pathogenic cells (Fig. 4C).

Furthermore, KEGG pathway enrichment analysis of 
497 genes revealed that they were mainly involved in 
complement and coagulation cascade and ECM-receptor 
interactions (Additional file 1: Fig. S5). It was worth not-
ing that C1QB, C1QC, and C7 of the 17 genes obtained 
above were associated with complement and coagula-
tion cascades. Complement and coagulation cascades 
activation is the main pathophysiological pathway in PE 

revealed by related studies [33–35]. Thus, C1QB, C1QC, 
and C7 may participate in the occurrence and develop-
ment of early-onset PE by affecting the complement and 
coagulation cascades pathway that mediate inflamma-
tion, similar to recent findings [36].

The risk stratification card of preeclampsia based 
on an ensemble model
As gene expression changes associated with preeclamp-
sia pathogenesis across gestation were readily detected 
[11], we sought to build a risk prediction model to assist 
physicians in diagnosing mothers at risk for early-onset 
PE. We employed four machine learning models (mul-
tilayer perceptron: MLP, SVM, RFC, and XGBoost) to 
predict early-onset PE based on 497 genes screened by 
LASSO (Table  2). To further improve the performance 
of the risk prediction model, we integrated an ensem-
ble model of four basic classifiers (SVM, MLP, RFC, and 
XGBoost) and then fitted logistic regression [37–39]. 
The performance metrics for the four machine learn-
ing models and the proposed ensemble model are pre-
sented in Table 2, and the AUC is shown in Fig. 4D. We 
observed that the ensemble model outperformed the 
other machine learning models with 94.62% accuracy and 
0.99 AUC (Table 2; Fig. 4D). To improve the convenience 
and flexibility of the model in clinical application, we 

Table 1  Performance of five feature selection strategies for identifying placental cell subpopulations on four machine learning models 
(Independent dataset)

Base classifier Feature selection Feature 
numbers

Accuracy (%) Precision (%) Recall (%) F1 measure (%)

KNN PCA 160 71.67 79.69 68.57 71.32

RFC PCA 3000 91.13 93.43 90.80 91.87

SVM PCA 1200 90.12 91.93 89.98 90.87

XGBoost PCA 2000 92.11 93.03 91.72 92.32

KNN MIC 210 88.39 90.43 88.40 88.83

RFC MIC 260 92.40 93.63 92.28 92.83

SVM MIC 160 92.65 93.22 92.89 93.14

XGBoost MIC 310 93.07 93.76 92.87 93.25

KNN TURF 110 87.88 90.61 86.80 87.85

RFC TURF 310 92.35 93.90 92.24 92.86

SVM TURF 210 92.31 93.23 92.48 92.75

XGBoost TURF 110 92.61 92.98 92.46 92.65

KNN F-score 310 85.43 88.74 85.71 85.97

RFC F-score 610 92.02 93.43 92.03 92.62

SVM F-score 710 92.02 92.87 92.37 92.54

XGBoost F-score 410 92.10 93.04 92.31 92.64

KNN ANOVA 360 84.00 87.28 83.99 83.91

RFC ANOVA 810 92.10 93.75 91.95 92.65

SVM ANOVA 710 92.02 93.33 92.51 92.83

XGBoost ANOVA 460 92.11 93.24 92.22 92.67



Page 6 of 12Wang et al. Cell & Bioscience           (2023) 13:41 

used the Kolmogorov-Smirnov (KS) curve to determine 
the suitable threshold for the risk stratification card for 
the patient. We set equal frequency bins based on sample 

size into five risk stratification corresponding to very 
high, high, normal, low, and very low-risk levels (Fig. 4E 
and Additional file  1:  Table  S2). Besides, the clustering 

Fig. 3  Biological analysis of TURF optimal gene set. A Gene expression trajectory analysis of nine placental cell subpopulations using PAGA, color by 
cell lineages (up: all genes, down: TURF optimal gene set). B Velocities derived from the dynamical model for placenta subpopulations are visualized 
as streamlines in a UMAP-based embedding. C Expression patterns of marker genes in different subpopulations of placental cells in the TURF 
optimal gene set. D High expression marker genes screened by Scanpy. E Circles plot showing highly expressed ligand-receptor interactions in the 
TURF optimal gene set
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effect of the LASSO gene set was significantly improved 
compared with all genes (Fig.  4F and G), which further 
verified the representation capability of LASSO’s feature 
selection strategy.

