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Abstract 

Background Fibrosis is a pathological wound healing process characterized by excessive extracellular matrix deposi-
tion, which interferes with normal organ function and contributes to ~ 45% of human mortality. Fibrosis develops in 
response to chronic injury in nearly all organs, but the a cascade of events leading to fibrosis remains unclear. While 
hedgehog (Hh) signaling activation has been associated with fibrosis in the lung, kidney, and skin, it is unknown 
whether hedgehog signaling activation is the cause or the consequence of fibrosis. We hypothesize that activation of 
hedgehog signaling is sufficient to drive fibrosis in mouse models.

Results In this study, we provide direct evidence to show that activation of Hh signaling via expression of activated 
smoothened, SmoM2, is sufficient to induce fibrosis in the vasculature and aortic valves. We showed that activated 
SmoM2 -induced fibrosis is associated with abnormal function of aortic valves and heart. The relevance of this mouse 
model to human health is reflected in our findings that elevated GLI expression is detected in 6 out of 11 aortic valves 
from patients with fibrotic aortic valves.

Conclusions Our data show that activating hedgehog signaling is sufficient to drive fibrosis in mice, and this mouse 
model is relevant to human aortic valve stenosis.
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Background
As an essential signaling pathway in embryonic develop-
ment, the hedgehog (Hh) pathway is critical for maintain-
ing tissue polarity and stem cell population. Smoothened 
(SMO), the seven transmembrane domain-containing 
protein, serves as the critical signal transducer, whose 
function is inhibited by another transmembrane pro-
tein, Patched (PTC). An active Hh ligand (Shh, Ihh, Dhh) 
binds to its receptor PTC to release this inhibition, allow-
ing SMO to signal downstream, eventually activating Gli 
transcription factors. As transcription factors, Gli mol-
ecules can associate with specific consensus sequences 
located in the promoter region of the target genes and 
regulate target gene expression [1, 2]. The general signal-
ing mechanisms of the Hh pathway are conserved from 
flies to humans [3].

Hedgehog signaling activation has been observed in 
several human pathological conditions, including can-
cer and fibrosis [4–13]. Basal cell carcinomas (BCCs), 
the most common type of human cancer, are known to 
be caused by activation of the hedgehog pathway, via 
loss of function mutations of PATCHED-1 (PTCH1) or 
gain of function mutations of SMOOTHENED (SMO). 
We previously demonstrated that targeted expression of 
active SMO, SMOM2, resulted in phenotypes resembling 
human BCCs [14]. Small molecule compounds have been 
developed to treat BCCs, and two such molecules that 
target SMO have been approved by FDA to treat locally 
advanced and metastatic BCCs [15]. In addition, muta-
tions of PTCH1 and SMO are found in other types of 
cancer, where hedgehog signaling is activated in the epi-
thelial cells (cancer cells) [16].

Activation of hedgehog signaling is also observed in 
cancer stromas or non-cancerous pathological condi-
tions, such as fibrotic tissues [6–12]. However, it is not 
known whether hedgehog signaling is an outcome of 
fibrosis or a major driver for fibrosis. We hypothesize 
that activation of hedgehog signaling is sufficient to 
drive fibrosis in mouse models. To test our hypothesis, 
we generated mice with active SmoM2 expression under 
the control of fibroblast-specific promoter-1 (FSP1), and 
examined the phenotypes in mice. The relevance of the 
mouse model to the human conditions was assessed 
using human specimens with fibrosis (aortic valve fibro-
sis) by examining the expression of a hedgehog target 
gene, GLI1. These data will be presented in the results, 
and the clinical implications will be discussed.

