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Abstract 

Background The phenotypic heterogeneity observed in Cystic Fibrosis (CF) patients suggests the involvement of 
other genes, besides CFTR. Here, we combined transcriptome and proteome analysis to understand the global gene 
expression patterns associated with five prototypical CFTR mutations.

Results Evaluation of differentially expressed genes and proteins unveiled common and mutation‑specific changes 
revealing functional signatures that are much more associated with the specific molecular defects associated with 
each mutation than to the CFTR loss‑of‑function phenotype. The combination of both datasets revealed that muta‑
tion‑specific detected translated‑transcripts (Dtt) have a high level of consistency.

Conclusions This is the first combined transcriptomic and proteomic study focusing on prototypical CFTR mutations. 
Analysis of Dtt provides novel insight into the pathophysiology of CF, and the mechanisms through which each muta‑
tion class causes disease and will likely contribute to the identification of new therapeutic targets and/or biomarkers 
for CF.
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Introduction
Cystic fibrosis (CF) is the most common life-threatening 
autosomal recessive disease among the Caucasian 
population [1]. The disease is caused by mutations in the 
Cystic Fibrosis Transmembrane Conductance Regulator 
(CFTR) gene that encodes a chloride and bicarbonate 
channel expressed on the apical surface of the epithelial 
cells of multiple organs, including the lung, pancreas, and 
colon [1]. In the lung, where the most severe symptoms 

occur, CFTR impairment leads to an increase of mucus 
viscosity and compromised mucociliary clearance that 
promote chronic infection and inflammation, ultimately 
leading to respiratory failure [1].

To date, more than 2100 CFTR genetic variants have 
been reported and organized into seven classes (Class 
I-VII) according to their effect on CFTR protein [1, 2]. 
Class I mutations severely impair protein production 
and include mostly nonsense mutations, which cause 
premature stop codons and consequently degradation 
of mRNA by nonsense-mediated decay. Class II 
mutations cause protein misfolding and retention in the 
endoplasmic reticulum leading to premature degradation 
of CFTR which prevents its trafficking to the cell 
membrane. Class III mutations impair CFTR channel 
gating, while class IV mutations cause a reduction in 
CFTR channel conductance. Class V mutations lead to 
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a decrease in the levels of normal CFTR, often because 
of alternative splicing events. Class VI mutations lead 
to a destabilization of CFTR at the cell surface, either 
by increasing endocytosis and/or decreasing recycling. 
Finally, class VII mutations result in impaired CFTR 
mRNA production, usually due to large deletions in 
the CFTR gene. Even though the frequency of CFTR 
mutation classes varies between countries, F508del, a 
class II mutation, is by far the most common; class I and 
III then account for most of the other mutations [3].

Although CF is recognized as a monogenic disease, 
there is considerable heterogeneity in its clinical 
outcomes [4]. The diversity of CFTR mutations can, to 
a large extent, explain the different phenotype severity. 
Technological advances in recent years have allowed 
the application of the so-called “omics” approaches to 
understanding CF. Identification of CF genetic modifiers 
has relied mainly on genome-wide association studies 
(GWAS). Transcriptomics, especially based on the use 
of microarrays, has been used to assess global patterns in 
gene expression, most of the time comparing wild-type 
samples with those bearing F508del, either in cell lines 
or in samples derived from individuals with CF [5–11]. 
Although microarray technology has had a significant 
level of success, it is limited by the transcripts targeted by 
the assay [12]. This problem was overcome through the 
development of massive parallel sequencing approaches 
and, in particular, their application to transcriptome 
analysis (RNA-seq). Although established more than a 
decade ago, the use of the RNA-Seq in the CF field is still 
limited to a couple of reports, e.g., assessing changes in 
the “blood” transcriptome to evaluate response to novel 
modulators or identify genetic modifiers [12, 13].

Proteomics has also been extensively used to better 
understand CF disease mechanisms, through the 
assessment of either the full proteome or the interactome 
in WT versus F508del samples, and in some cases 
applied to a few other mutations [14, 15]. Recent reports 
revisited the proteome using state-of-the-art proteomic 
methodologies in bronchial cells, either from stable lines 
expressing F508del-CFTR or primary cultures obtained 
from lung explants [16].

The use of omics approaches to characterize either 
transcript or protein levels can assist in the identification 
of which biological processes are different between 
diseased and healthy states, being useful for both the 
identification of markers of the disease process and of 
possible drug targets [17]. Integration of the different 
omics data types can overcome the eventual limitations of 
each individual approach and assist in the prioritization 
of critical causative changes leading to disease while 
providing deeper insights to support the development of 
alternative therapeutic approaches [17]. Indeed, although 

changes in the abundance of an mRNA and its encoded 
protein tend to display a reasonable correlation, the 
complex regulation underlying gene expression processes 
imply that transcriptomic and proteomic profiles hold 
non-redundant, complementary levels of information 
that can reveal relevant biological phenomena underlying 
disease pathophysiology [18].

Here, we present for the first time a combined 
transcriptomics and proteomics study in human 
bronchial epithelial cell lines CRISPR-engineered 
to express CFTR bearing five different CFTR in 
homozygosity from the endogenous promoter. Our study 
is the first to combine these two global characterization 
techniques to gain insight into CF, and it is the first to 
do so for an extended set of disease-causing mutations 
and in cells with endogenous expression of CFTR 
(eliminating the pitfalls associated with viral vector-based 
overexpression). Identification of differentially expressed 
genes and proteins, many of which fall into enriched gene 
ontology (GO) groups relevant to CF, including immune 
response, signalling pathways, cell differentiation, and 
actin cytoskeleton organization, showed a very good 
correlation between the two data sets. The validation of 
selected genes/proteins and the identification of general 
and mutation-specific differentially expressed genes 
and proteins provides novel insight into how different 
mutations (and mutation classes) cause CF and suggest 
novel potential therapeutic targets for the treatment of 
CF.

Materials and methods
16HBE14o‑ gene‑edited cell lines
16HBE14o- Human Bronchial Epithelial cells, expressing 
WT-CFTR, were obtained from Children’s Hospital 
Oakland Research Institute, UCSF, USA [19]. CFF-16HBE 
gene-edited cell lines with the following genotypes—
G542X, F508del, N1303K, and G551D, W1282X 
and Y122X—were obtained from the Cystic Fibrosis 
Foundation (CFF) [20]. Cells were grown in Minimum 
Essential Medium (MEM, Sigma) supplemented with 
10% (v/v) of Foetal Bovine Serum (FBS, Sigma) and 
1% (v/v) of L-Glutamine (Sigma) in a 37  °C, 5%  CO2 
humidified incubator. Culture plates and flasks were 
coated by incubating a coating solution [Dulbecco’s 
Phosphate Buffered Saline (DPBS, Sigma) and 10  µL/
mL of  PureCol® Solution (Advanced BioMatrix)] at 
37  °C/5%  CO2 for at least 2  h. Two additional cell lines 
carrying I1234V- and I507del-CFTR mutations were 
developed using the same conditions as described for the 
cell lines above. Briefly, the 100 µM crRNA and tracrRNA 
stocks were annealed in equimolar concentration to 
a final duplex concentration of 44  µM and incubated 
at 95  °C for 5  min. To form the RNP complex, the 
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previously assembled crRNA:tracrRNA was mixed 
with Cas9 protein at a 1:1.2  M ratio and incubated at 
room temperature for 20 min. Cells were electroporated 
with the Neon™ Transfection System (Thermo Fisher 
Scientific) in the presence of the ssODN HDR template.

CF subjects and ethical approval
Nasal brushing samples were obtained from one healthy 
donor and two CF individuals homozygous for the 
following mutations in the CFTR gene—F508del and 
N1303K. Informed consent was obtained from all the 
subjects and the study was conducted according to the 
guidelines of the Declaration of Helsinki and approved 
by the Ethics Committee of Hospital de Santa Maria 
(DIRCLN-16JUL2014-211).

Primary human nasal epithelial (pHNE) cell cultures
Primary human nasal epithelial cells (pHNE) were 
isolated and cultured as previously described [21]. After 
isolation, cells were grown on a 6-well plate coated with 
collagen type I (30  μg/ml, Advanced BioMatrix) at a 
density of 500,000 cells/mL. After reaching 90–100% 
confluency, cells were seeded in triplicate (n = 3) in 
12-well plates from which total RNA and protein were 
isolated as described below.

RNA library preparation
Total RNA was isolated in triplicate (n = 3) from 
16HBE14o- WT-CFTR and the five different gene-edited 
cell lines grown on 6-well plates with the NZY Total RNA 
Isolation kit (NZYTech) according to the manufacturer’s 
instructions. After measuring RNA integrity number 
(RIN) and concentration (≥ 7 and 1  µg, respectively), 
cDNA sequencing libraries were prepared using 
Stranded mRNA Library Preparation Kit according to 
manufacturer’s instructions and sequenced on Illumina 
Novaseq platform with paired-end 150  bp long reads 
(acquired as a service to STAB Vida).