Further, we used the SHAP framework to determine 
which genes had the greatest impact on the model 

predictions. The SHAP scores displayed the contribution 
of the top 15 feature values for decreasing or increasing 
the prediction value assigned to each cell. Among them, 
CGA​, MAF, C1QB, KIF5B, HAAO, AP5Z1, and 1L1BP 
showed excellent discrimination ability in multiple mod-
els (Fig. 4H). Notably, the gene C1QB was also identified 

Fig. 4  Performance and gene analysis of the model in predicting healthy population and preeclampsia patients. A LASSO for gene selection. The 
vertical dotted line shows the best lambda value of 0.0029 selected through fivefold cross-validation. B Differentially expressed genes between 
preeclampsia placenta and normal placenta. *P-value < 0.001, t-test. C Overlapping genes between molecular markers of placenta subpopulations 
and preeclampsia pathology. D ROC curve of preeclampsia risk assessment model. E KS curve for preeclampsia risk score card. F, G Based on 
the ensemble model, the clustering effect of the LASSO optimal gene set and all genes is compared (F is the optimal LASSO optimal genes, G is 
all genes). H The importance of genes identified by different preeclampsia risk models, and the size of the circle represents the value of relative 
importance

Table 2  Performance of machine learning models in identifying patients with preeclampsia (Independent dataset)

Base
classifier

Feature
selection

Feature 
number

Accuracy (%) Precision (%) Recall (%) F1-measure (%)

MLP LASSO 497 94.30 94.95 94.35 94.65

SVM LASSO 497 94.28 95.33 93.36 94.58

RFC LASSO 497 92.76 93.62 92.76 93.18

XGBoost LASSO 497 91.23 92.71 90.71 91.70

Ensemble model LASSO 497 94.62 95.83 94.56 94.95
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in the models, highlighting the imbalance of C1QB 
between healthy pregnancies and preeclampsia.

Webserver
Based on our proposed machine learning models of pla-
cental cell subpopulations and early-onset preeclampsia, 
an online predictor called iPlacenta was established to 
classify placental cell populations and assess the risk of 
preeclampsia. A step-by-step guide is given below.

Step 1. Click the web address http://​bioin​for.​imu.​edu.​
cn/​place​nta and the user will see a brief introduction 
about iPlacenta (Fig. 5A).

Step 2. Click the “Quick Start” button to enter the ser-
vice module selected by the user. Click the “example” but-
ton to download the example data in CSV format. Click 
the “browse” button, and users can enter the file to be 
predicted (Fig. 5B).

Step 3. Finally, click the “submit” button to obtain the 
predicted result.

Discussion
Placental dysplasia can manifest as miscarriage and com-
plications in late pregnancy, including preeclampsia, fetal 
growth restriction and intrauterine placental abruption, 
which are critical for a successful pregnancy and the 

Fig. 5  A Placental cell subgroups and preeclampsia risk assessment and prediction webserver. B Preeclampsia risk prediction module

http://bioinfor.imu.edu.cn/placenta
http://bioinfor.imu.edu.cn/placenta
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health of both the fetus and mother [40]. While the cause 
of PE remains controversial, clinical and pathological 
studies suggest that the pathogenesis of PE is originated 
from the placenta [41]. Understanding the placental cell 
heterogeneity will be helpful for designing more robust 
and effective cell research and treatment methods. In 
this study, based on machine learning, different feature 
selection methods were used to extract the feature infor-
mation for each cell type of healthy pregnant placenta, 
annotate specific cell populations and discover signifi-
cant genes in specific cell populations. We obtained 110 
genes that preserved the main patterns of the original 
biology and achieved satisfactory accuracy. Also known 
as, these genes faithfully recapitulate cell heterogeneity in 
placental.