Results
Phenotypes of FSP1‑Cre/SmoM2 mice
In comparison with the control (FSP1-Cre−/SmoM2+; 
n = 20) mice, all SmoM2 expressing (FSP1-cre+/
SmoM2+, n = 50) mice died within 4  months. Kaplan 

-Meier survival curves showed poor survival of FSP1-
cre+/SmoM2+ (see Fig.  1B), p = 0.0005). We observed 
that FSP1-Cre+/SmoM2+ mice started to lose their 
body weights from week 6–7 (Fig. 1C), whereas the con-
trol FSP1-cre+/SmoM2− mice maintained their normal 
gain of weights following growth. Closer examination 
of physical features showed that FSP1-cre+/SmoM2+ 
mice had swollen ears and facial skin (Fig.  1D) with 
coarse fur (Fig.  1E). Alopecia was observed in some 
FSP1-cre+/SmoM2+ mice (n = 15 out of 50 FSP1-cre+/
SmoM2+mice). Interestingly, we also observed a smaller 
thymus in FSP1-cre+/SmoM2+ mice (Additional file  1: 
Figure S1). These results indicate that FSP1-cre driven 
expression of SmoM2 is the major factor leading to 
mouse mortality.

We first examined FSP1 promoter activity in different 
organs by crossing FSP1-cre transgenic mice with mTmG 
reporter mice [17]. In previous studies, FSP1 promoter 
activity is shown in skin [18] and blood vessel (pericytes 
and endothelial cells) [19] in mice. We were particularly 
interested in the phenotypes of organs and tissues in 
FSP1-cre+/SmoM2+ mice, including the heart, lung and 
thymus. As shown in Additional file  1: Figure S2, FSP1 
promoter activity was observed in mouse aortic valves 
(shown as GFP expression in the tissue sections indicated 
by arrows at the top of Additional file 1: Figure S2A). We 
also detected FSP1 promoter activity in the epithelial cells 
of thymus (Additional file 1: Figure S1A). Previous work 
shows that keratinocyte-specific expression of SmoM2 
induces BCC-like tumors [20]. In addition, thymus-spe-
cific hedgehog signaling is required for the maintenance 
of low differentiation status of T cells [21], thus SmoM2 
expression is anticipated to cause reduced expansion of T 
cells as shown in our supplemental data (Additional file 1: 
Figure S1). Tissue sections revealed widespread fibrosis 
in the vasculature system of lung and heart (Fig. 2A–B).

Heart abnormality in FSP1‑cre+/SmoM2+ mice
Heart abnormality was observed in 7  week-old FSP1-
cre+/SmoM2+ mice. The heart body weight ratio in the 
FSP1-cre+/SmoM2+ mice was slightly higher but insig-
nificant in comparison with the control mice (FSP1-
cre+/SmoM2−, Additional file  1: Figure S3, p = 0.3). 
This abnormality was not observed in fetal or young 
FSP1-cre+/SmoM2+ mice (< 4 weeks), excluding the pos-
sibility that expression of SmoM2 results in abnormal 
cardiac morphogenesis. We found that all FSP1-cre+/
SmoM2+ mice at week 7 or older exhibited fibrosis (yel-
low stain in Fig. 3A) in aortic valves, with calcification in 
some areas of aortic valves (indicate by * in Fig. 3A). FSP1 
promoter activity was detected in mouse aortic valves 
(Additional file  1: Figure S1). Consistent with the geno-
type, high expression of Hh target genes Gli1 and Hip1 
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in the fibrotic tissues (Fig. 3B). We also observed elevated 
expression of Pai1 and Spp1, two known genes often 
detected in fibrotic tissues (Fig. 3B).

Aortic valve stenosis is major phenotype of aortic valve 
diseases, and we assessed aortic valve function using 
echocardiography. We measured aortic cusp separation 
(ACS) and the ratio of the early (E) to late (A) ventricular 
filling velocities in control (shown in Fig. 4A) and FSP1-
cre+/SmoM2+ (shown in Fig. 4B) mice. Cardiac systolic 
function is reduced in 8 and 12- wk FSP1-cre+/SmoM2+ 
mice, as indicated by reduced stroke volume (Fig.  4C), 
ejection fraction (Fig. 4D), and cardiac output (Fig. 4E). 
As shown in Fig.  4F, aortic cusp separation (ACS)/aor-
tic root ratio decreased in 8 and 12-week FSP1-cre+/
SmoM2+ mice, suggestive of elevated stiffness of aor-
tic valves following SmoM2 expression. We belived that 
aortic valve stiffness is a result of fibrosis or calcification 
in the affected leaflets. We also observed an increase in 
aortic valve outflow/in flow ratio in 12-wk FSP1-cre+/

SmoM2+ mice (Fig. 4G), indicating aortic valve stenosis. 
Furthermore, FSP1-cre+/SmoM2+ mice also exhibited a 
decrease in cardiac diastolic function, as suggested from 
reduced E/A ratio (Fig. 4H). Taken together, these results 
indicate that FSP1-cre+/SmoM2+ mice desplayed fibrosis 
in aortic valves, and exhibited aortic valve stenosis.