RNA‑Seq data analysis
Following quality assessment using FastQC version 0.11.5 
(https:// www. bioin forma ticsh ttps:// www. bioin forma 
ticsb abrah am. ac. uk/ proje cts/ fastqc/), Cutadapt was 
used to remove sequencing adaptors and trim the first 
10 nucleotides [22]. The trimmed data was then filtered 
using in-house perl scripts in order to remove reads with 
unknown nucleotides, homopolymers with length ≥ 50 
nt or an average Phred score < 30 [23]. The remaining 
reads were aligned to the Genome Reference Consor-
tium Human Build 38 (GRCh38) using the STAR aligner 
version 2.5.0 with the following options: –outFilterType 
BySJout –alignSJoverhangMin 8 –alignSJDBoverhang-
Min 5 –alignIntronMax 100000 –outSAMtype BAM 

SortedByCoordinate –twopassMode Basic –outFilter-
ScoreMinOverLread 0 –outFilterMatchNminOverLread 
0 –outFilterMatchNmin 0 –outFilterMultimapNmax 1 
–limitBAMsortRAM 10000000000 –quantMode Gene-
Counts [24, 25]. Gene counts were determined using the 
htseq-count function from HTseq (version 0.9.1) in union 
mode and discarding low-quality score alignments (–a 10), 
using the Ensembl GRCh38.98 genome annotation.

DEA for RNA-Seq gene counts was performed with the 
limma Bioconductor package using the voom method 
to convert the read-counts to log2-cpm, with associated 
weights, for linear modelling [26, 27]. Samples in each 
group were treated as biological replicates and only genes 
that passed the significance cut-off were treated as DEGs. 
In this study, we used a p-value (FDR corrected p-value) 
less than 0.05 as the significance cut-off to identify DEGs.

Transcriptomics data validation through RT‑qPCR
To validate the RNA-Seq data, ten DEGs were selected 
for analysis by qRT-PCR. The same samples used for 
RNA sequencing were used for cDNA synthesis using 
M-MuLV Reverse Transcriptase (NZYTech) following 
the manufacturer’s instructions. Primers were designed 
using the NCBI Primer-BLAST online tool and were 
obtained from STAB VIDA (Additional file 1: Table S1). 
Specific products were amplified using Evagreen SsoFast 
PCR reagent (Bio-Rad) on the CFX96 Touch real-time 
PCR detection system (Bio-Rad). The fold difference 
in gene expression was calculated by the mathematical 
Eq.  2−ΔΔCT and the GAPDH gene was used as an internal 
control.

Protein extraction and sample preparation for mass 
spectrometry analysis
Total protein was extracted in triplicate (n = 3) from 
16HBE14o- WT-CFTR and the five different gene-edited 
cell lines grown on 6-well plates. Cells were washed twice 
with 1 × PBS and solubilized in a lysis buffer containing 
1.5% (w/v) Sodium-dodecyl-sulphate (SDS), 10% (v/v) 
glycerol, 0.5  mM dithiothreitol (DTT), 31.25  mM Tris 
(pH 6.8) and protease inhibitor cocktail (Roche). DNA 
was sheared by both 5U benzonase nuclease treatment 
(Sigma Aldrich) and using a 22G needle. Protein 
concentration was assessed with the Bradford assay.

One hundred micrograms of each sample were run 
on a 4–12% Bis–Tris gel, under denaturing conditions, 
for 5 min at 200 V with MES Running Buffer (NuPAGE, 
Invitrogen™) and stained with Instant Blue (Sigma). The 
whole run was cut into small pieces, distained with 50% 
acetonitrile  (Optima®LC/MS grade, Fisher Scientific), 
and dehydrated with acetonitrile. The proteins were 
reduced with 10  mM dithiothreitol for 45  min at 56  °C 
(BioUltra, Sigma), alkylated with 55 mM iodoacetamide 
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for 30  min at 20  °C in the dark (BioUltra, Sigma), 
and digested with 10  ng/µl trypsin overnight at 37  °C 
(Sequencing Grade Modified Trypsin V5111, Promega) 
in 50  mM ammonium bicarbonate (BioUltra, Sigma). 
The tryptic peptides were extracted from the gel with 
acetonitrile in an ultrasound bath (VWR), dried on a 
speed vac (ThermoSavant™ Scientific), resuspended in 
5% formic acid (Optima LC/MS grade, Fisher Scientific) 
to perform peptide clean-up using two OMIX C18 100 µl 
pipette tip microcolumns (Agilent Technologies) and 
dried again. All the proteomics analysis were acquired as 
a service to the Mass Spectrometry Unit at Institute for 
Experimental Biology and Technology (iBET).

Information‑dependent acquisition (IDA) runs to generate 
the spectral library
Nano-liquid chromatography-tandem mass 
spectrometry (nanoLC-MS/MS) analysis was performed 
on an ekspert™ NanoLC 425  cHiPLC® system coupled 
with a TripleTOF® 6600 with a NanoSpray® III source 
(Sciex). Peptides were separated through reversed-
phase chromatography (RP-LC) in a trap-and-elute 
mode. Trapping was performed at 2  µl/min on a 
Nano cHiPLC Trap column (Sciex 200  µm × 0.5  mm, 
ChromXP C18-CL, 3  µm, 120  Å) with 100% A for 
10  min. The separation was performed at 300  nl/min, 
on a Nano cHiPLC column (Sciex 75  µm × 15  cm, 
ChromXP C18-CL, 3  µm, 120  Å). The gradient was as 
follows: 0–1 min, 5% B (0.1% formic acid in acetonitrile, 
Fisher Chemicals, Geel, Belgium); 1–91  min, 5–30% B; 
91–93 min, 30–80% B; 93–108 min, 80% B; 108–110 min, 
80–5% B; 110–127 min, 5% B.

Peptides were sprayed into the MS through an 
uncoated fused-silica  PicoTip™ emitter (360  µm O.D., 
20 µm I.D., 10 ± 1.0 µm tip I.D., New Objective, Oullins, 
France). The source parameters were set as follows: 15 
GS1, 0 GS2, 30 CUR, 2.5 keV ISVF, and 100 °C IHT. An 
information-dependent acquisition (IDA) method was 
set with a TOF–MS survey scan of 400–2000  m/z. The 
50 most intense precursors were selected for subsequent 
fragmentation and the MS/MS were acquired in high 
sensitivity mode for 40 ms.

The raw files were subjected to database search in uni-
son using ProteinPilot software v. 5.0 (Sciex, Framing-
ham, US) with the Paragon algorithm to generate the 
Spectral Library. A UniProt database (20413 entries, 
accessed on 08/01/2021) containing the sequences of the 
proteins from Homo sapiens (Taxon ID: 9606) was used. 
The following search parameters were set: Iodoaceta-
mide, as Cys alkylation; Trypsin, as digestion; TripleTOF 
6600, as the Instrument; Gel-based ID, as Special factors; 

biological modifications, as ID focus; thorough, as search 
effort; and an FDR analysis enabled. Only the proteins 
with < 1% FDR were considered.

Protein quantification by SWATH‑MS
Three technical replicates from each biological replicate 
(n = 3) of each condition (n = 6) were analysed by 
sequential window acquisition of all theoretical fragment 
ion spectra (SWATH)-MS, using the instrument setup 
described for the IDA runs. The mass spectrometer was 
set to operate in cyclic data-independent acquisition 
(DIA), similar to the previously established method 
[28]. SWATH-MS data were acquired in SWATH 
acquisition mode using a set of 64 overlapping variable 
SWATH windows covering the precursor mass range 
of 400–1,400  m/z. The variable SWATH windows 
were calculated using the SWATH Variable Window 
Calculator V1.0 (Sciex, Framingham, US) based on a 
reference sample (IDA Wt_10ul_1.wiff). At the beginning 
of each cycle, a 20 ms survey scan (400-2,000 m/z) was 
acquired, and the subsequent SWATH windows were 
collected from 400 to 2000 m/z for 50 ms, resulting in a 
cycle time of 3.27 s. The collision energy for each window 
was set using rolling collision energy, and the collision 
energy spread was set to 5.

Data processing was performed using a SWATH 
processing plug-in for PeakView 2.2 (Sciex, Framingham, 
MA USA). First, the spectral library was imported with 
the maximum number of proteins to import set to 986, 
corresponding to a protein FDR < 1% Global FDR from 
fit and an unused protein score > 2.000. To calculate 
the false discovery rate (FDR) threshold, the MS/
MS spectra were searched against a decoy database. 
Shared peptides were set not to be imported. Next, the 
RT calibration was performed by selecting peptides 
that covered the entire LC gradient. The calibration 
curve was manually inspected before proceeding 
with the RT calibration. Once the RT calibration was 
performed, data were processed using the following 
criteria: Number of peptides per protein: 6; Number of 
transitions per peptide: 6; Peptide confidence threshold: 
98% (corresponding to a peptide FDR < 1% Global FDR 
from fit); False discovery rate threshold: 1%; Exclude 
modified peptides: No; Fix rank: No; XIC extraction 
window: 10 min; XIC width: 20 ppm. Manual inspection 
was performed for random peptides to check the quality 
of the data before data processing. Data were directly 
exported to Markerview 1.3.1 (Sciex, Framingham, MA 
USA) and normalized using total area sums to obtain the 
final quantification values. MarkerView was also used to 
perform the PCA and t-test statistical tests.
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Gene ontology (GO) enrichment analysis
Functional enrichment of DEGs and DEPs was performed 
with the GOfuncR package version 1.14.0 using the Homo 
sapiens annotation package “org.Hs.eg.db”. The core func-
tion goenrich was run with default parameters (hyper-
geometric test, 1000 randomizations) considering all the 
detected transcripts or proteins as background [29]. Go 
terms were considered significantly with an FWER < 0.05 
for the DEG dataset and a p-value < 0.01 for the DEP data-
set. Significant GO terms were projected on the gene 
ontology tree using the QuickGO browser [30]. To sum-
marize the most relevant functions, terms falling along 
the same GO tree branch were grouped into a single cat-
egory identified by a selected representative GO.

