
Chen et al. Cell & Bioscience           (2023) 13:19  
https://doi.org/10.1186/s13578-023-00971-2

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Cell & Bioscience

Dynamic single‑cell RNA‑seq analysis 
reveals distinct tumor program associated 
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Abstract 

Background  Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of malig-
nant plasma cells. Despite extensive research, molecular mechanisms in MM that drive drug sensitivity and clinic 
outcome remain elusive.

Results  Single-cell RNA sequencing was applied to study tumor heterogeneity and molecular dynamics in 10 MM 
individuals before and after 2 cycles of bortezomib–cyclophosphamide–dexamethasone (VCD) treatment, with 3 
healthy volunteers as controls. We identified that unfolded protein response and metabolic-related program were 
decreased, whereas stress-associated and immune reactive programs were increased after 2 cycles of VCD treatment. 
Interestingly, low expression of the immune reactive program by tumor cells was associated with unfavorable drug 
response and poor survival in MM, which probably due to downregulation of MHC class I mediated antigen presenta-
tion and immune surveillance, and upregulation of markers related to immune escape. Furthermore, combined with 
immune cells profiling, we uncovered a link between tumor intrinsic immune reactive program and immunosuppres-
sive phenotype in microenvironment, evidenced by exhausted states and expression of checkpoint molecules and 
suppressive genes in T cells, NK cells and monocytes. Notably, expression of YBX1 was associated with downregula-
tion of immune activation signaling in myeloma and reduced immune cells infiltration, thereby contributed to poor 
prognosis.

Conclusions  We dissected the tumor and immune reprogramming in MM during targeted therapy at the single-cell 
resolution, and identified a tumor program that integrated tumoral signaling and changes in immune microenviron-
ment, which provided insights into understanding drug sensitivity in MM.
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Background
Multiple myeloma is a hematological malignancy with 
accumulation of clonal plasma cells (PCs) in the bone 
marrow (BM) [1]. The present treatment using protea-
some inhibitors (PIs), immunomodulatory drugs (IMiDs) 
and monoclonal antibodies elicits deep remission and 
prolonged survival in newly diagnosed MM (NDMM) [2]. 
However, MM remains an incurable disease, with almost 
all patients relapse eventually [3]. A unique feature of 
this malignancy is the clonal heterogeneity including 
both primary and secondary cytogenetic abnormalities 
as well as specific molecular alterations, which have been 
demonstrated to influence therapeutic outcomes [4–7]. 
Previous attempts to unravel the tumor complexity at 
single-cell resolution have revealed significant inter-
patient heterogeneity across disease spectrum from pre-
cursor asymptomatic disease stages to active MM [8] and 
even the relapsed/refractory multiple myeloma (RRMM) 
stage [9, 10]. In addition to these inter-tumor heteroge-
neities, MM also displays enormous intra-tumor hetero-
geneity (ITH) comprised of a mixture of clones [4, 11, 12] 
and diverse transcriptional programs [10, 13], which pose 
both challenges and opportunities for myeloma therapy.

PIs (e.g., bortezomib, carfilzomib) are impressively 
effective for myeloma by targeting ubiquitin–proteasome 
system and are routinely used in combination with other 
anti-myeloma agents [14–16]. However, not all patients 
respond equally well to treatment with drugs, including 
PIs, and patients often acquire therapeutic resistance over 
the course of treatment, which remains a crucial obsta-
cle to improve therapeutic effect in MM [17, 18]. Clonal 
selection and evolution play roles in drug response and 
disease progression in MM [7, 19, 20]. Chemotherapy 
affects transcriptional programs and clone evolution of 
myeloma cells, which provides an opportunity to system-
atically decipher the most relevant treatment-induced 
cellular responses and may help to define novel effec-
tively targeted therapeutics. In addition, prior studies 
have confirmed compositional and expression changes of 
immune and stromal components in BM microenviron-
ment associated with anti-myeloma responses and thera-
peutic outcomes [9, 21, 22]. Collectively, these intrinsic 
and extrinsic factors highlight the need to understand 
the molecular mechanisms underlying the drug response, 
disease heterogeneity and progression of MM.

Single-cell RNA-seq (scRNA-seq) methodologies are 
extending our ability to dissect myeloma cell heterogene-
ity and define dynamic changes of their microenviron-
ment in a high-resolution way [8, 9, 13, 23]. However, the 
tumor and microenvironment determinants of response 
to anti-myeloma agents remain incompletely understood. 
In this work, we performed scRNA-seq to analyze tumor 
heterogeneity and molecular dynamics of 10 individuals 

with MM before and after VCD treatment, as well as 3 
healthy volunteers. Using this unique paired resource, 
we analyzed cellular heterogeneity and transcriptional 
reprogramming by quantifying variations in oncogenic 
signaling pathways, as well as microenvironmental states 
during the therapy, thereby providing potential mecha-
nisms in MM pathogenesis and treatment response.

Results
Single‑cell expression atlas and cell typing in MM patients 
and healthy donors
To define transcriptional states in MM at single-cell res-
olution, we used 10× Genomics to perform scRNA-seq 
of mononuclear cells from the BM and peripheral blood 
(PB) of 10 NDMM patients and 3 healthy volunteers 
(Fig. 1A). MM patients were treated with VCD regimen, 
and paired samples were collected at baseline and 2 cycles 
after treatment. In total, 10 pre- and 9 post-treatment 
BM and corresponding PB samples from MM patients, as 
well as 3 BM and 3 PB from healthy volunteers were col-
lected and processed for scRNA-seq analysis (Additional 
file 1: Table S1). By comparing different batch-effect cor-
rection methods, we achieved a better integration result 
by fastMNN [24] in terms of the ability to integrate 
batches while maintaining cell type separation (Fig.  1B, 
Additional file 1: Figs. S1A, B and S2A–C). After quality 
filtering, we obtained the single-cell transcriptome data 
for 241,440 high-quality mononuclear cells, and identi-
fied 13 major cell types including T cells, NK cells, plasma 
cells, myeloid cells, B cells and precursor cells based on 
well-established marker genes (Fig. 1B, Additional file 1: 
Fig. S2A–C). Two-dimensional embedding using UMAP 
showed a clear separation of immune cells from plasma/
myeloma cells with the high PC scores defined by expres-
sion of the plasma cell markers (Fig.  1C). Overall, we 
profiled 25,231 plasma cells and 216,209 immune cells 
for an integrated analysis of both tumor and immune-
cell heterogeneities in MM. In contrast to PB, several 
precursor cells were enriched in BM, including HSPC 
(hematopoietic stem and progenitor cell), GMP (granulo-
cyte–monocyte progenitor), Ery (erythroid progenitors) 
and immature B cells. However, other major immune 
cells including T/NK cells, monocytes, dendritic cells 
(DC) and mature B cells were enriched in PB (Additional 
file  1: Fig. S2C). When analyzed cell type abundances 
during treatment, we observed that besides plasma cells, 
B cells proportion was also reduced in patients treated 
with VCD (Additional file  1: Fig. S2C), which was also 
found in MM patients after IMiD-based treatments [9, 
25], reflecting their common drug vulnerabilities likely 
due to the close lineage.