Cellular abnormalities in the placenta of PE affect cell 
renewal, and the origin of the abnormal cells can be 
uncovered by comparing the expression levels of spe-
cific genes in placental cell subpopulations of PE patients 
with those of healthy pregnant controls [7]. Along this 
line, based on the detection of the PE dataset by LASSO, 
our approach identified 497 genes with the diagnostic 
capability to distinguish early-onset PE from a normal 
pregnancy. Notably, some of the 110 placental cell sub-
population marker genes mentioned above were also 
included in 497 genes, indicating abnormalities in the 
placental cell subpopulation of PE. In addition, the bio-
logical analysis revealed that C1QB and C1QC, which 
showed different expression patterns and played a role 
in the complement and coagulation cascades, might con-
tribute to early-onset PE. Using the learned informative 
genes, we further developed a predictor to stratify the 
early-onset PE risk populations and achieved efficient 
and accurate performance.

However, this study is certainly not without its limi-
tations. Firstly, one major limitation of this study is the 
small sample size and the absence of external datasets to 
validate the model, other than cross-validation and inde-
pendent test sets. The collaborative effort in data collec-
tion may facilitate improving the model. Secondly, we 
identified only 17 genes strongly associated with PE due 
to the sample size limitations. Going forward, the use of 
larger datasets or multi-modal features would facilitate 
the mining more genes related to PE. Despite this poten-
tial limitation of the current study, our approach identi-
fies gene features that are important for the identification 
of PE.

In summary, we demonstrated that single-cell tran-
scriptome-based preeclampsia risk assessment using an 
ensemble machine learning framework is a valuable asset 
for clinical decision-making. Our approach is suitable 
for large-scale preeclampsia screening, realizing early 
risk warning and screening, which is of great significance 

for the early control and life intervention of preeclamp-
sia. By predicting risk indicators, medical staff can triage 
patients, treat them timely and arrange patient treatment 
plans accordingly, effectively allocate medical resources 
and reduce mortality. In the aggregate, our study pro-
vided a better understanding of the association between 
PE and abnormal placental cell subpopulations and 
improved the ability to assess the risk of PE disease.

Methods
Dataset construction and preprocessing
Single-cell transcriptome data from healthy pregnancy 
placentas containing 20,518 cells were collected from the 
European Bioinformatics Institute (EBI: accession no. 
EGAS00001002449) [7]. Based on the same processing 
method used by Tang et al. [7] the data were aligned and 
quantified using the Cell Ranger single-cell software suite 
(version 1.0), and sequencing reads were aligned to the 
hg19 human reference genome using STAR [42], resulting 
in 35,636 genes. According to the literature survey, nine 
placental cell subpopulations that have received more 
attention from biologists were selected for our study. 
Then, 7178 single-cell transcriptome samples were used 
to classify nine placental cell subpopulations (Additional 
file 1: Tables S3 and S5). These single-cell transcriptome 
samples were randomly divided into a 4809-sample train-
ing set and a 2369-sample testing set with a ratio of 7:3.

Single-cell transcriptome data from the placentas of 
patients with early-onset PE was also collected from 
EBI (Accession no. EGAS00001002449). The PE predic-
tion dataset was constructed by randomly selecting 7970 
early-onset PE samples and combining them with 7178 
healthy samples. The same strategy was applied to the 
segmented PE dataset with 9852 samples in the train-
ing set (Healthy 4705 and early-onset PE 5147) and 5305 
samples (Healthy 2473 and early-onset PE 2832) in the 
independent test set (Additional file 1: Tables S4 and S5).

Model construction of placental cell subpopulations
The placental cell subpopulation gene expression profile 
was used as input features to train the machine learning 
model. In exploratory data analysis, important relation-
ships and weights between features could be used to filter 
out weaker or less relevant information.