Western blot validation
To validate proteomics data, ten DEPs were selected for 
analysis by western blot. The same protein lysates used 
for mass spectrometry were run in a 10% acrylamide 
gel electrophoresis and transferred to a polyvinylidene 
difluoride (PVDF) membrane (Millipore). Membranes 
were blocked with 5% (w/v) non-fat milk diluted in TBST 
and incubated with primary antibodies (Additional 
file 1: Table S2) overnight at 4 °C. On the following day, 
membranes were washed with TBST and incubated 
with HRP-conjugated goat anti-mouse IgG or goat anti-
rabbit IgG (Bio-Rad) secondary antibody (1:3000) for 1 h 
at room temperature. Chemiluminescent detection was 
performed using the Clarity™ Western ECL substrate 
(BioRad) and the Chemidoc™ XRS system (BioRad). The 
quantification of band intensity was performed using 
the Image Lab software (BioRad) and normalized to the 
loading control as appropriate.

Transcriptomic and proteomic data integration
To integrate the data obtained from the transcriptomic 
and proteomic analysis, both data sets as well as the Uni-
Prot database (HUMAN_9696_idmapping.dat.gz) were 
loaded into R. Given that this strategy requires column 
names to be the same, those were renamed in both tran-
scriptomic and proteomic data sets. Transcripts/protein 
matches were found using the inner_join() function from 
the dplyr package. First, the UniProt database was joined 
with the transcriptomics data by the Ensembl ID and the 
results from this intersection were joined with the prot-
eomics data set by the UniProtKB accession number.

Results
CFTR‑edited cell lines recapitulate disease‑associated 
mRNA and protein expression phenotypes
The aim of this work was to evaluate the specific effects 
of prototypical CF-causing mutations, representative 
of predominant classes, on cellular function. To achieve 

this purpose, we performed an integrated profiling of the 
mutation’s impact on the transcriptome and proteome of 
bronchial epithelial cells. The 16HBE14o- parental cell 
line was used as the non-diseased reference, in parallel 
with five gene-edited versions harbouring homozygous 
CF mutations. These included G542X (class I), F508del 
and N1303K (class II), and G551D (class III), developed 
by the Cystic Fibrosis Foundation (CFF) by gene editing 
of the 16HBE14o- cell line [20]. Additionally, we 
developed a 16HBE14o- model for the I1234V-CFTR 
mutation (class V), established with the same gene 
editing tools used by the CFF.

I1234V is a class V mutation that was previously shown 
to introduce a cryptic splice site (Additional file  2: Fig. 
S1A, B) [31]. Using a sgRNA/Cas9-based approach 
we isolated a clonal cell line containing the I1234V 
mutation in homozygosity, as confirmed by Sanger 
sequencing (Additional file  2: Fig. S1C). Considering 
that this is a splicing mutation, we next evaluated the 
CFTR alternative splicing patterns in the I1234V-CFTR 
cells. CFTR cDNA was amplified in nine different PCR 
reactions using different primer pairs [32]. Sequencing 
analysis confirmed the aberrant splicing of exon 22 
leading to the loss of 18 nts, in line with the previously 
described impact of the I1234V mutation using a CFTR 
mini gene (Additional file 2: Fig. S1D).

The gene-edited cell lines, as well as the parental one 
(henceforth referred to by their mutation name or WT, 
respectively), were assessed for CFTR mRNA and protein 
expression by RT-qPCR and western-blot, respectively. 
As shown in Fig.  1, all cell lines display the expected 
CFTR mRNA and protein expression pattern, recapitu-
lating what was previously described for each mutation 
and mutation class in other cellular models and in materi-
als from individuals with CF [20, 33]. The G542X cell line 
shows a reduction in CFTR mRNA levels and no detect-
able protein. Both F508del and N1303K cell lines have 
slightly higher levels of CFTR mRNA than the WT but 
show reduced to absent levels of mature (band C) CFTR 
protein. The G551D cell line has no differences in CFTR 
expression and protein processing compared to WT cells. 
Even though I1234V-CFTR mutation introduces a splice 
donor site that results in the deletion of 18 nt (six amino 
acids) in exon 22, as this is an in-frame deletion it has no 
impact on total CFTR mRNA levels. However, very low 
levels of mature protein are produced, suggesting that the 
loss of these six amino acids interferes with CFTR folding 
and/or stability.

Transcriptome profiling of CF model cell lines reveals 
the impact of the mutation class on cellular homeostasis
We used total RNA samples from the parental and 
gene-edited 16HBE14o- bronchial epithelial cells to 
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characterize the impact of each CFTR mutation on the 
transcriptome. A total of 18 RNA-Seq libraries were 
generated, corresponding to three biological replicate 
samples of the six cell lines. These libraries were 
sequenced to an average depth of 22  M paired-end raw 
reads (ranging between 20-24  M), of which 88% were 
retained following quality filtering (see Additional file 3. 
Data S1). On average, 78% of the quality filtered reads 
presented unique alignment to the human genome 
reference, corresponding to a universe of about 13,800 
expressed genes (with raw counts > 10).

Exploratory data analysis showed a high level of cor-
relation between biological replicates, underscoring the 
robustness of the dataset (Additional file  2: Fig. S2A). 
Interestingly, samples from class II mutation mod-
els (F508del and N1303K) were segregated from WT, 
G542X, G551D, and I1234V samples by both clustering 
and principal component analysis (PCA) (Additional 

file 2: Fig. S2). The class III G551D mutation model was 
found to be most similar to the WT samples, in good 
agreement with the shared CFTR mRNA and protein 
expression profiles. Given that all mutations reduce 
CFTR function, these results suggest that a significant 
fraction of the changes observed at the level of the tran-
scriptome may be related to responses to aberrant gene 
expression processes like the accumulation of unfolded 
or unstable CFTR protein or the activation of RNA 
degradation pathways, i.e., to the specific mechanisms 
through which each mutation causes disease (absence of 
protein, impaired trafficking, defective gating, etc.).

To obtain a detailed insight into the specific transcrip-
tome changes induced by each mutation, we performed 
a differential expression analysis (DEA) for each mutant 
cell line versus the WT control. The number of differen-
tially expressed genes (DEGs) for each CFTR mutation 
(considering an adjusted p-value < 0.05) ranged from 
1304 in the N1303K mutant to 416 in the I1234V mutant 
(Additional file  4. Data S2). In agreement with what 
was expected, CFTR was only found to be differentially 
expressed in the G542X mutant, with a log2 fold change 
(log2FC) of − 2.5 relative to the WT control (with an adj. 
p-value of 6.5 ×  10−7). Figure 2A shows an unsupervised 
clustering analysis of the expression levels of the DEGs 
found across all comparisons, again highlighting the 
highly distinctive profile of samples with class II muta-
tions compared to all other samples.

To address the similarities and differences found across 
our transcriptome dataset, we performed an overlap 
analysis of the DEG set for each CF cell line model 
(Fig. 2B). Once again, the two class II mutations (F508del 
and N1303K) differentiated from the other classes, not 
only by having the highest number of DEGs (twice as 
much as the other CFTR mutations) but, particularly, by 
sharing the highest proportion of DEGs—73% and 65% of 
the F508del and N1303K DEGs, respectively (Fig. 2B). In 
contrast, all other mutations shared at most 30% of their 
DEGs with each other, of which approximately one third 
(38 DEGs) were shared across all genotypes. This analysis 
also showed a considerable number of unique DEGs for 
each genotype, ranging between 137 (for G551D) and 
329 (for N1303K) (Fig. 2B).

Taken together, these results suggest that most changes 
detected at the transcriptome level are more likely to be a 
consequence of the cell’s attempt to cope with changes in 
gene expression induced by each type of mutation than 
to represent a response to the actual loss-of-function of 
the CFTR channel. These differences may to some extent 
underlie the phenotypic variability observed in patients and 
point towards the existence of mutation-specific alterations 
in cellular pathways that may be of therapeutic interest.