As MM typically presents with BM infiltration of 
clonal plasma cells, myeloma cells in each patient 
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enriched in BM, with few cells derived from PB (Addi-
tional file  1: Fig. S3A, B). Comparing the circulating 
myeloma cells with the BM myeloma cells for each 
subject, we observed that in most cases, the circulat-
ing tumor cell signatures highly resembled the BM 
transcriptional profiles, except for one patient (MM04) 

with the highest abundance of PB tumor cells (Addi-
tional file 1: Fig. S3C). Compared with BM, circulating 
myeloma cells from this patient exhibited high expres-
sion of genes that correlated with disease aggressive-
ness and cell migration (Additional file  1: Fig. S3D), 
which may explain their presences in circulation.

Fig. 1  Single cell assessment revealed tumor heterogeneity in myeloma. A Schematic representation of the experimental strategy and sampling 
time-points of the study. B UMAP plot of single cells profiled in the presenting work colored by major cell types after fastMNN integration. C UMAP 
plot of single cells colored by plasma cell (PC) score according to expression of the plasma cell markers (SDC1/CD138, TNFRSF17 and SLAMF7). D 
UMAP plots showing the re-clustering of plasma cell (PC) colored by subclusters (left) and patients (right). E Pearson correlation matrix of averaged 
gene expression levels per patient. Top, cytogenetic information; bottom, averaged gene expression levels of five MM driver genes



Page 4 of 18Chen et al. Cell & Bioscience           (2023) 13:19 

Identification of inter‑ and intral‑tumor heterogeneity 
in MM
To better understand the transcriptional features in 
normal plasma cells (nPCs) and myeloma cells, we re-
clustering PCs and characterized them into 20 differ-
ent clusters (Fig.  1D). The clustering results revealed 
a strong transcriptional heterogeneity between MM 
patients, while nPCs from healthy volunteers and small 
proportion of cells in MM clustered together in cluster 
15, suggesting there were several nPCs in MM samples 
(Fig.  1D). We then distinguished myeloma cells from 
nPCs by inferCNV tool [26]. We estimated copy num-
ber alterations (CNAs), using nPCs from healthy donors 
as reference and profiled CNAs of plasma/myeloma cells 
from each MM patient, and we were able to robustly dis-
tinguish myeloma cells from nPCs (Additional file 1: Fig. 
S4A–C). Myeloma cells highly expressed well-known 
driver genes, including CCND1, NDS2/MMSET, CCND3 
and pathway analysis showed prominent upregulations of 
multiple biological processes and pathways in myeloma 
cells compared with nPCs (Additional file  1: Fig. S5A, 
B). Then, the gene expression-based hierarchical clus-
tering classified myeloma cells into transcriptional sub-
types consistent with their cytogenetics, which was also 
evident by their driver genes and other essential genes 
expression pattern in each immunoglobulin heavy chain 
(IGH) translocation group (Fig. 1E, Additional file 1: Fig. 
S5C, D). These results suggested inter-myeloma het-
erogeneity could be explained by well-known oncogenic 
drivers and distinct transcriptional signatures.

To further investigate intral-tumor heterogene-
ity (ITH), we performed clustering analysis on PCs for 
each MM individually and combined their CNA clones 
to inspect overall ITH. We observed that the number of 
transcriptional clusters per patient increased with the 
number of cells analyzed, however CNA clone number 
didn’t show significant correlation with cluster number 
(Additional file  1: Fig. S6A), which was consistent with 
previous scRNA-seq study [9]. We next determined ITH 
score of tumor cells in each MM patient based on their 
gene expression profiles through DEPTH package [27], 
and found that ITH score was apparently different in 
each patient (Additional file 1: Fig. S6B). However, aver-
age ITH score showed no significant correlations either 
with the cluster number or CNA clone number (Addi-
tional file 1: Fig. S6B). We next tested association of ITH 
score with clinical characteristics of MM patients from 
CoMMpass dataset with a larger sample size. Results 
showed that ITH score was significantly higher in 
relapsed MM compared with NDMM (Additional file 1: 
Fig. S6C), and survival analyses indicated that higher ITH 
score was associated with worse overall survival (OS) 
and progression-free survival (PFS) (Additional file  1: 

Fig. S6D, E). Together, these results showed that ITH was 
prevalent in myeloma which can be predictive for clinic 
outcome.

Four malignant cell programs dysregulated after treatment
Drug-induced changes may have the potential to reveal 
important insights into the molecular mechanisms in 
action of chemotherapeutics. Therefore, we set out to 
investigate the global gene expression profiling of mye-
loma cells before and after VCD treatment. After 2 cycles 
of treatment, each patient exhibited different extent of 
reductions in tumor cells abundance due to the effective-
ness of VCD induction therapy (Fig.  2A, B, Additional 
file 1: Fig. S7A), and most of patients achieved very good 
partial response (VGPR) or partial response (PR) (Addi-
tional file 1: Table S1) defined by International Myeloma 
Working Group (IMWG) criteria [28]. Interestingly, ITH 
score also showed a significant reduction after treat-
ment, probably due to the elimination of tumor cells 
(Additional file 1: Fig. S7B). When comparing the driver 
genes such as CCND1, CCND3, NDS2/MMSET in each 
patient, we found that among the four MM with t(4;14) 
translocation, two patients (MM07, MM08) with VGPR 
showed dramatic reductions in FGFR3 expression after 
treatment, however other two patients with PR or stable 
disease (SD) (MM03 and MM10 respectively) showed 
this decrease in a less extent (Additional file 1: Fig. S7C). 
A remarkable decrease in CCND1 expression was also 
found in one of the MM patients with t(11;14) (MM02) 
who achieved PR post treatment, which may suggest a 
potential link between reduction of driver genes expres-
sion and drug response.