Elevated expression of hedgehog target gene GLI1 
in diseased human aortic valves
We sought to correlate our mouse model to human aor-
tic valve diseases. Explanted human aortic valves were 
collected from patients with AVD or normal controls. 
As shown in Fig. 5A, we observed histologically that the 
width of diseased aortic valves were twice that of nor-
mal aortic valves (specimen #12 and #13 are the normal 
aortic valves, see Table 1 for specimen information). Fur-
thermore, we measured gene expression of the hedgehog 
pathway in human aortic valves, and found that diseased 
aortic valves had elevated expression of the hedgehog 
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target gene GLI1 in 6 out 11 cases, whereas expression of 
SPP1 was up in 10 out of 11 cases (Fig. 5B). These results 
indicate that the hedgehog signaling pathway is activated 
in over half of the diseased aortic valves with stenosis or 
regurgitation.

Discussion
Our study provides direct evidence that activating hedge-
hog signaling can accelerate fibrosis development. Due to 
the short-life span of the FSP1-cre+/SmoM2+ mice (less 
than 4  months), we only observed fibrosis in vascula-
ture in lung and heart (Fig. 2) and aortic valves (Fig. 3). 
If an inducible expression of cre recombinant is used, we 
anticipate more wide-spread fibrosis in SmoM2 express-
ing tissues.

Because FSP1 promoter-driven expression of cre is not 
limited to fibroblasts, there are several phenotypes not 
directly associated with fibrosis in FSP1-cre+/SmoM2+ 
mice. For example, 7-week old FSP1-cre+/SmoM2+ mice 
had very small thymus (Additional file 1: Figure S1). No 
such differences between  FSP1+/SmoM2+ mice and the 
control mice were observed in 4 week old mice. Further 
analyses indicated that T cell differentiation into dou-
ble positive cells in thymus was blocked in 7  week old 
FSP1-cre+/SmoM2+ mice but was normal in 4 week old 
mice (Additional file  1: Figure S1C). These results are 

consistent with previous studies on hedgehog signaling 
in T cell differentiation [22]. The exact mechanism of 
reduced size in thymus by SmoM2 expression is currently 
under investigation.

Aortic valve stenosis is major phenotype of aortic valve 
diseases. In the US, approximately 25% of the popula-
tion over 65 develops aortic valve disease (AVD) [23], 
and many require aortic valve replacement (AVR) [24]. 
At present, there are no medical interventions capable of 
delaying or halting AVD progression. Echocardiography, 
particularly M-mode and pulsed-wave (PW) Doppler 
imaging, can quantitatively assess aortic valve function 
in mice and humans [25]. We believe that our studies 
may provide foundation for novel therapeutics for AVD. 
However, not all diseased aortic valve cases had elevated 
expression of the hedgehog target gene GLI, indicating 
that regulation of the hedgehog pathway is not homog-
enous in all diseased aortic valves. Our data did not find 
direct association of GLI expression with disease pro-
gression or the severity of calcified valves. One explana-
tion could be that aortic valve abnormality may not be all 
the same at the molecular level. Further gene expression 
analyses of diseased aortic valves will be needed to iden-
tify the gene signature that is associated with high GLI 
expression. Second, genes other than GLI may mediate 
Hh signaling [26–28].
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Fig. 2 Fibrotic phenotypes in FSP1-cre/SmoM2 mice. A shows detection of fibrosis by Sirius Red staining (shown in red) in vasculature of lung, 
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In summary, we demonstrate that activating the hedge-
hog signaling pathway is sufficient to drive fibrosis in 
mice. We showed that the FSP1-cre+/SmoM2+ mouse 
model is relevant to human pathological conditions for 
aortic valve stenosis, as we found that 6 out of 11 sten-
osed human aortic valves exhibit increased expression of 
hedgehog target gene GLI.