Fig. 1 CFTR expression in 16HBE WT‑CFTR and CRISPR‑engineered 
cell lines A CFTR mRNA expression levels determined by RT‑qPCR 
normalized to GAPDH (housekeeping gene). B Western Blot (WB) 
analysis of CFTR protein expression (UNC596) and Calnexin loading 
control. C CFTR processing (C/C + B) was determined, and results 
shown normalized to WT‑CFTR. Fold‑change values are mean ± SEM, 
relative to WT‑CFTR (n = 3 biological replicates). Asterisks indicate * 
P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, and ns – not significant
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To validate the RNA-Seq analysis we selected ten out 
of the 38 common DEGs identified across the five differ-
ent CF genotypes: ARHGAP45, ATP5D, HERC5, IFI44, 

IFIT1, ISG15, NIBAN1, TMEM259, TMX4, ZFP28. 
These DEGs presented a significant adjusted p-value, 
but their absolute log2FC covers a wide range of values, 

Fig. 2 Differentially expressed genes (DEGs) identified in each CFTR‑mutant cell line A Cluster heatmap analysis of the genes identified as 
differentially expressed in WT‑CFTR and CFTR mutant cell lines. The gradient‑coloured barcode at the top right indicates  log2(CPM). CPM, Counts Per 
Million reads. B Venn diagram and a bar chart showing the number of common and mutation‑specific DEGs
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from minimal to large variation (0.4 to 6.6) (Table  1). 
Furthermore, the direction of expression change in this 
panel of selected genes varies between CFTR muta-
tions, thereby providing a broad spectrum of possible 
results for the assessment of the robustness of our tran-
scriptome profiling. Validation was performed by RT-
qPCR using the same samples used for RNA-Seq. In 
all five genotypes, we could observe a high correlation 
between RNA-Seq and RT-qPCR, with almost every 
gene displaying concordant expression values between 
the two methods (Fig. 3A–E). Overall, RT-qPCR results 
were highly consistent with the expected, confirming 
the robustness of our RNA-Seq analysis.

Given our hypothesis that transcriptome changes are 
predominantly reflecting the CFTR mutation class, we 
further evaluated the behaviour of this panel of genes in 
two other cell lines carrying class I mutations (Y122X 
and W1282X, obtained from the CFF) [20]. As expected 
for class I mutations and in agreement with a previous 
report, Y122X and W1282X have reduced levels of CFTR 
mRNA and no detectable CFTR protein, thus presenting 
a similar phenotype to the G542X mutant (Additional 
file 2: Fig. S3A and B) [20]. A third cell line carrying the 
class II mutation I507del in the  16HBE14o− background 

was also used for this analysis (Additional file 2: Fig. S4A). 
In contrast with the class II cell lines that were used for 
transcriptome profiling, this cell line presented a reduc-
tion of CFTR mRNA levels of ~ 70% when compared to 
WT-CFTR (Additional file  2: Fig. S4B). At the protein 
level, western blot analysis confirmed reduced levels of 
mature CFTR (band C) in I507del-CFTR (Additional 
file 2: Fig. S4C), as described previously for this mutation 
in different cell models.

The analysis of this panel of ten genes revealed a strong 
correlation for class I mutations (approximately 70% 
and 80% of the tested DEG panel with similar changes 
in Y122X or W1282X when compared to G542X, 
respectively) (Fig.  3F, G). Regarding the class II I507del 
mutant, the correlation with gene expression changes in 
the F508del was of only ~ 40% of the DEGs being tested 
(Fig. 3H). This contrasts with the comparison of the RT-
qPCR data generated for the validation of the RNA-Seq 
results for F508del and N1303K class II mutations, which 
agrees with a very similar transcriptome profile (Fig. 3I). 
Given that the reduced CFTR mRNA expression pro-
file of the I507del mutant is quite distinct from the very 
significant up-regulation presented by the F508del and 
N1303K cell lines (cf. Additional file  2: Fig. S4B with 

Table 1 List of the DEGs and DEPs common to all CFTR mutations

Data are expressed as  Log2 fold change (FC) in mutant cells versus WT cell line. The orange font represents upregulated genes or proteins while blue font represents 
downregulated genes or proteins. The values shown here were obtained from RNA-Seq and MS analysis

G542X F508del N1303K G551D I1234V
Genes Log2 FC

ARHGAP45 − 0.47 − 0.67 − 0.45 − 0.70 1.10

ATP5D − 0.47 ‑0.43 − 0.53 − 0.64 0.53

HERC5 1.30 0.64 1.10 1.18 0.74

IFI44 2.90 1.53 2.20 2.67 1.47

IFIT1 1.34 0.69 1.19 1.35 0.71

ISG15 1.96 0.83 1.46 1.65 0.82

NIBAN1 1.15 − 1.29 0.82 − 1.66 − 5.54

TMEM259 − 0.50 − 0.57 − 0.59 − 0.62 0.77

TMX4 − 1.90 − 2.87 − 2.64 − 4.58 − 1.05

ZFP28 − 6.64 − 5.91 − 2.21 − 5.59 − 6.09

Proteins Log2 FC

BACH 0.19 0.77 0.44 0.39 − 0.24

ERO1A 0.22 0.59 0.46 0.21 0.23

ESYT1 0.26 0.37 0.24 0.14 0.60

FINC 0.57 0.63 0.24 − 0.60 0.74

GARS − 0.17 − 0.26 − 0.27 − 0.19 − 0.31

RAN ‑0.39 − 0.70 − 0.59 − 0.34 − 0.22

RPN1 0.22 0.33 0.16 0.29 0.38

SERPH − 0.37 − 0.76 − 0.45 − 0.21 0.60

UBP14 0.21 − 0.16 − 0.33 0.40 0.42

VPS35 0.31 0.16 0.15 0.15 0.37



Page 9 of 22Santos et al. Cell & Bioscience           (2023) 13:26  

Fig. 1A), this observation is nonetheless consistent with 
our hypothesis that the major driver of the observed 
transcriptome is the cell’s attempt to cope with the effects 

of the mutation on gene expression pathways rather than 
the impact on CFTR itself.

Fig. 3 Validation of DEGs via RT‑qPCR Ten DEGs common to all mutant cell lines were validated by RT‑qPCR: A G542X‑CFTR, B F508del‑CFTR, C 
N1303K‑CFTR, D G551D‑CFTR, and E I1234V‑CFTR. The  2−ΔΔCT method was used for data analysis using GAPDH as a housekeeping gene. The vertical 
axis represents the gene expression level obtained from RNA‑seq, and the horizontal axis represents the gene expression level obtained from 
RT‑qPCR. Correlation analysis of the same DEGs was also performed in similar mutations. Correlation analysis between gene expression obtained 
from RT‑qPCR in each of the class I mutations F Y122X‑CFTR and G W1282X‑CFTR vs G542X‑CFTR and each of the class II mutations H I507del‑CFTR 
and I N1303K‑CFTR vs F508del‑CFTR. Each coloured dot represents a different gene. For a gene to be validated, the corresponding dot must fall 
either on the bottom left or top right square. All data are presented as mean ± SEM and relative to WT‑CFTR (n = 3 biological replicates)
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As there was a great correlation between the two class 
II mutations, we decided to further validate our RNA-
Seq data in primary human nasal epithelial (pHNE) cells 
homozygous for the F508del and N1303K mutations. 
In the pHNE-F508del cells, 7 genes showed concordant 
expression values between the RT-qPCR and RNA-Seq 
(Additional file  2: Fig. S5A), and, in the pHNE-N1303K 
cells, 3 genes exhibited concordant expression values 
between the two techniques (Additional file 2: Fig. S5B). 
Even though we could validate most of the genes in the 
pHNE-F508del cells, which agree with our results in the 
16HBE-F508del cells, the use of primary cultures intro-
duces interpersonal variability which might explain the 
results in the pHNE-N1303K cells. Also, the 16HBE cell 
models used for the RNA-Seq have a different tissue ori-
gin than the primary cells used in the validation, as the 
first come from the bronchia (lower airways) while the 

second are nasal cells from the upper airways (more 
accessible), which might also introduce some variability.

To generate insights into the functional impact of each 
mutation, we performed a gene set enrichment analysis 
(GSEA) of differentially expressed transcripts regarding 
the biological process, molecular function, and cellular 
component Gene Ontology (GO) terms (Additional file 5. 
Data S3). The GO terms associated with the five DEG 
subsets were analysed for overrepresentation against the 
background transcriptome of the corresponding cell line 
using the hypergeometric test, with the rate of false posi-
tives being controlled by using a cut-off for Family Wise 
Error Rates (FWER) < 0.05 (see methods). To create a 
visual representation of these results, the GO term tree 
was inspected to identify enriched GO terms that were 
located along connected branches and could thus be 
coalesced into a single representative term (Fig. 4). This 

Fig. 4 Gene Ontology (GO) enrichment analysis for the DEGs associated with CFTR mutations For each mutation, the size of the dotted squared 
is proportional to the ratio between the total number of enriched GO terms and the number of DEGs, reflecting the strength of the functional 
signature in the gene set. Inside each square, the enriched GO terms are summarized by donut charts for each of the three branches of the GO 
tree—biological process (in green), cellular component (in blue) and molecular function (in orange). The size of each chart is directly proportional 
to the number of significant GO terms assigned to the corresponding branch (no chart is displayed if no significant terms were found). Donut 
charts show the number of enriched GO terms grouped by functional categories, according to the selected representative identifier (see main text). 
Categories are plotted clockwise in the donut chart from highest to lowest number of significant GO terms, with the category identifiers presented 
by the chart in the same order
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approach led to the definition of a range between 2 to 13 
candidate cellular processes in each of the three GO cat-
egories that are disrupted by the different CF mutations.