Based on the great inter-tumor heterogeneity, to 
profile dynamic transcriptional changes, we deter-
mined differentially expressed genes (DEGs) between 
per- and post-treated tumor cells within the same 
subject respectively and detected 163 to 520 DEGs in 
each patient. We then performed functional enrich-
ment analysis and identified four cellular programs 
shared across MM patients affected by chemotherapy, 
including unfolded protein response (UPR), metabolic-
associated, stress-associated and immune reactive 
programs (Fig.  2C). UPR program was characterized 
by key genes regulating protein folding and endoplas-
mic reticulum (ER) stress, and metabolic-associated 
program was featured by high expression of metabolic 
genes involved in glycolysis and amino acids metabo-
lism (Fig.  2C and Additional file  1: Table  S2). Expres-
sions of these two programs were consistently reduced 
in post-treated samples (Fig. 2D), implied that chemo-
therapy either killed most of the tumor cells with high 
UPR and metabolic state or induced inhibition in these 
cell states. Stress-associated signature consisted of 
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Fig. 2  Treatment induced transcriptional changes in tumor cells. A UMAP embedding of myeloma cells colored by treatment time points (Pre 
and Post). B Bar plot of myeloma cell fraction in 9 matched pre and post samples. C Heat map of average expression of representative genes 
and corresponding pathways in pre and post-treatment samples. D Scores of UPR, metabolic-associated, stress-associated and immune reactive 
programs in each MM patient with matched pre and post samples. E Heat map of the area under the curve (AUC) scores of TF motifs estimated 
per cell by SCENIC. Shown are representative differentially activated motifs in nPCs (HD), myeloma cell pre and post-treated, respectively. Statistical 
analysis in D was performed by Wilcoxon test. HD, n = 3; pre, n = 9, post = 9; ns, not significant; **p < 0.01, ****p < 0.0001
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stress-responsive genes (e.g., FOS JUN), pro-survival 
(e.g., GADD45A, MCL1 and BCL2) and oxidative stress 
genes (e.g., PRDX4 and GCSH) (Fig. 2C and Additional 
file 1: Table S2). Increase in stress program after treat-
ment (Fig.  2D) suggested that chemotherapy elicited 
stress response in tumor cells and may in turn assist 
myeloma in anti-apoptosis and recovery from drug 
targeting, supporting the finding that bortezomib trig-
gers oxidative stress response [29–31] and high cellu-
lar antioxidant capacity thereby contributing to drug 
resistance [31, 32]. Additional immune reactive pro-
gram contained various genes associated with immune 
response and activation pathways such as antigen pres-
entation (e.g., HLA-A, HLA-B, HLA-C, CD74, CTSS), 
interferon (IFN) signaling (e.g., IRF1, IFIH1, IFITM1, 
IFNAR1), chemokines (e.g., CCR2, CCR10) and 
tumor necrosis factor (TNF) signaling via NF-kB (e.g., 
TNFAIP3, NFKB1 and NFKB2) (Fig. 2C and Additional 
file  1: Table  S2).Upregulation of the immune genes 
program was found in post-treated samples (Fig.  2D), 
suggesting therapy induced anti–myeloma immune 
response mediated by multiple pathways activation. 
Mapping malignancy-specific regulon networks by 
SCENIC [33], we also identified several key transcrip-
tional factors (TFs) associated with treatment (Fig. 2E). 
For instance, XBP1 and STAT3 showed reduced regu-
lon activities, in lined with decreased UPR and IL6-
STAT3 signaling following treatment. On the contrary, 
FOSB, MYC and its translational regulator YBX1 exhib-
ited increased regulon activities after treatment, there-
fore potentially supported anti-apoptosis activity and 
stress-response signaling under treatment pressure. 
Other TFs with upregulated activities associated with 
epigenetic regulation (EZH2, SMARCA4 and SETDB1) 
(Fig.  2E), indicating a chromatin remodeling dur-
ing treatment. We also compared myeloma cells from 
responders who achieved VGPR/PR to tumor cells from 
non-responders who experienced SD (Additional file 1: 
Fig. S8A). Responders exhibited a significant reduction 
in cell proportion after treatment as expected (Addi-
tional file 1: Fig. S8B) and higher level of immune reac-
tive score and related genes expression (e.g., HLA-A, 
HLA-E, HLA-F, CD74, CTSS) than non-responders 
(Additional file 1: Fig. S8C, D). By comparing myeloma 
cells in pre-treated samples with post-treated samples 
both in responders and non-responders, we found 
genes and pathways involving TGFβ signaling and cell 
adhesion were downregulated after treatment, while 
stress-associated genes and pathways (e.g., apopto-
sis, reactive oxygen species) showed upregulated after 
treatment both in responders and non-responders 
(Additional file 1: Fig. S8E, F).

Taken together, we demonstrated dynamic transcrip-
tional programming in myeloma cells and identified 
four distinct cancer programs that affected by VCD 
therapy.

Low immune reactive program predicted unfavorable drug 
response and prognosis in MM
The increase in stress and immune reactive programs 
following treatment prompted us to investigate whether 
they play roles in disease progression and resistance to 
therapy in large cohorts. By scoring NDMM samples in 
CoMMpass cohort, we found limited impacts of stress 
program in patient prognosis (Additional file  1: Fig. 
S9A, B), therefore we focused on the immune reactive 
signature. We examined scRNA-seq data from KYDAR 
study (GSE161195) [34] and found that immune reac-
tive score was significant lower in non-responders com-
pared with responders who received daratumumab and 
carfilzomib-based combined regimens (Fig. 3A). We also 
re-analyzed the RNA-seq data from another independent 
study (PADIMAC, GSE116324) [35] that denoted a bort-
ezomib-good group who achieved VGPR or better and 
progression free at 1  year without autologous stem cell 
transplantation (ASCT), and remaining MM defined as 
bortezomib-standard group. By scoring tumor cells from 
this study, we found that immune reactive score was sig-
nificant lower in bortezomib-standard patients compared 
with bortezomib-good patients (Fig.  3B), indicating low 
immune response may compromise drug sensitivity. 
We then further tested whether this signature can affect 
patient prognosis, and found that low immune reactive 
score was significantly associated with worse OS and PFS 
(Fig.  3C, D). These findings collectively suggested that 
the immune-reactive program was linked to unfavora-
ble drug response and thereby conferring poor outcome 
to patients whose tumor possessed low level of such cell 
state.