The weights of each feature in the training model 
were evaluated and ranked using MIC [43], ANOVA 
[44], TURF [45], PCA [46], and F-score [47, 48], respec-
tively. Features with weight scores less than or equal to 
zero were removed. The IFS [49] was applied to train 
XGBoost, SVM, KNN, and RFC base models and com-
pare their prediction performance comprehensively.
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Biological analysis and visualization
In addition, the superiority of 110 genes selected by 
TURF_XGB in predicting cell subpopulations was fur-
ther analyzed and evaluated. The “TreeExplainer” func-
tion was used as an optimized decision tree to calculate 
the average absolute SHAP value of all features in the 
model. The integration analysis software implemented in 
Seurat (version 4.0.3) was used to determine specific cel-
lular subpopulations of marker genes, with all parameters 
selected by default. Dimensionality reduction was per-
formed by PCA, and visualized by UMAP and tSNE. To 
identify marker genes in cell clusters, we used the “Ridge-
Plot” function implemented in Seurat to compare cells 
from a specific cluster with cells in all other clusters. In 
addition, Scanpy version 1.7.2 was used for PAGA. The 
python package umap-learn version 0.3.9 was used for 
UMAP visualization. Specifically, cell trajectory analy-
sis was performed using PAGA implemented on Scanpy 
for both the original feature dataset and the dataset with 
only 110 genes, with default parameters.

Model construction of preeclampsia
LASSO adds the penalty term L1 norm for feature coef-
ficients into the loss function, forcing the coefficients 
corresponding to these weak features to become zero 
to achieve sparse solutions [50]. Here, the features with 
zero coefficients were considered redundant and were 
discarded, resulting in 497 features selected by LASSO. 
Ensemble methods are machine learning algorithms that 
use multiple classifiers and determine the predicted out-
come by voting on their predictions. The ensemble meth-
ods in MLxtend cover the majority of voting, stacking, 
and stacked generalization. Based on 497 gene features, 
“StackingClassifier” was used to ensemble four classifiers, 
including MLP, SVM, XGBoost, and RFC (The weights 
assigned to each model is 1). For the training results, we 
fitted a logistic regression to output predicted probability 
values. MLxtend is available at https://​github.​com/​rasbt/​
mlxte​nd.

Interpretability of features
SHAP is a method for interpreting the importance of 
features in machine learning models. In this study, the 
SHAP algorithm was used to interpret the contribution 
of each feature in the XGBoost model, and to indicate 
which features were more likely to be true biomarkers in 
our ensemble model.

Risk score card
Based on the logistic regression probability values fitted 
by the ensemble model, the KS curve was used to depict 
the overall score. The larger the KS value, the higher the 

discriminative power of the corresponding threshold in 
the model. In this study, based on the sample size, equal 
frequency bins were assigned into five intervals, which 
corresponded to very high, high, normal, low, and very 
low risk levels (Additional file 1: Table S2).

Performance evaluation
Four classic metrics, including accuracy, recall, precision, 
and F1 measure, were used to quantify the performance 
of the model, which are defined as follows [51–53]:

 where TP , TN  , FP , and FNrepresent the numbers of true 
positives, true negatives, false positives, and false nega-
tives, respectively.
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process (BP), molecular function (MF), cellular component (CC), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) respectively). Fig. S5. Go 
and KEGG analysis of LASSO optimal feature set (A, B, C and D represent 
biological process (BP), molecular function (MF), cellular component (CC), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) respectively. Table S1. 
Performance of five feature selection methods for identifying placental 
cell subpopulations on four machine learning algorithms (Train dataset). 
Table S2. Preeclampsia risk score card. Table S3. Placental cell subpopula-
tion data composition. Table S4. Preeclampsia predictor data composi-
tion. Table S5. Sample information on preeclampsia placenta and control 
pregnancies. PE was defined as blood pressure ≥ 140/90 mmHg on at 
least two occasions 4 h apart developing after 20-week gestation with 
proteinuria of ≥ 300 mg in 24 h, ≥ 30 mg/mmol in protein/creatinine 
ratio, or two readings of ≥ 2+ on dipstick analysis of midstream or 
catheter urine specimens if no 24-h collection was available. Only patients 
not in active labor with delivery by Cesarean section were recruited to 
avoid cellular contamination from the birth canal and to ensure placental 
cellular viability.
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