Despite the relatively limited overlap of differentially 
expressed genes across the different cell lines, we find 
that the functional signatures identified in all of them 
are very similar, with “cell surface signalling”, “plasma 
membrane”, and “extracellular matrix” related processes 
consistently appearing as enriched. It is noteworthy that 
all these functions are highly related to the expected 
CFTR-dependent phenotypes. The two class II muta-
tions (F508del and N1303K) again present the most 
similar profiles, with the biological process GO term “ion 
homeostasis” appearing as specifically enriched. Given 
the highly varying number of DEGs and significant GO 
terms identified in each cell line, we tried to quantify the 
“strength” of the functional signature within each gene 
set as the ratio between the number of enriched GOs 
and DEGs, visualized as the size of the dotted boxes/
donut charts in Fig.  4. A high ratio should highlight a 
very convergent impact of the mutation on a given cel-
lular function, whereas a low ratio will correspond to a 
more pervasive effect of the mutation across the tran-
scriptome. Interestingly, G551D – the only mutation in 
which both CFTR mRNA and protein levels are similar to 
wt—presents the strongest functional signature. It is fol-
lowed by the two class II mutations which, as mentioned, 
have very similar behaviour. With more than two times 
the number of DEGs, the number of enriched GO terms 
identified in these cell lines is in the same range as the 
G551D mutation (~ 50). Finally, with a similar number of 
DEGs to G551D, the transcriptomes of the G542X and 
I1234V mutations, which are known to act at the level of 
the mRNA, resulting in the absence or reduced levels of 
functional CFTR, respectively, display the weakest func-
tional signatures. Indeed, the I1234V splicing mutation 
presents both the weakest functional signature and the 
mildest CFTR phenotype. Given the overall similarity 
of the enriched functional GO terms across all mutant 
cell lines, and their connection to the expected CFTR 
loss-of-function phenotypes, the observed differences 
in functional signature strength are consistent with our 
hypothesis that the different transcriptome profiles pre-
dominantly reflect the cell’s attempt to cope with muta-
tion-specific changes in gene and protein expression. 
Indeed, if CFTR-dependent processes are the predomi-
nant determinant of transcriptome changes a relatively 
consistent ratio GO/DEG ratio is to be expected. In a 
similar functional background, variation in the number 
of DEGs will be a function of sample variability, directly 
influencing the number of significant GOs due to an 
increased sensitivity of the hypergeometric function in 
larger gene sets. This phenomenon is well exemplified 

by the two class II mutations which, despite a ~ 40% dif-
ference in the number of significant GOs, display a very 
similar signature strength and functional profile. The 
fact that the functional signature strength in the other 
three mutations, which have a similar number of DEGs 
varies ~ fourfold, suggests that the core functional sig-
nature is independent of CFTR loss-of-function (LOF). 
With ~ 500 DEGs, class I (G542X) and class V (I1234V) 
mutations, which impact very different aspects of mRNA 
metabolism and protein synthesis, have weak functional 
signatures, whereas the transcriptome of the class III 
G551D mutation, with normal CFTR mRNA and pro-
tein levels but total loss of CFTR function displays a very 
focused functional signature towards CFTR-dependent 
processes, with the total number of significant GOs in 
the same range of the class II mutations.

Differentially expressed proteins between wild‑type 
and mutant CFTR confirm a signature that correlates 
with the mutation class
A global proteome analysis using sequential win-
dow acquisition of all theoretical fragment ion spectra 
(SWATH) mass spectrometry (MS) analysis was per-
formed to complement the transcriptomics data from the 
same samples. Collectively, 936 proteins were identified 
across all samples with a 1% false discovery rate (FDR, 
Additional file 6. data S4). Of the proteins identified, 836 
proteins were quantified with a minimum of one peptide 
with at least three fragments and a maximum of six pep-
tides used in the quantification (Additional file  7. data 
S5). Principal component analysis was used to assess the 
differences between mutations as well as to determine 
possible variations between biological and technical rep-
licates. Consistent with the transcriptomics results, this 
analysis segregates class II mutations from the other sam-
ples while confirming the robustness of the proteomic 
analysis (Additional file  2: Fig. S6). Interestingly, at the 
proteome level the samples from class III and V muta-
tions, in which there is (at least some) protein at the 
plasma membrane, cluster together.

On average 340 proteins were identified as being differ-
entially expressed between each mutant and the WT cell 
line (ranging from 282 to 443 DEPs with a p-value < 0.05) 
(Fig.  5A). Thus, although the total number of proteins 
detected by the proteomic analysis was two orders of 
magnitude below the number of detected transcripts, 
the number of DEPs and DEGs is within a similar range, 
exception made for the two class II mutations that pre-
sented > 1000 DEGs. The results from this analysis 
with the corresponding expression levels and adjusted 
p-values can be found in Additional file  7. Data S5. We 
next looked at the number of unique and shared DEPs 
between CFTR mutant cell lines. Only 36 of the 443 
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DEPs in the dataset were common to all mutations. Con-
trasting with the results of the transcriptome analysis, the 
proportion of unique DEPs was considerably small, rang-
ing between 8 and 21% of the DEPs, compared to 20–42% 
of unique DEGs (Fig. 5B). Furthermore, the F508del and 
N1303K exclusively shared ~ 70% of common DEGs, 
at the protein level only 32 DEPs were uniquely shared 

between the two class II mutations, corresponding 
to ~ 10% of their DEP subset. Notwithstanding, when 
looking at the global proportion of shared proteins, ~ 70% 
of N1303K DEPs are in common with F508del, a number 
that is > 40% higher than the proteins shared with any of 
the other three mutations.

Fig. 5 Differentially expressed protein (DEPs) identified in each CFTR‑mutant cell line A Quantity of DEPs identified for each mutation. B Venn 
diagram and bar chart showing the number of common and mutation‑specific DEGs
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A GO enrichment analysis was also conducted to 
assess which biological processes, cellular components 
and molecular functions undergo significant changes 
at the protein level in the different CFTR mutant cell 
lines (Fig.  6). Although the number of DEPs was not 
very different from DEGs, the enrichment of GO terms 
in comparison to the detected proteome was much less 
significant than the results obtained for DEGs (Addi-
tional file  8. Data S6). This result was not improved by 
using the transcriptome as background or filtering the 
DEP sets to remove proteins with lower fold changes 
(not shown). Notwithstanding, the GO terms that 
were retained for each CFTR mutation using a signifi-
cance cut-off of uncorrected p-value < 0.01 had a clear 

connection with the disease pathophysiology, but unlike 
the signatures detected in the transcriptome data, these 
seem to correlate predominantly with the mutation class. 
Using the strategy described above, we reduced the num-
ber of selected GO terms to a maximum of 8 categories 
for a visual representation depicting the strength of the 
functional signature (Fig.  6). Interestingly, we find that 
mutants that displayed strong functional signatures at the 
transcriptome level show minimal enrichment in the pro-
teome analysis and vice-versa. Indeed, the I1234V muta-
tion, which presents a very limited functional signature 
at the transcriptome level, has a GO term to DEP ratio 
over two times higher than all other mutations. Interest-
ingly, given the fact that this is a splicing mutation, the 

Fig. 6 Gene Ontology (GO) enrichment analysis for the DEPs associated with CFTR mutations For each mutation, the size of the dotted squared 
is proportional to the ratio between the total number of enriched GO terms and the number of DEPs, reflecting the strength of the functional 
signature in the protein set. Inside each square, the enriched GO terms are summarized by donut charts for each of the three branches of the GO 
tree—biological process (in green), cellular component (in blue) and molecular function (in orange). The size of each chart is directly proportional 
to the number of significant GO terms assigned to the corresponding branch (no chart is displayed if no significant terms were found). Donut 
charts show the number of enriched GO terms grouped by functional categories, according to the selected representative identifier (see main 
text). Categories are plotted clockwise in the donut chart from the highest to lowest number of significant GO terms, with the category identifiers 
presented by the chart in the same order
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altered biological processes and molecular functions are 
predominantly linked to RNA/nucleic acid metabolic 
processes. Furthermore, a high number of DEPs are 
linked to chaperone/ubiquitin/protein degradation func-
tions, which are in line with the predicted synthesis of a 
misfolded protein. Protein folding and degradation signa-
tures are also found in the class II mutants F508del and 
N1303K, in agreement with the reported mutation effect. 
However, the functional signature of these mutations at 
the protein level is comparatively weak and quite distinct 
between the two, in agreement with the limited over-
lap of DEPs observed. The cell line harbouring the class 
I G542X mutation has the second strongest functional 
signature, highlighting effects on signalling regulation, 
cellular components linked to the ER, endocytic vesicles, 
and plasma membrane. Contrary to the observation at 
the transcriptome level, a high number of DEPs identified 
in this cell line is involved in actin cytoskeleton organi-
zation, with cell junction organization also appearing as 
an enriched term. Finally, the G551D cell line displays a 
limited functional signature for DEPs, with several terms 
related to nucleotide metabolism, which could be linked 
to the inability of this mutant to hydrolyse ATP.