Tumor cells with lower immune reactive program exhibited 
immune escape phenotype
After observing the impacts of immune reactive sig-
nature on MM clinic outcome, we next explored the 
transcriptional profiles of tumor cells with discrete 
immune reactive score and identified their differences 
that potentially contributed to unfavorable prognosis. 
We firstly determined the expression score of immune 
reactive genes in tumor cells from each patient and sep-
arated them into a high or low group according to their 
scores (Fig.  4A). We then performed pathway analysis 
comparing the two groups, and found that tumors with 
low immune reactive score possessed downregulation 
of various immune response pathways as expected, 
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including TNFα and IFN signaling, whereas showed 
upregulation of transcriptional networks related to 
cell division, MYC signaling and metabolic process 
(Fig.  4B). To further confirm this “immune-exclusion” 
phonotype, we examined the expression of genes regu-
lating immune surveillance and demonstrated signifi-
cant decreased expressions of MHC class I molecules, 
thereby, impaired immune surveillance in low-immune 
reactive tumors (Fig.  4C). We also determined the 
expression of immune suppressive genes, and observed 
an increase in immune escape score and high expres-
sions of CD47, LGALS1 and TGFB1 in low-immune 
response myeloma (Fig.  4D). These data suggested 
that these tumors possessed active cell growth and 

proliferation as well as high capacity to evade immune-
mediated cell death.

Characterization of dysfunctional immune cells in tumor 
microenvironment
We next explored the changes of major populations 
of immune cells pre/post-treatment. We character-
ized DEGs (Additional file 2) and differential pathways 
(Additional file 1: Fig. S10A, B) between pre- and post-
treatment samples in each cell type. Among those, 
IFN-response genes, such as IFI44L, MX1, IFI6, ISG15, 
stress-associated genes, such as DDIT4, FOS, JUNB, 
and related signaling pathways were downregulated in 
most of immune cells after treatment. Whereas, histone 

Fig. 3  Immune reactive program predicted drug response and clinical outcome of patients with MM. A Violin plot of immune reactive score 
in patients from GSE161195 dataset. B Box plot of immune response score in MM patients from GSE116324 dataset (Bortezomib-good, n = 13; 
Bortezomib-standard, n = 31). C, D KM plots and analysis for OS (C) and PFS (D) comparing NDMM patients in CoMMpass data with high 
immune reactive score (red) and patients with low immune reactive score (blue). Statistical analysis was performed by Wilcoxon test, **p < 0.01, 
****p < 0.0001. KM Kaplan Meier
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Fig. 4  Differential expression analysis of tumor cells with different immune reactive scores. A Violin plot showing immune reactive score in each 
MM (up) and patients were divided into high or low status group (bottom). B Bar chart showing the enrichment of specific pathways, based on the 
HALLMARK, GO-BP and KEGG gene sets of upregulated and downregulated genes in high-immune reactive status samples compared with low 
status samples. C Violin plots showing immune surveillance score and expressions of MHC class I molecules. D Violin plots showing immune escape 
score and expressions of immunosuppressive genes. Statistical analysis in A, C, D was performed by Wilcoxon test, ****p < 0.0001. High, n = 5; Low, 
n = 5
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genes, such as HIST1H1E, HIST1H1D, HIST2H2AC, 
HIST1H4C showed common upregulations in immune 
cells after treatment. In addition, cytotoxic markers 
such as NKG7 and GZMB in T cells and proinflamma-
tory genes including S100A8, IRF1, CCL3, CCL3L1, 
TNFSF13B in myeloid subsets showed upregulations 
after treatment (Additional file  1: Fig. S10A, B, Addi-
tional file 2).

Based on the observation of immune escape pheno-
type above, we then further delineated the relation-
ship between immune-associated state in cancer cells 
and immune cell composition and function in tumor 
microenvironment (TME). While except for immature 
B cells, none of the major immune cell types showed 
substantial proportional differences between patients 
with immune-reactive high and low tumors (Addi-
tional file  1: Fig. S11), we then analyzed functional 
differences in the most prevalent immune cell types. 
We firstly extracted T cells in MM samples identify-
ing 11 subsets in all T cells (Fig. 5A, B), and examined 
changes associated with their functional states. CD8+ 
effector T and IFN-responding T cells together with 
NK cells displayed significant increased exhaustion 
scores in tumors with low immune reactive status com-
pared with high-immune response tumors, evidenced 
by higher expression of immune checkpoint receptors 
including PD-1 (PDCD1), LAG3 and TIM3 (HAVCR2) 
(Fig.  5C–F). Additionally, monocytes also showed 
increased expression of immune checkpoints and eva-
sion genes in these patients (Fig.  5E, F). To verify the 
relationship between tumor intrinsic immune reactive 
signaling and T/NK cell function, we extracted mye-
loma cells from RRMM patients with paired immune 
cells in these patients (GSE161801) [9], and analyzed 
the signatures identified in our dataset. Results showed 
that signature of immune response activation in mye-
loma cells was positively correlated with co-stimulation 
score in CD8+ cytotoxic T cells (T_CD8_tox), cyto-
toxicity score in NKdim, CD8+ effector memory T and 
γδT cells (gdT) (Fig. 5G). In contrast, immune response 
activation in tumor cells was negatively correlated with 
exhaustion score in CD8+ cytotoxic T, NKdim and γδT 
cells (Fig.  5G). These data suggested that early reduc-
tion of immune activation in tumor persisted in relapse 

stage, and compromised function of CD8+ effector T, 
NK and γδT cells in immune exclusion TME contrib-
uted to myeloma cells immune evasion.

Cellular interactions of tumor and BM microenviron-
ment (BME) cells mediated by specific ligands and recep-
tors affect disease progression and treatment resistance 
[36]. Therefore, we further predicted cellular interactions 
based on the expression of ligand-receptor pairs. Most 
pronounced interactions were found between myeloma 
cells and monocytes and dendritic cells (Additional file 1: 
Fig. S12A), in line with previous observations in RRMM 
[9]. Notably, several T cell and myeloid subsets showed 
lower tendency of interactions with myeloma cells in 
patients with low immune reactive compared with the 
high group (Additional file  1: Fig. S12A). By investi-
gating individual interactions, we observed a frequent 
downregulation of pair of genes in immunomodulation 
in patients with low immune reactive, including CD86-
CD28, TNFRSF10A-TNFSF10, CD74-APP/COPA/MIF, 
HLA-C-FAM3C and HLA-E-NKG2C (KLRC2), while 
upregulated pro-myeloma gene pairs including TGFB1-
TGFBR2/TGFBR3, LGALS9-CD44 and CD47-SIRPA 
(Additional file 1: Fig. S12B).