Materials and methods
Use of explanted human aortic valves
The use of explanted human aortic valves was approved 
by the Institutional Research Board of Indiana University 
School of Medicine (IRB protocol 1509977311).

Animal use
All animal studies were approved by the Institutional 
Animal Care and Use Committee of Indiana University 

(IACUC # 20122). Male and female mice were fed with 
normal chow. Mice with skin lesion or loss of weight 
were monitored daily, with body weight measured 
weekly. FSP1-cre (Jackson Laboratory stock#000664), 
R26SmoM2 (shown as SmoM2 in the text, Jackson Labo-
ratory stock#005130) and mTmG (Jackson Laboratory 
stock#007576) were purchased from The Jackson Labora-
tory, and breeding was set up according to the needs of 
the study (see details in results).

Echocardiography of aortic valves and cardiac function
We collected all echocardiography images with a Vevo 
2100 small-animal ultrasound system (FUJIFILM, Visu-
alSonics Inc., Toronto, Canada) and a 40  MHz linear 
array transducer (MS550D). Mice were anesthetized 
with 1–3% isoflurane delivered in 100%  O2 using a low-
flow anesthetic vaporizer (SomnoSuite, Kent Scientific, 
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Torrington, CT, USA). Depilatory cream was applied to 
remove hair from the left ventral thorax, and the animals 
were secured on a heated imaging stage. We acquired 2D 
long- and short-axis images of the left ventricle (LV), and 
used the Simpson method to approximate end-diastolic 
and peak-systolic LV volumes, stroke volume (SV), ejec-
tion fraction (EF), and cardiac output (CO) following 
guidelines set by the American Society of Echocardiog-
raphy [29]. We measured aortic cusp separation (ACS; 
white arrows in Fig. 4A–B) from M-mode images of the 
aortic valve, as previously reported by Chu et al. [30], and 
normalized this value with aortic root diameter (yellow 
arrows in Fig. 4A–B) to account for differences in heart 
sizes between mice. Pulsed-wave Doppler images from 
the four-chamber view was used to measure transmitral 
flow velocities and calculate E/A ratio, a metric of dias-
tolic dysfunction.

Histology, special staining, and GFP expression detection 
in FSP1‑cre+/mTmG+ mice
Hematoxylin and eosin (H&E) staining was used to 
identify tissue morphological changes. Tissues/organs 
of sacrificed mice were first fixed in 10% buffered neu-
tral formalin for 24 h before embedded in paraffin. Tis-
sue sections with 5  mM thickness were stained with 
H&E according to our previously published procedure 
[31]. We employed several methods to detect tissue 
fibrosis. Movat Pentachrome Staining (cat# ab245884) 
and Masson’s Trichrome Staining (cat# ab150686) 
were performed using Kits from Abcam according to 
manufacturer’s instruction. Sirius Red staining was 
performed in 0.1% of Sirius red in Saturated aque-
ous solution of picric acid for 30  min after Fast green 
staining for 8  min. GFP expression in FSP1-cre+/
mTmG+ mice was detected by fluorescent microscope 

Fig. 4 Echocardiographic analyses of aortic valve and heart function. Representative M-mode and PW Doppler images of the aortic valve (top) and 
transmitral flow (bottom) in both (A) WT-control and (B)  FSP1+/SmoM2+ mice are shown. Significant systolic dysfunction is observed in  FSP1+/
SmoM2+ mice, as shown by a progressive decline in (C) stroke volume, D ejection fraction, and E cardiac output starting at week 8. F Aortic cusp 
separation, normalized to aortic root diameter, progressively decreased starting week 8 in  FSP1+/SmoM2+, suggesting a stiffer aortic valve. G An 
increase in aortic valve outflow velocity, relative to inflow velocity, is consistent with aortic stenosis. H  FSP1+/SmoM2+ mice exhibited E/A ratio 
inversion, suggesting impaired diastolic relaxation of the left ventricle
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using frozen tissue sections from FSP1-cre+/mTmG+ 
mice. DAPI was used to detect nucleus. Measurement 
of human aortic valve thickness was done with H&E 
slides, with 3 measurements per section of one valve, 
and the average number were shown in Fig.  5A. The 