As before, we selected ten common DEPs—GlyRS, FN, 
ESYT1, USP14, ERO1A, ACOT7, VPS35, RPN1, HSP47, 
and RAN—with different expression patterns among 
the CFTR mutations to validate the mass spectrometry 
results by western-blot (Table  1). The overall validation 
rate by western blot for the expression change observed 
in mass spectrometry was about 50%, supporting the reli-
ability of the proteomics data obtained (Fig. 7A–E). The 
correlation between mass spectrometry and western blot 
data is lower than the observed between RT-qPCR and 
RNA-seq data, which may be partly explained by the fact 
that western blot is less robust as a quantitative approach. 
Adding to this, the 10 proteins were chosen out of the 
limited set of 32 shared DEPs, presenting relatively sub-
tle—and thus hard-to-detect—fold changes.

We also evaluated the behaviour of this panel of 10 
proteins in the other available class I and class II cell 
lines. Compared to the quantification of mRNA levels 
for the panel of selected DEGs, this analysis showed 
a rather limited correlation of protein expression 
levels between class I mutations (Fig.  7F, G). This may 
be because the average absolute fold change for this 
group of proteins in the G542X cell line is only 20% 
(Table 1). Strikingly, the I507del cell line shows a better 
correlation with the F508del mutant at the protein 
level than observed for transcripts, with ~ 70% of the 
DEPs presenting similar expression patterns (Fig.  7H). 
Furthermore, the expression of this set of DEPs was very 
highly correlated between the N1303K and F508del class 
II mutants (Fig. 7I). This strong similarity occurs despite 

the differences observed in the GSEA analysis and of the 
small number of class II specific DEPs. Taken together, 
these observations further support the proposal that the 
mutation class is a key determinant of broad proteome 
changes.

The expression of these 10 common proteins was 
also evaluated in the primary cells homozygous for the 
F508del and N1303K mutations. In both genotypes, we 
identified 2 proteins for pHNE-F508del and 4 proteins 
for pHNE-N1303K with good correlation between mass 
spectrometry and western blot (Additional file 2: Fig. S5C 
and D). As previously mentioned, these results might be 
explained by different factors: (i) the robustness of the 
western blot technique, (ii) subtle fold changes in the 
proteins chosen, (iii) interindividual variability present in 
primary cultures, and (iv) different tissue origin between 
pHNE and 16HBE.

Integration of transcriptomics and proteomics data
Given the distinct results described above, we decided to 
integrate and perform a joint analysis of the two types of 
omics data to better understand the correlation between 
the transcriptome and proteome in each of the CFTR-
mutant cell lines. The intersection of the total num-
ber of transcripts and proteins identified showed that 
about 810 (97.3%) of the total 836 proteins quantified by 
mass spectrometry across all samples were encoded by 
transcripts identified in the RNA-seq data, hereinafter 
termed “detected translated-transcripts” (Dtt) (Fig.  8A, 
Additional file  9. Data S7). To understand how well the 
absolute abundance of these proteins correlates with that 
of the matching transcripts in each CFTR mutation, we 
performed an across-gene correlation analysis [18]. This 
analysis revealed a consistent correlation coefficient of 
approximately 0.4, meaning that 60% of the variability in 
protein levels can be explained by the variability in tran-
script levels (Additional file  2: Fig. S7A-F). This result 
agrees with previous studies of human tissue, including 
the lung [18, 34].

Most of the Dtt identified were not found to be differ-
entially expressed (DE) as a transcript or protein in any 
mutant CFTR cell lines except for F508del, where the 
fraction of DE Dtt is ~ 60% (Fig. 7B–F left panel). Of note, 
differential expression was predominantly identified 
at the protein level only, suggesting that most proteins 
affected by CFTR mutations are responding to post-tran-
scriptional and most likely, post-translational regulatory 
processes (Fig. 7B–F middle panel). For Dtt with altered 
mRNA levels, DE at the protein level was also observed 
in most cases. In total, we found 11 such cases in G542X 
and G551D, in addition to 27, 35, and 4 “concordant” Dtt 
in F508del, N1303K and I1234V, respectively (Table  2). 
A strong correlation between the mRNA and the protein 
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levels was observed, with only a few cases with discord-
ant expression levels (r = 0.43–0.77, Fig.  7B–F right 
panel). Interestingly, class II mutations F508del-CFTR 
and N1303K-CFTR were the ones showing the highest 

number of Dtt that seem to be transcriptionally regu-
lated. Dtt differentially expressed at both mRNA and 
protein levels are listed in Table  2, highlighting in bold 
those that are specific to a single mutation. No Dtt was 

Fig. 7 Validation of DEPs via Western blot (WB) Ten DEPs common to all mutant cell lines were validated by WB: A G542X‑CFTR, B F508del‑CFTR, C 
N1303K‑CFTR, D G551D‑CFTR, and E I1234V‑CFTR. The vertical axis represents the protein expression level obtained from mass spectrometry, and 
the horizontal axis represents the protein expression level obtained from WB. Each coloured dot represents a different protein. Correlation analysis 
of the same DEPs was also performed in similar mutations. Correlation analysis between protein expression obtained from western blot in each of 
the class I mutations F Y122X‑CFTR and G W1282X‑CFTR vs G542X‑CFTR and each of the class II mutations H I507del‑CFTR and I N1303K‑CFTR vs 
F508del‑CFTR. For a protein to be validated, the corresponding dot must fall either on the bottom left or top right square. All data are presented as 
mean ± SEM and relative to WT‑CFTR (n = 3 biological replicates)
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common to all mutations. Regarding the DE Dtt that 
are shared by two or more cell lines, the biggest overlap 
occurs between F508del and N1303K – with 15 com-
mon Dtt, 13 of which are exclusive of this pair. This 

observation further supports the hypothesis that the 
global changes observed correlate with the mutation 
class.

Overall, the integration of transcriptome and pro-
teome data reveals a degree of correlation between 
transcript and protein levels in agreement with previ-
ous reports from the literature. The limited sensitivity 
of the mass-spectrometry analysis compared to RNA-
seq creates a “blind spot” for a very large number of 

Fig. 8 Integration and correlation of transcriptomics and proteomics 
data sets A Integration of transcriptomic and proteomic data 
showed that ~ 810 proteins in the proteomics dataset have a match 
in the transcriptomics dataset. Results are represented in a Venn 
diagram. B–F Left panels: percentage of differentially expressed 
(DE) and not DE genes/proteins for each CFTR mutant cell line; 
Middle panels: Among the DE genes/proteins some were only 
differentially expressed in the transcriptomics dataset (RNA), others 
in the proteomics dataset (Protein), and others in both datasets 
(RNA & Protein); Right panels: correlation between RNA and protein 
expression levels of the gene/proteins significant in both datasets 
(RNA & Protein, so‑called gene/protein pairs) in the different mutant 
CFTR cell lines

Table 2 List of the differentially expressed detected translated‑
transcripts (Dtt) at the mRNA and protein levels

Mutation-specific Dtt are represented in bold. Dtt shared between F508del and 
N1303K are underlined

G542X F508del N1303K G551D I1234V

ALPK3 ACTC AHNK CADH1 CAN1

CLD6 AFG32 BGH3 CAN1 K1C19

CNDP2 AHNK CAN1 COF1 K2C5
EMAL3 BGH3 CCAR2 INO1 NALP2
GANAB CADH3 CLD6 K1C14

HNRL2 CCAR2 CPT1A K2C80
K1C14 CLD6 ERO1A LRBA
K1C17 CPT1A K1C17 OTUB1

MYL6 CTL2 K1C19 PLST
UBXN1 EHD1 K1C9 TBL3
ZCCHV GSDME K2C6A ZCCHV

GSTO1 ML12A

K1C17 MRE11

KI13A NB5R1
KRT86 NUMA1

ML12A OTUB1

MRE11 PAI2
NUMA1 PDIA4
OTUB1 PICAL
PKP4 PNCB
PNPH PNPH

TACD2 PURA2
TBB6 RAB1B
TENA SFXN1
TOP2A SQOR
VDAC3 SSBP
YAP1 TACD2

TBA4A
TBB6

TELO2
TENA

VATB2
VDAC3

YAP1

ZCCHV
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expressed genes whose changes cannot be assessed at 
the proteome level. Our results suggest that a signifi-
cant part of the physiological adaptation of the cell to 
the presence of CFTR mutations happens through the 
regulation of protein stability or translation efficiency, 
without any specific impact on the transcriptome 
level, and justifying the distinct functional signatures 
observed in the two types of omics profiles.

Discussion
CF patients present a wide variability in phenotypic 
features, even those with identical mutations in the 
CFTR gene. While some aspects of the disease can be 
directly associated with the CFTR genotype, the severity 
of the lung phenotype cannot be predicted solely by 
the LOF of this gene, implicating the contribution of 
other genes and non-autonomous cell responses. The 
phenotypic heterogeneity in CF can thus be attributed 
to genetic modifiers that remain largely unidentified. 
Significant technological advances in the fields of 
transcriptomics and proteomics currently allow us to 
perform the systematic characterization of individual 
biological samples within a reasonable time frame. These 
techniques hold great promise for the identification of 
genetic modifiers, with their encoded proteins becoming 
candidate targets for therapeutic intervention [35, 36].