YBX1 was involved in immune response, immune cells 
infiltration and clinic outcome in MM
Based on the comprehensive alterations in cellular pro-
grams of tumor and microenvironment under treatment, 
we hypothesized that specific gene expression changes in 
myeloma cells can modulate tumor signaling and regu-
late immune response to TME. Notably, we identified 
a transcription factor YBX1 (Y-box binding protein-1, 
YB-1), which was upregulated in myeloma cells with low 
immune reactive status (Additional file 1: Fig. S13A), and 
showed negative correlation with MHC class I molecules 
expression, whereas positive correlation with expres-
sions of immunosuppressive genes including LGALS1 
and TGFB1 (Additional file 1: Fig. S13B). These data indi-
cated that YBX1 might represent a potential factor that 
regulated the immune response program. Additionally, 
YBX1 showed upregulation in tumors from SD patients 
compared with patients of VGPR/PR both at baseline 
and 2 cycles of treatment (Fig.  6A). Through longitudi-
nal analysis on primary refractory MM (PRMM) patients 

(See figure on next page.)
Fig. 5  Functional analysis of immune cells in TME. A UMAP plot showing the re-clustering of T cell subsets colored by cell type. B Heat map 
showing averaged gene expression level of T cell subsets marker genes. C Violin plots showing exhaustion scores of CD8+ effector T cells (left) 
and IFN-responding T cells (right) in high/low immune reactive tumors. D Heat maps of average gene expression levels of immune checkpoints 
in CD8+ effector T cells (left) and IFN-responding T cells (right). E Violin plots showing exhaustion scores of NK cells (left) and immune escape 
scores in monocytes (right) in high/low immune reactive tumors. F Heat maps of average gene expression levels of immune checkpoints and 
immunosuppressive genes in NK cells (left) and monocytes (right). G Scatterplots showing pearson correlations between immune response 
activation with scores of co-stimulation, cytotoxicity and exhaustion per patient in GSE161801 dataset. Statistical analysis in C, E was performed by 
Wilcoxon test, *p < 0.05, ****p < 0.0001
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from GSE161195 dataset [34], we validated the correla-
tion between high YBX1 expression and inferior drug 
response (Fig.  6B). Survival analyses further revealed 

high YBX1 expression significantly predicted poor OS 
and PFS in MM patients (Fig.  6C). Consistently, gene 
set enrichment analysis (GSEA) on CoMMpass cohort 

Fig. 5  (See legend on previous page.)
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revealed that multiple biological processes, includ-
ing hematopoietic stem cell differentiation, mTORC1 
signaling, MYC target, cell cycle were upregulated in 
MM highly expressed YBX1 compared with low-YBX1 
group (Fig.  6D). In contrast, pathways involving activa-
tion of immune response were downregulated in YBX-
high group (Fig.  6D). These resembling features from 
low immune-reactive patients identified above led us to 
test impacts of YBX1 expression on TME composition. 
By estimating immune cells infiltration in CoMMpass 
cohort using ssGSEA method, we observed that most of 
the TME components, such as CD4+/CD8+ Tem, γδT, 
NK subsets, multiple myeloid subsets and B cells were 
significant lower in patients with high YBX1 expression 
compared with those with low YBX1 (Fig.  6E). Collec-
tively, these results suggested that high level of YBX1 may 
confer “cold” tumor immune phenotype, characterized by 
reduced abundance of infiltrating leukocytes, diminished 
immune cell activation and emergence of immunosup-
pressive signaling, which might represent a promising 
therapeutic target.

To validate the findings from our scRNA-seq data 
regarding YBX1 function in MM, we further per-
formed in  vitro experiments on human myeloma cell 
lines (HMCLs) and primary myeloma samples. After 
the knockdown of YBX1 (Fig. 6F), cell proliferation was 
significantly decreased in U266, OPM2 (Fig.  6G) and 
RPMI-8226 (Additional file  1: Fig. S14A) myeloma cell 
lines. Consistently, reduced cell viability was found in 
primary myeloma cells after YBX1 suppression (Fig. 6H). 
To further explore the potential mechanisms of YBX1, 
we tested several key genes involving immune response 
identified in scRNA-seq analysis. The qPCR results 
showed that knockdown of YBX1 upregulated immune 
surveillance genes including HLA-A, HLA-C, MICB, 
while downregulated immune suppressive genes includ-
ing CD47, LGALS1 and PVR (ligand for TIGIT) in 
U266, OPM2 (Fig. 6I) and LGALS9 (ligand of TIM-3) in 
RPMI-8226 (Additional file 1: Fig. S14B, C). Tumor-T cell 
interaction is required for T cells to recognize and elimi-
nate cancer cells. We further examined the myeloma-T 

interactions with YBX1 knockdown. Through co-culture 
of T cells and myeloma cells from RPMI-8226 cell line, 
we found that tumor-binding T cells were increased 
after YBX1 knockdown in RPMI-8226, which indicated 
enhanced myeloma-T cells interaction when reducing 
YBX1 expression (Additional file 1: Fig. S14D, E). To fur-
ther investigate the effect of co-culture on T cell func-
tion, we determined the expression of several exhausted 
and cytotoxic markers of gated CD8+ T cells (Additional 
file 1: Fig. S15A). When co-cocultured with RPMI-8226 
myeloma cells with YBX1 knockdown, the frequencies 
of IFN-γ+ and GZMB+ cells among CD8+ T cells were 
significantly higher than those in CD8+ T cells co-cul-
tured with control RPMI-8226 cells (Additional file  1: 
Fig. S15B, C). On the contrary, the frequency of TIM3+ 
CD8+ T cells showed a significant decrease after knock-
ing down YBX1 in myeloma cells (Additional file 1: Fig. 
S15D), which was consistent with the decreased expres-
sion of LGALS9 in RPMI-8226 with YBX1 knockdown 
(Additional file  1: Fig. S14C), whereas other exhausted 
markers remained unchanged (Additional file  1: Fig. 
S15E). These data suggested that inhibition of YBX1 in 
myeloma cells promoted recovery of CD8+ T function.

Together, these results recapitulated and validated the 
gene expression patterns observed in our scRNA-seq 
analysis, and suggested that YBX1 facilitated its impacts 
on myeloma survival and drug response by affecting T 
cells function and promoting immune suppression.

Discussion
Despite the intensive improvement in developing new 
agents, MM remains incurable. Therefore, comprehen-
sive understanding of pathogenesis and drug resist-
ance is of major importance. In this study, we applied 
scRNA-seq on MM patients before and after treatment, 
and identified a distinct tumor program associated with 
immune response that regulated tumor signaling and 
TME alteration, therefore influenced drug response and 
patient’s survival.