thickness of aortic valve roots of the mice was meas-
ured by Image J, and the average number from 8 mice 
was presented. For mice, areas of fibrosis in the blood 
vessels was shown as the percentage of Sirius red posi-
tive area in total blood vessel area, and areas were 
measured by Image J software after Sirius red staining.
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Flow cytometry analysis
Single cells from thymus were dissociated using 
Accutase (Gibco, CA, USA), resuspended in 5% fetal 
bovine serum in PBS, and incubated with CD4 and CD8 
antibodies on ice for 30  min. CD4 and CD8 expres-
sion was analyzed on a FACSCalibur or FACSCanto II 
(Beckton Dickinson, Franklin Lakes, NJ, USA) using a 
FlowJo software.

RNA isolation and real‑time PCR
According to the manufacturer’s instructions, total RNA 
was extracted from cells and tissues using TRIzol reagent 
(Sigma Chemical, St Louis, MO, USA) [31]. The relative 
abundance of mRNA was calculated by normalizing to 
GAPDH mRNA. The values from three independent RT-
PCR data were used for statistical analyses. One micro-
gram of RNA was used for reverse transcription into 
cDNA using the First-Strand Synthesis Kit (Roche, Indi-
anapolis, IN, USA). The cDNAs were then diluted and 
used for real-time PCR with specific probes using Mas-
ter Mix (Roche) in an ABI7500 detection system (Applied 
Biosystems, Foster City, CA, USA). Triplicate CT values 
were analyzed in Microsoft Excel using the compara-
tive CT(CT) method as described by the manufacturer 
(Applied Biosystems, Foster City, CA). The amount of 
target (2CT) was obtained by normalization to an endog-
enous reference (GAPDH) and relative to a calibra-
tor. The probes for real-time PCR were purchased from 
Applied Biosystems.

Statistical analysis
Data are presented as mean ± standard deviation (SD) 
from at least three independent experiments or samples. 

Statistical comparisons between two groups were per-
formed using a two-tail unpaired t-test 32. P < 0.05 was 
indicated as the statistically significant difference.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13578- 023- 00980-1.

Additional file 1: Figure S1. Analyses of thymus in FSP1-cre/SmoM2 
mice. A shows lineage tracing of FSP1cre activity in thymus, showing 
high activity in the epithelial cells of thymus. B shows the size of thymus 
from 7-week-old mice. C shows reduced CD4 + CD8 + cell population in 
SmoM2 positive thymus (4 weeks and 7 weeks respectively). Figure S2. 
Tracing FSP1 promoter activity in FSP1-cre/mTmG mice in the aortic valve. 
A shows FSP1 promoter activity (as shown in green- GFP expression). 
The top panels show the FSP1 promoter reporter activity as indicated in 
green (shown by yellow arrows). The bottom panels show DAPI staining of 
nucleus. B shows vimentin expression of cells in a mouse aortic valve. The 
top picture shows vimentin staining, and the bottom picture shows DAPI 
staining of nucleus. The white bar represents 100 mm. Figure S3. Heart/
body weight ratio of mice.
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Table 1 A list of the specimens used in this study 

Patient number

1 Bicuspid aortic valve, moderate AS and severe AR

2 Unicuspid aortic valve, moderate to severe AR, mild AS

3 Bicuspid aortic valve, severe AS, severely calcified

4 Bicuspid aortic valve, moderate to severe AR

5 Tricuspid aortic valve, severe AR

6 Tricuspid aortic valve, severe AR, possible Marfan

7 Bicuspid aortic valve, severe AS, severe calcification

8 Bicuspid aortic valve, moderately calcified, moderate to severe AR and AS

9 Bicuspid/unicuspid aortic valve with mild AS and moderate AR; severely calcified

10 Bicuspid/unicuspid aortic valve with mild AS and moderateAR; severely calcified

11 Bicuspid aortic valve, severe AS, severely calcified

12 Non-ischemic dilated cardiomyopathy, normal aortic valve

13 Non-ischemic dilated cardiomyopathy, normal aortic valve
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