There are a few transcriptomics studies performed in 
airway tissue samples from CF patients or models, but 
the vast majority refer to the F508del-CFTR mutation 
and still use microarray technology [9, 37–44]. However, 
RNA-Seq technology, used in our study, has several 
advantages over microarrays including full sequencing of 
the whole transcriptome at higher sensitivities, including 
a more robust detection of differentially expressed genes, 
and of genes with low expression levels [45].

Since proteins are the ultimate effectors of most 
biological processes, proteomics studies can provide 
insights into the mechanisms by which CFTR mutations 
and other genetic modifiers lead to the disease 
phenotype [46]. Furthermore, they can also identify 
differentially expressed proteins that can be validated 
as novel therapeutic targets [35]. There are only a few 
studies addressing the global protein expression profile 
in CF airway tissue, the majority of which are also on 
F508del-CFTR [16, 47–49]. Our study is the first to 
combine whole transcriptome and proteome analysis 
of human bronchial epithelial cells homozygous for 
different CFTR mutations: G542X, F508del, N1303K, 
G551D, and I1234V. To support the study of the cellular 
transcriptome and proteome within a consistent genetic 
background, where the only difference between cell 
lines is the targeted CFTR variant, we used isogenic cell 
lines developed through CRISPR/Cas9 mutagenesis 

[20]. Besides recapitulating all previous knowledge for 
these mutations (Fig.  1), these cell lines only express 
endogenous CFTR, thus eliminating the potential 
disadvantages that arise from the over-expression of a 
cDNA under a viral promoter.

In our study, we started by investigating the impact 
that the different CFTR mutants have on the cellular 
transcriptome compared to WT-CFTR. The expression 
of ~ 13,800 genes was detected in our RNA-seq dataset 
for all genotypes analysed. Sample clustering based on 
gene expression assigned the CFTR mutations to two 
main groups, clearly differentiating class II mutations 
from WT cells and the other three mutations/classes 
(class I, III, and V). Statistical analysis of each CFTR 
mutant vs WT control allowed us to identify a large set 
of DEGs, with the two class II cell lines (F508del and 
N1303K) standing out with 2–3 times more DEGs than 
the other cell lines (Fig. 2 and Additional file 2: Fig. S2).

Comparison between the different DEGs identified for 
each CFTR mutation allowed us to identify mutation-
specific genes that help define a gene signature which 
may be relevant for diagnosis and/or therapy. Common 
to all the CFTR mutations analysed, there were 38 DEGs 
– 9 of which were successfully validated by RT-qPCR 
(among 10 tested) (Fig.  3). Two of these genes—ISG15 
and HERC5—are up-regulated in all CFTR mutations. 
The first encodes a protein belonging to the family of 
ubiquitin-like modifiers, which can modify proteins at the 
post-translational level. ISG15 protein forms conjugates 
with proteins—in a process known as ISGylation—
through the sequential action of three enzymes (E1, 
E2, and E3), being HERC5 the major E3 enzyme for 
human ISG15 [50]. Even though this protein has been 
mainly studied for its function as an antiviral molecule, 
it is involved in many other cellular functions including, 
tagging of potentially pathogenic proteins and clearance 
of protein aggregates [51, 52]. Although it has never been 
demonstrated that CFTR undergoes ISGylation, HERC5 
has been previously shown to interact with F508del-
CFTR in the CF bronchial epithelial (CFBE14o-) cell 
line [53]. The consistent up-regulation of ISG15 and 
HERC5 transcripts in all CFTR cell lines suggests the 
associated molecular pathway may be of relevance in 
the context of CF. The proteins encoded by these two 
genes were not found among the set of 836 proteins 
identified by our quantitative mass spectrometry–based 
proteomics analysis in all CFTR genotypes. We believe 
the large discrepancy between the number of identified 
genes and proteins is explained by the lower sensitivity 
of the proteomics methods, predominantly affecting 
the identification of low-abundance proteins [54]. Thus, 
the lack of overlap between DEGs and DEPs cannot be 
taken to imply that the detected changes in mRNA levels 
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do not have a corresponding effect at the level of protein 
and as such, that the former are not functionally relevant. 
Indeed, our results suggest that combining the two 
approaches can provide unique insights into the cellular 
pathways affected by a mutation.

From the 36 DEPs common to all mutations, we 
chose 10 for validation through western blot. Despite 
the technical limitations, which include a lack of good 
commercially available antibodies, three of these DEPs 
were consistently validated in all the cell lines – GARS, 
FINC, and SERPH (Fig.  7). GARS is a glycyl-tRNA 
synthetase whose function is to covalently attach glycine 
to its cognate tRNA, a process essential for protein 
translation [55]. This protein has been previously 
identified in the proteome of HBE cells expressing 
WT-CFTR, and in the WT-CFTR interactome reported 
in two independent studies [14, 56]. FINC or fibronectin 
plays an important role in cell adhesion, migration, 
growth, and differentiation [57]. A previous study 
identifies this protein as a mediator of CFTR interaction 
with EPAC, NHERF1, EZRIN, and SYK, previously 
known to be involved in the CFTR plasma membrane 
stabilization, suggesting the indirect role of fibronectin 
in this process [58]. SERPH or serpin H1 is a collagen-
specific molecular chaperone essential to correct the 
folding of procollagen in the endoplasmic reticulum. It 
has been demonstrated that SERPH is directly connected 
with HSF1, a heat shock transcriptional factor that plays 
a central role in the activation of the heat shock response, 
which has been implicated in the quality control for 
misfolded CFTR [48]. Thus, as for the transcriptome 
analysis, the common changes identified across the five 
distinct genotypes can be linked to molecular pathways 
involving CFTR. Also as before, a close similarity between 
cells expressing the two class II mutations—F508del and 
N1303K was identified (Additional file 2: Fig. S6). These 
results support the proposal that the specific class of the 
mutation imposes a strong gene expression signature that 
is independent of the CFTR LOF phenotype.

We used gene ontology enrichment analysis to 
interpret the global changes in gene expression caused by 
the different CFTR mutations in the bronchial epithelial 
cells at the transcriptome and proteome levels (Figs. 4, 6). 
Interestingly, although the number of DEGs common to 
all mutations is low, the enrichment analysis highlighted 
a response of the cellular transcriptome with significant 
overlap between the different mutations. Among the 
enriched GO terms for the molecular function, we 
consistently find G protein-coupled receptor signalling, 
which includes small GTPase signalling pathways, Wnt 
signalling pathway, and ERK1 and ERK2 cascades. These 
pathways have been identified as altered in CF in many 
transcriptomic studies on airway epithelial cell lines [9, 

37, 39, 42, 44]. Having noticed a disconnection between 
the number of DEGs and the number of significantly 
enriched GO terms, we defined the strength of the 
functional signature as the ratio between the number of 
GO terms identified and the number of DEGs. When a 
higher-than-expected number of gene products with 
altered expression are annotated to the same function 
(i.e. GO term), we take this to represent that the function 
is disrupted in the experimental condition being assessed. 
Given the nature of the statistical test used in the GO 
enrichment analysis, larger gene sets will lead to more 
significant p values when the same proportion of genes is 
annotated to a specific GO term. Thus, a higher number 
of GO terms is expected to pass the cut-off criteria if the 
degree of detected functional disruption is similar to 
what is found in a smaller gene set. The fact that we do 
not observe this in the very large DE gene sets for class 
II mutations versus, for example, the G551D mutation 
suggests that the additional genes with disrupted 
expression, albeit common between the two mutations, 
are not linked to the same biological processes. We 
propose this reflects the plethora of mutation-specific 
side-effects targeting different biological mechanisms, 
thus not presenting a strong functional signature. It is 
quite striking that the class I and V mutations, which are 
expected to impact multiple and distinct aspects of RNA 
metabolism in addition to CFTR LOF, have the weakest 
functional signatures; and that the G551D mutation, 
which leads to the presence of non-functional CFTR 
protein, in normal levels and at its normal location, with 
correct modifications and folding, displays the most 
coherent functional signature.

The gene ontology enrichment analysis performed 
for DEPs (Fig.  6) identified signatures which tend to be 
very mutation-specific, suggesting that the perturbation 
of cellular homeostasis caused by each mutation trig-
gers a response at the translation and protein stability 
level that is somehow related to the mechanism through 
which a specific mutation leads to CF and reflects the 
cell’s attempt to cope with the resulting issues. Interest-
ingly, even for the two class II mutations—that are clus-
tered together by the PCA analysis—the enriched terms 
are diverse, suggesting that although leading to a simi-
lar cellular phenotype (defective trafficking), the path-
ways involved in protein retention are different—which 
agrees with the very limited response of N1303K-CFTR 
to the highly effective modulators already approved for 
F508del-CFTR [59, 60]. These observations are very 
much in line with the results obtained by the integrated 
analysis of the transcriptome and proteome datasets.