Analyzing data at single-cell resolution helps us to 
precisely detect both integral and detailed complexities 

Fig. 6  Correlations of YBX1 expression with drug response, immune cells infiltration and clinic outcome. A Violin plot of YBX1 expression in MM 
patients with different drug response pre and 2 cycles post treatment. B Box plot showing YBX1 expression in responders and non-responders at 
different timepoints from GSE161195 dataset. C KM plots and analysis for OS (left, logrank test, two-sided p = 0.00012, HR = 1.742) and PFS (right, 
logrank test, two-sided p = 0.000167, HR = 1.407) comparing NDMM patients in CoMMpass dataset with low YBX1 (blue) and high YBX1 expression 
(red). D GSEA analysis showing significant positive enrichment (top) and negative enrichment (bottom) of biological processes and signaling 
pathways in tumor cells from the YBX1-high group. E The differential score of 28 immune cell type signatures by ssGSEA method in patients from 
CoMMpass database with low and high YBX1 expression. F qPCR (up) and western blot (bottom) analysis showing the mRNA and protein levels of 
YBX1 in HMCLs respectively after transduction of sh-YBX1 or sh-NC. G Proliferation curves of U266 (left) and OPM2 (right) cell lines with transduction 
of sh-YBX1 or sh-NC using CCK-8 assay. H Viability of CD138-positive primary myeloma cells 96 h after transfection with YBX1 shRNA. I qPCR 
analysis showing the mRNA expression of key targets in U266 (left) and OPM2 (right) cell lines after transduction of sh-YBX1 or sh-NC. Error bars in 
F–I denoted mean ± SD. Statistical analyses in A, B, E were performed by Wilcoxon test and by two-tailed Student t test in F–I. ns not significant, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

(See figure on next page.)
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in genomic and transcriptional profiles in cancer cells 
[9, 37, 38]. Our scRNA-seq data revealed widespread 
inter- and intra-tumor heterogeneity in myeloma cells, 

which provides a potential explanation for differential 
responses to the same therapy due to genomic and tran-
scriptional complexity. We further demonstrated the 

Fig. 6  (See legend on previous page.)
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significant correlation between ITH and drug resistant 
and patient prognosis in MM, highlighting potential 
values of ITH in clinical practice [39–41].

We showed predominant treatment-induced tran-
scriptional reprogramming in myeloma cells, character-
ized by expression changes of four distinct tumor cell 
signatures. Increased expression of the immune reac-
tive program after treatment may indicate that systemic 
tumor immunity was induced by VCD therapy, which 
was consistent with the findings in previous study [42]. 
However, MM with low immune response signature 
was linked to poor clinical outcome, and together with 
dysfunctional features in their immune compartments. 
These findings imply co-evolution of myeloma cells and 
surrounding immune components during treatment. In 
particular, these data suggested compromised immune 
activation might be induced by impairment of MHC 
class I/IFN-mediated immunosurveillance, which sup-
porting the observations from triple-refractory MM 
patients [43], and indicated that under treatment pres-
sure, myeloma cells responded at an early timepoint to 
escape from immune system for its survival and subse-
quent resistance. Therefore, our analysis demonstrated 
the alteration of immune reactive program as early as 2 
cycles after starting treatment, and provide important 
information for later drug response and survival of MM 
patients, which may represent an early predictor. And 
targeting this tumor program could be important, espe-
cially when combining chemotherapy with immuno-
therapy to help boost anti-myeloma immune response.

Y-box binding protein 1 (YB-1), encoded by YBX1 
gene, belongs to the family of DNA/RNA binding pro-
teins with a highly conserved cold-shock domain [44]. 
Many reports point to YBX1 as a regulator of cellular 
proliferation, tumor metastasis and a determinant of 
cancer stem cell function in multiple cancer types [45–
49]. In particular, YBX1 has been found contributing 
to disease progression, survival, and drug resistance in 
MM [50], probably through MYC/YBX1 oncogenic cir-
cuit [51, 52]. Given that myeloma cell oncogenesis and 
the BME are tightly linked, strategies that target both 
compartments appear to be particularly important. 
Our data suggested YBX1 may contribute to myeloma 
cells proliferation, as well as immune modulation, 
which indicate potential roles of YBX1 in regulating 
both tumor-intrinsic programs and microenvironment 
remodeling. Notably, our in vitro results indicated that 
dysregulation of immune genes including MHC class 
I molecules and immunosuppressive genes may serve 
as a novel mechanism of YBX1 in regulating immune 
escape in myeloma, which is similar to the finding that 
YBX1 signaling contributed to tumor immune eva-
sion and resistance by programmed death-1 ligand 1 

(PD-L1) in hepatocellular carcinoma [53]. Hence, YBX1 
represents a promising target for MM, which can be 
evaluated in detail for future investigation.

The study reported herein has several limitations. 
First, single-cell sequencing is limited in few patients, 
which prevents us to access comprehensive overview and 
broadly inspect myeloma pathogenesis and drug resist-
ance. Further investigation in large-scale MM samples 
is necessary. Second, our present study discovered some 
interesting changes of both myeloma cells and immune 
cells including T cells, NK cells and monocytes during 
treatment, while further experiments including in  vitro 
or in vivo functional validation experiments, are required 
to address the underlying mechanisms.

Conclusions
In summary, our results reveal a systematic landscape 
of heterogeneous malignancy and microenvironmental 
changes of MM at the single-cell resolution and identi-
fied specific transcriptomic programs based on dynamic 
profiling of pre- and post-treatment. These findings shed 
light on the molecular and cellular complexity of MM 
during treatment and provide potential molecular bio-
markers for drug response and therapeutic options.

Methods
Patients and samples
Ten patients who were pathologically diagnosed with 
active MM, and 3 age-, sex-matched healthy volunteers 
were enrolled in this study. Their demographic charac-
teristics are summarized in Additional file  1: Table  S1. 
Fresh specimens of bone marrow mononuclear cells 
(BMMC) and matched peripheral blood mononuclear 
cells (PBMC) from MM patients and healthy volunteers 
were collected. In total, 10 BMMC and matched PBMC 
were obtained in MM patients before treatment, but 
due to one patient (MM09) who died from disease, 9 
BMMC and matched PBMC were obtained after 2 cycles 
of VCD treatment. 3 BMMC and matched PBMC sam-
ples from healthy volunteers were harvested. All MM 
patients received the induction therapy of VCD regimen, 
and drug response was evaluated according to the Inter-
national Myeloma Working Group (IMWG) consensus 
criteria [28]. All patients were given informed consent 
for collection of clinical information, sample collection, 
research testing under the Ethics Committee-approved 
protocols (2019010) at Renji Hospital Affiliated to Shang-
hai Jiao Tong University School of Medicine.

Tissue acquisition and cell preparation
Fresh BM and PB samples were obtained and processed 
immediately upon receipt and were diluted with chilled 
phosphate-buffered saline (PBS, Gibco) and carefully 



Page 14 of 18Chen et al. Cell & Bioscience           (2023) 13:19 

layered over Ficoll-Paque PLUS (Cytiva, Sweden), and 
then centrifuged at 2000 rpm for 20 min at 20 °C without 
brake. Mononuclear cells at the middle layer were care-
fully transferred and washed twice with PBS, and then 
cell pellets were resuspended in 1 ml PBS + 0.04% BSA. 
Cell suspensions were counted with TC20 automated cell 
counter (Bio-Rad) to determine cell concentration and 
viability.

Droplet‑based single‑cell sequencing
According to the manufacturer’s protocol, Chromium 
Single cell 3′ Reagent v3 kits (10× Genomics) were 
used to prepare barcoded scRNA-seq libraries. Single-
cell suspensions were loaded onto a Chromium Single-
Cell Controller Instrument to generate single-cell gel 
beads in emulsions (GEMs). After generation of GEMs, 
reverse transcription reactions were engaged to gener-
ate barcoded full-length cDNA, which was followed by 
disruption of emulsions using the recovery agent, and 
then cDNA clean-up was performed with DynaBeads 
Myone Silane Beads (Thermo Fisher Scientific). Next, 
cDNA was amplified by PCR for the appropriate number 
of cycles, which depended on the number of recovered 
cells. Subsequently, the amplified cDNA was fragmented, 
end-repaired, A-tailed, and ligated to an index adap-
tor, and then the library was amplified. Every library was 
sequenced on a Novoseq 6000 platform (Illumina), and 
150 bp paired-end reads were generated.

Raw data processing and quality control
Cell Ranger (version 2.2.0) was used with default param-
eters to process the raw data, and generate gene expres-
sion matrix per cell. Ambient RNA signal was removed 
using the default SoupX [54] (v1.4.5) workflow. Samples 
were then converted into a Seurat object by the R pack-
age Seurat [55] (version 3.2.0). The low-quality cells were 
filtered: such as cells with mitochondrial counts > 15% 
and nFeature_RNA < 200. DoubletFinder [56] (v2.0) was 
then used to identify putative doublets in each sample 
individually, and the number of expected doublets was 
calculated for each sample based on the expected rates of 
doublets which are provided by 10× Genomics. Finally, 
241,440 single cells remained, and applied in downstream 
analyses.

We used Seurat to perform standard library size and 
log-normalization, and FindVariableFeatures function 
was performed to detect highly variable genes (HVGs) 
and 2000 HVGs were selected. To remove batch effects, 
log-normalized counts for each batch were used as 
input to the RunFastMNN function from SeuratWrap-
pers package with default parameters. The results of 
RunFastMNN [24] were projected to uniform manifold 
approximation and projection (UMAP), then a shared 

nearest-neighbor network was created based on Euclid-
ian distances between cells in 30 principal component 
spaces. The main cell clusters were identified with the 
FindClusters function by Seurat with resolution set to 
0.8, and visualized with UMAP plots.

Identification of DEGs and cell type annotation
To identify DEGs in each cell types, the FindAllMarkers 
function of the Seurat with the following parameters was 
used: logFC threshold, 0.25 and adjusted P value < 0.05. 
The ‘MAST’ test was used for DEG analysis. Plasma 
cells were identified based on expressing high levels of 
TNFRSF17, SDC1, and SLAMF7. Other cell types were 
annotated using classical immune cell marker expression 
according to the description given in Additional file  1: 
Table S2.

Reclustering of the cell subtypes
To identify subclusters within cell subtypes, we rese-
lected the HVGs for each cell subtype as described above 
and then applied dimensionality reduction. Batch effect 
correction and UMAP dimensionality reduction using 
default and graph-based clustering cell reclustering were 
also performed as described above. For plasma cell sub-
set, immunoglobulin genes were removed before the 
reclustering.

Estimation of CNAs (copy number alterations) in plasma 
cells
The inferCNV [26] package was used to detect the CNAs 
in individual plasma/myeloma cells and to recognize 
real cancer cells with default parameters. As reference, 
we used normal plasma cells (nPCs) derived from the 
healthy donors and profiled CNAs in myeloma cells of 
every patient individually.

SCENIC (single‑cell regulatory network inference 
and clustering) analysis
The SCENIC analysis was run as described in Aibar et al. 
(2017) [33], using the R SCENIC package (version 1.1.2-
2) and hg19-500  bp-upstream-10species databases for 
RcisTarget, GRNboost, and AUCell. The input matrix 
was the normalized expression matrix from Seurat.

Pathway analysis and definition of signature scores
Differential expression analysis comparing myeloma 
cells pre- and post-treatment was performed using the 
FindMarker function provided by Seurat. LogFC thresh-
old, 0.25 and adj.p.val < 0.05 were used as the cut-off 
criteria. Enrichment analysis based on Molecular Signa-
tures Database (MsigDB, https://​www.​gsea-​msigdb.​org/​
gsea/​index.​jsp) hallmarks, oncology (C5:BP) and KEGG 
(C2:KEGG) gene sets were performed on these DEGs 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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with ClusterProfiler. Signature scores were calculated by 
AddModuleScore function from Seurat R package. Sig-
nature gene lists were derived from MsigDB or selected 
gene sets curated from literature (Additional file  1: 
Table S2).

Cell–cell communication analysis
Cellular communication analysis was performed using 
CellPhoneDB [57] Python package (v2.0) with default 
settings.