While gene and protein studies separately can give 
us indications of the biological processes involved in 
disease, the integration of both datasets helps us to 
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understand the flow of information from genotype to 
phenotype and can be valuable to pinpoint potential 
drug targets [18]. From the total 836 proteins identified 
in our proteomics approach, ~ 810 have matched 
transcripts found in the transcriptomics dataset (Fig. 7). 
This corresponds to 97% of the total protein set and 6% 
of the total transcripts, consistent with previous studies 
integrating transcriptomic and proteomic data from 
human lungs [61]. We designated this gene subset as 
detected translated-transcripts (Dtt), of which between 
40–60% were found to be differentially expressed, 
depending on the different CFTR cell lines. Interestingly, 
the vast majority of these were differentially expressed 
only in the protein dataset. These discrepancies between 
protein and RNA abundance could be possibly attributed 
to distinct post-transcriptional and post-translational 
regulation. Interestingly, the Dtt differentially expressed 
in both datasets showed a very high correlation between 
transcript and protein fold changes (Pearson correlation 
coefficient of ~ 0.70, except for the I1234V cell line, 
possibly due to the low number of identified Dtts). This 
suggests that this specific gene subset may be regulated at 
the transcriptional level.

The lack of common DE Dtts between all mutations 
again suggests that a core part of the molecular response 
that can be detected is not linked to CFTR LOF. As 
before, the two class II mutants share approximately half 
of their Dtts (16 out of 28–35). To obtain further func-
tional insights on this, the GO annotations for each of 
these Dtts were manually retrieved and inspected. Dtts 
identified for the F508del and N1303K are predominantly 
implicated in processes such as proteolysis, protein 
folding, protein stabilization, ER to Golgi and Golgi to 
plasma membrane transport. This agrees with the nature 
of class II CFTR mutations, which cause protein misfold-
ing and protein retention in the endoplasmic reticulum, 
leading to premature degradation of CFTR and prevent-
ing its trafficking to the cell membrane. The fact that the 
Dtt involved in these processes are not exactly the same 
suggests that the two mutant CFTR proteins undergo 
different degradation pathways. Adding to this, when 
comparing the differentially expressed genes and pro-
teins common to the two class II mutations (F508del and 
N1303K) we found two genes (PDZD4 and FLI1) and two 
proteins (ECHA and TBC14) with opposite expression 
levels. These opposite expression levels may be indica-
tive of specific mechanisms that may explain the differ-
ence observed in the response to therapeutic approaches 
for the correction of these mutations. Interestingly, the 
16 Dtt common to F508del and N1303K that are com-
mon (and specific) to the pair suggests an epithelial to 
mesenchymal transition (EMT) signature associated with 
these class II mutations. EMT is a developmental process 

in which polarized epithelial cells are reprogrammed 
to assume a mesenchymal cell phenotype that includes 
enhanced migratory capacity and has previously been 
associated with CF [62, 63].

In summary, the present study provides a global picture 
of the genes and proteins that are differentially expressed 
in human bronchial cells as a result of prototypical CFTR 
mutations, being the first to integrate the transcriptome 
and proteome of cells carrying not only F508del but 
also other CFTR mutations. Although the functional 
signatures identified in the transcriptomics analysis 
may be associated with the lack of functional CFTR, 
globally our results reveal a surprising scenario—that 
the core changes in cell function that are detected at the 
RNA and protein levels are characteristic of the type of 
mutation and not so much of the associated gene LOF 
or “diseased” phenotype. These observations suggest 
that the approaches used can capture the subtilities 
of the phenotypic diversity, by detecting signatures 
that highlight the direct impact of the disease-causing 
mutation on gene expression processes rather than 
easily identifying the critical molecular hubs affected by 
the LOF of the disease-associated gene, which would be 
relevant as novel biomarkers or therapeutic targets.

Our work thus brings forth a word of caution towards 
the use of omics approaches to assess disease states, 
namely when a single, predominant mutation is system-
atically studied, as is the case of F508del in cystic fibro-
sis. It further highlights the critical aspect of performing 
the studies in a biologically relevant model. Indeed, 
despite our effort to address the impact of CFTR LOF on 
homozygous, endogenous CFTR mutants in the context 
of the same bronchial epithelial cell line, this remains an 
artificial system, lacking the tissue polarisation, struc-
tural and cellular interactions present in the context of a 
human lung. It is possible that in the right physiological 
context, the molecular changes that connect directly to 
the disease phenotype will become more apparent. Alter-
natively, the signatures may be even more confounded by 
the increased complexity of the system. Taken together, 
our work provides important new insights that extend 
beyond the molecular pathology of CF and CFTR LOF to 
the global quest for the identification of molecular targets 
for genetic disorders using transcriptomics and proteom-
ics approaches.
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Additional file 2: Figure S1. Characterization of the 16HBE I1234V‑CFTR 
cell line A) The A > G alteration at position 3700 showed in red results 
in the creation of a cryptic donor splice site (GU). B) Scheme of splicing 
possibilities that occur in the presence of A (in green, WT) or a G (in red, 
I1234V) at position 3700 corresponding to normal or alternative splicing, 
respectively. C) Sequence of the WT cells (top panel) and the 16HBE 
I1234V‑CFTR cell line (bottom panel). D) Sequence of the CFTR cDNA in 
the WT cells (top panel) and I1234V‑CFTR cells (bottom panel) showing 
the aberrant transcript lacking 18‑nt. Figure S2. Quality of the transcrip‑
tomics data A) Correlation of RNA‑Seq data between each CFTR mutation 
replicate. B) Principal component analysis of the normalized RNA‑Seq 
data for each genotype. Figure S3. Characterization of the CFF 16HBEge 
CFTR Y122X and CFF 16HBEge CFTR W1282X generated by the CFF Labs 
A) CFTR mRNA abundance normalized to GAPDH (house‑keeping gene). 
Fold‑change values are mean ± SEM relative to WT (n = 3 biological rep‑
licates). Vs. WT: **P ≤ 0.01. B) Western blot analysis of CFTR (UNC596) and 
Tubulin loading control for WT‑CFTR, Y122X‑CFTR, and W1282X‑CFTR. Fig‑
ure S4. Characterization of the 16HBE I507del‑CFTR cell line A) Sequence 
of the 16HBE WT‑CFTR (top panel) and the I507del‑CFTR (bottom panel) 
cell lines confirming the genotype. B) CFTR mRNA abundance normalized 
to GAPDH (housekeeping gene). Fold‑change values are mean ± SEM rel‑
ative to WT (n = 3 biological replicates). Vs. WT: *P ≤ 0.05. C) Western blot 
analysis of CFTR (UNC596) and Tubulin loading control for WT‑CFTR and 
I507del‑CFTR cell lines. Figure S5. Validation of DEGs and DEPs in primary 
human nasal epithelial (pHNE) cells. DEGs common to all mutant cell lines 
were validated by RT‑qPCR in A) F508del‑CFTR and B) N1303K‑CFTR cells. 
The 2‑ΔΔCT method was used for data analysis using GAPDH as a house‑
keeping gene. DEPs common to all mutant cell lines were validated by WB 
in C) F508del‑CFTR and D) N1303K‑CFTR cells. The vertical axis represents 
the gene or protein expression level obtained from RNA‑seq or mass 
spectrometry, respectively. The horizontal axis represents the gene or 
protein expression level obtained from RT‑qPCR or WB, respectively. Each 
coloured dot represents a different gene or protein. For a gene or protein 
to be validated, the corresponding dot must fall either on the bottom left 
or top right square. All data are presented as mean ± SEM and relative to 
WT‑CFTR (n = 3 biological replicates). Figure S6. Quality of the proteom‑
ics data Principal component analysis (PCA) of the normalized proteomics 
data for each genotype. Figure S7. Correlations between mRNA and 
protein levels Across‑gene correlation analysis comparing absolute mRNA 
abundance (expressed in fragments per kilobase of transcript per million 
mapped reads (FPKM)) to protein abundance (expressed as sequential 
window acquisition of all theoretical mass spectra (SWATH‑MS) intensity) 
in the different cell lines. A) WT‑CFTR, B) G542X‑CFTR, C) F508del‑CFTR, D) 
N1303K‑CFTR, E) G551D‑CFTR, and F) I1234V‑CFTR. 

Additional file 3: Data S1. List of RNA‑seq samples and the percentage 
and number of mapped reads. 

Additional file 4: Data: S2. List of differentially expressed genes (DEGs) in 
the different 16HBE mutant cell lines (p‑value < 0.05). 

Additional file 5: Data 3. List of significantly enriched GO terms found in 
the DEG dataset for each 16HBE mutant cell line. 

Additional file 6: Data S4. List of proteins detected in the different 
16HBE cell lines. 

Additional file 7: Data S5. List of differentially expressed proteins (DEPs) 
in the different 16HBE mutant cell lines (p‑value < 0.05). 

Additional file 8: Data S6. List of significantly enriched GO terms found 
in the DEP dataset for each 16HBE mutant cell line. 

Additional file 9: Data S7. List of genes in the transcriptomic dataset 
with correspondence in the proteomic data set (gene/protein pairs) in 
each 16HBE mutant cell line.
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