Cell culture
Human myeloma cell lines (HMCLs) RPMI-8226, U266, 
OPM2 were cultured in RPMI-1640 medium (Gibco/
Thermo Fischer Scientific, USA) with 10% fetal bovine 
serum (FBS, Gibco/Thermo Fischer Scientific, USA) and 
1% Penicillin/Streptomycin solution (Gibco/Thermo 
Fischer Scientific, USA), and incubated in a humidified 
incubator at 37 °C and 5% CO2 atmosphere.

shRNA lentivirus production and infection
shRNA-encoding plasmids were obtained from the 
Thermo Scientific Open Biosystems GIPZ Lentiviral 
shRNA Library. The hairpin vectors were co-transfected 
with the lentivirus expression plasmid and packaging 
plasmid into actively growing HEK293FT cells using 
jetPRIME transfection reagent (Polyplus, USA) accord-
ing to the manufacturer’s instructions. Virus containing 
supernatants were collected at 48 h after transfection and 
filtered through 0.45 μm cellulose acetate filters. HMCL 
cells were plated in 6-well plates at 20–30% confluence 
and infected for 12  h in the presence of 8  μg/ml poly-
brene. And the infection was repeat twice. After infec-
tion, the cells replaced with fresh media. Knockdown 
efficiency was confirmed by qPCR or western blot. YBX1 
shRNA target sequence: 5′-CCA​GCA​AAA​TTA​CCA​
GAA​T-3′.

Western blot
Cells were lysed in RIPA with protease inhibitor cocktail 
(Roche) and loaded per lane onto 10–12% SDS PAGE 
gels. After transfer, PVDF membranes were blocked and 
incubated overnight at 4 °C with primary antibody. After 
three washes in TBST, membranes were incubated for 1 h 
at room temperature with horseradish peroxidase (HRP)-
conjugated anti-rabbit secondary antibodies (#7074, 
CST), then washed a further three times with TBST. 
Then immunoreactive protein bands were imaged using 
Immobilon Western Chemiluminescent HRP Substrate 

(Millipore). Primary antibodies used were as follows: 
YBX1 (#4202, CST), GAPDH (#2118, CST).

RNA isolation and qPCR
Total RNA was extracted using the Trizol (Invitrogen, 
USA) according to the manufacturer’s instructions.

Total RNA (1  μg) was reverse transcribed using HiS-
cript® III Reverse Transcription kit (Vazyme, China). 
Each cDNA sample was analyzed in triplicate with the 
CFX Connect Real-Time PCR Detection System (Bio-
Rad, USA) using ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, China). The primer sequences were listed 
in Additional file 1: Table S3.

Cell proliferation and viability assay
Cells were seeded into 96-well plate (5000 cells/well) with 
100 μL complete medium. We added 10 μL Cell Counting 
Kit-8 (CCK-8; Dojindo, Japan) to the wells at 24 h, 48 h, 
72 h and 96 h, respectively, to detect the proliferation of 
cells. Then, we incubated cells in the incubator for 2 h at 
37 °C out of light. We detected absorbance of each well at 
a wavelength of 450 nm using Multiskan GO Microplate 
Spectrophotometer (Thermo Scientific, USA) and calcu-
lated the cell proliferation rate. Cell viability was deter-
mined with 0.4% Trypan blue (Sigma-Aldrich, Canada) 
staining and calculated from the following formula: Per-
cent cell viability equals the number of unstained (living) 
cells divided by the total number of cells times 100 [58].

Human primary MM samples
Bone marrow aspirates were obtained from NDMM 
patients with written informed consent after approval 
of Ethics Committee at Ren  Ji Hospital, Shanghai Jiao 
Tong University School of Medicine in accordance 
with the Declaration of Helsinki. Mononuclear cells 
were isolated from samples by Ficoll-Paque PLUS (GE 
Healthcare, USA). MM cells were purified using CD138 
microbeads according to the manufacturer’s instructions 
(Miltenyi Biotech, Germany), and then used for in vitro 
experiments.

Isolation of human primary T cells and co‑culture 
with myeloma cell line
PBMCs derived from four healthy volunteers were iso-
lated using a Ficoll‑Paque gradient. T cells were purified 
from PBMCs using CD3 microbeads according to the 
manufacturer’s instructions (Miltenyi Biotech, Germany), 
and maintained in RPMI-1640 supplemented with 10% 
FBS, 1% Penicillin/Streptomycin solution, and 300 units/
ml of recombinant human IL-2 (Peprotech, USA). 1 × 105 
RPMI-8226 tumor cells with 2 × 105  T cells were seed 
and co-cultured in 48-well plate. After 12 h of co-culture, 
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microphotograph images in brightfield were captured 
and the number of T cells binding to myeloma cells 
were manually counted. For the quantification analysis 
of Tumor-T interaction, 15 fields in each group (sh-NC 
and sh-YBX1) were selected to measure the percentage 
of binding T cell to myeloma in total cells, and averaged 
binding of T cells from four healthy volunteers was calcu-
lated. For T cell function analysis, PBMCs derived from 
7 healthy volunteers were isolated using a Ficoll‑Paque 
gradient and T cells were further purified using CD3 
microbeads. Then CD3+ T cells were stimulated with 
anti-CD3/CD28 microbeads (#11131D, ThermoFisher), 
and co-cultured with RPMI-8226 tumor cells in 48-well 
plate with a ratio of Tumor:T = 1:2 (1 × 105 tumor cells 
with 2 × 105 T cells). After 5 days of co-culture, cells were 
harvested and subjected to subsequent flow cytometric 
measurements.

Flow cytometry analysis
The expression of exhausted and cytotoxic markers of 
T cell was analyzed by flow cytometry. After 5  days of 
co-culture, cells were suspended in PBS containing 2% 
FBS and incubated according to the manufacturer’s 
instructions with the following fluorochrome-labeled 
antibodies: anti-CD8-APC-A700 (#B49181, Beckman 
Coulter), anti-CD4-APC (#IM2468, Beckman Coulter), 
anti-TIGIT-PE-Cy7 (#372714, Biolegend), anti-CTLA-
4-BV785 (#369624, Biolegend), anti-Tim-3-PE-Cy7 
(#345052, Biolegend), anti-LAG-3-BV605 (#369324, 
Biolegend), anti-PD-1-BV510 (#367424, Biolegend), 
anti-Granzyme B-PE (#372208, Biolegend), anti-IFN-γ-
FITC (#IM2716U, Beckman Coulter). Cells were stained 
with fluorochrome-conjugated antibodies for 30  min at 
room temperature in the dark. For intracellular staining, 
surface-stained cells were fixed and permeabilized using 
PerFix-nc Kit (#B31168, Beckman Coulter) according to 
the manufacturer’s instructions. Flow cytometry analyses 
were performed on DxFlex system (Beckman Coulter) 
and data were analyzed using FlowJo software (v10.5.3).

Statistical analysis
All statistical analyses and graph generation were per-
formed in R (version 3.6.2) and GraphPad Prism (version 
8.0). Significance was calculated using the indicated sta-
tistical tests.
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