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Abstract 

Background  Recurrent glioblastoma multiforme (GBM) is a highly aggressive primary malignant brain tumor that is 
resistant to existing treatments. Recently, we reported that activated autologous natural killer (NK) cell therapeutics 
induced a marked increase in survival of some patients with recurrent GBM.

Methods  To identify biomarkers that predict responsiveness to NK cell therapeutics, we examined immune profiles 
in tumor tissues using NanoString nCounter analysis and compared the profiles between 5 responders and 7 non-
responders. Through a three-step data analysis, we identified three candidate biomarkers (TNFRSF18, TNFSF4, and 
IL12RB2) and performed validation with qRT-PCR. We also performed immunohistochemistry and a NK cell migration 
assay to assess the function of these genes.

Results  Responders had higher expression of many immune-signaling genes compared with non-responders, 
which suggests an immune-active tumor microenvironment in responders. The random forest model that identified 
TNFRSF18, TNFSF4, and IL12RB2 showed a 100% accuracy (95% CI 73.5–100%) for predicting the response to NK cell 
therapeutics. The expression levels of these three genes by qRT-PCR were highly correlated with the NanoString levels, 
with high Pearson’s correlation coefficients (0.419 (TNFRSF18), 0.700 (TNFSF4), and 0.502 (IL12RB2)); their prediction per‑
formance also showed 100% accuracy (95% CI 73.54–100%) by logistic regression modeling. We also demonstrated 
that these genes were related to cytotoxic T cell infiltration and NK cell migration in the tumor microenvironment.

Conclusion  We identified TNFRSF18, TNFSF4, and IL12RB2 as biomarkers that predict response to NK cell therapeutics 
in recurrent GBM, which might provide a new treatment strategy for this highly aggressive tumor.
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Background
Glioblastoma multiforme (GBM) is a highly malignant 
brain tumor that generally has a median survival of less 
than 20 months, while the 5-year survival rate is only 
4–5% [1]. Despite available aggressive standard thera-
pies, such as radiation and temozolomide (TMZ), after 
maximal surgical resection, most patients experience 
recurrence, for which there are currently no effective 
treatments, and thus, these patients exhibit poor overall 
survival.

Although a remarkable survival benefit has been 
achieved in many solid tumors including melanoma and 
lung cancer from recent advances in cancer immunother-
apy, clinical trials showed that immune checkpoint inhib-
itors, such as CTLA-4, PD-1, and PD-L1 inhibitors, failed 
to prolong survival in patients with glioblastoma [2–4]. 
The mechanism of resistance to these immunotherapeu-
tic drugs is considered to involve both endogenous and 
exogenous factors. The endogenous factors are related to 
the GBM tumor cells [5] and include low tumor muta-
tion burden (TMB) [6], extensive intra-tumoral hetero-
geneity [7], and a tumor microenvironment (TME) that 
inhibits the recruitment and function of T cells, such 
as through activation of the mitogen-activated protein 
kinase pathway, VEGF, and interleukin production. The 
exogenous factors are those that affect T cell activation. 
The most important external factor is the immune micro-
environment. Infiltration of regulatory T (Treg) cells 
[8], myeloid-derived suppressor cells (MDSCs) [9], and 
tumor-associated macrophages (TAMs), which inhibit 
the antitumor activity of T cells and natural killer (NK) 
cells, might induce resistance to immunotherapy. There-
fore, biomarkers that predict treatment sensitivity and 
that can be used to screen the population to determine 
who is suitable for immunotherapy are urgently needed 
to improve immunotherapy efficacy.

Recently, we performed a clinical trial that included 
14 patients with recurrent GBM treated with autolo-
gous activated NK cells (AKCs) [10] and found that the 
progression-free and overall survival times were signifi-
cantly increased in some patients in the treatment group, 
whereas the average survival of patients with recurrent 
GBM generally ranges from 5 to 10 months [11–14]. Of 
the 14 patients in the treatment group, 5 responded to 
the treatment, and survival was longer than 24 months.

In this study, to identify the characteristics of the 
tumor immune microenvironment profile in responders 
to AKC therapy and the factors that can predict treat-
ment response, we examined the immune profiles of 
each patient’s tissue using NanoString nCounter analy-
sis. We also performed immunohistochemistry to detect 
immune cells and analyzed the possible predictive bio-
markers of response to this immune-cell therapy. In 

addition, we performed a functional study for the possi-
ble predictive biomarkers we identified.

Materials and methods
Patient samples
A previous clinical study was conducted with 14 patients 
with recurrent GBM as a single-arm, open-label, and 
investigator-initiated trial [10]. Autologous AKCs, which 
were expanded ex-vivo for 14 days and activated  (CHA 
Biotech, Seongnam, Korea) from peripheral blood mon-
onuclear cells (PBMCs), were administered via intrave-
nous injection 24 times at two-week intervals. Among 
the 14 patients, 5 showed a durable response and sur-
vived for over 2 years; the other nine patients survived 
less than 2 years after surgery, and MRI revealed progres-
sion during AKC treatment; these patients were classi-
fied as non-responders. A further study was performed 
on paraffin-embedded tissue samples of 12 patients (5 
responders and 7 non-responders), which were obtained 
before AKC treatment and were of sufficient quantity 
and quality to be used in this study. Two board-certified 
pathologists (H.K and J.H.) reviewed the hematoxylin 
and eosin (H&E)–stained slides of all patients to evalu-
ate tissue quality and to identify the tumor area to be 
analyzed. This study was approved by the Institutional 
Review Board of Bundang CHA Medical Center (#2012-
12-172, #2021-01-024). Informed consent was obtained 
from each patient before the clinical trial.

RNA extraction and NanoString nCounter analysis
The method for RNA extraction and NanoString nCoun-
ter analysis is described in the Additional file 2.

Identification of genes significantly associated 
with treatment response and random forest modeling
To identify genes that are significantly associated with 
treatment response, we performed a three-step data 
analysis: area under the ROC curve (AUC), survival anal-
ysis, and random forest modeling. In the AUC analysis, 
we selected genes for which the AUC score was equal to 
or higher than 0.85. In the survival analysis, we selected 
genes for which the overall survival (OS) p-value or pro-
gression-free survival (PFS) p-value was less than 0.05. 
Lastly, we constructed random forest models with the 
identified significant genes by randomForest and care 
R packages. We used all default values for random for-
est parameters. The random forest model provided the 
importance scores, such as mean disease Gini score and 
mean disease accuracy, which represent gene importance 
for predictability. The mean decrease in Gini/accuracy 
scores was used to calculate how the model accuracy 
would decrease when each gene was excluded in model 
construction. A high score indicates greater importance 
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for prediction. For performance measurement, the out-
of-bag error rate of the random forest model, sensitivity, 
and specificity were calculated.

Logistic regression modeling
To assess the prediction performance of selected genes, 
we applied a logistic regression model using the glm 
(generalized linear model) function in R along with the 
expression levels of NanoString nCounter. The prediction 
accuracy was evaluated based on leave-one-out cross-
validation. In addition, we constructed the prediction 
model using logistic regression to distinguish responders 
from non-responders by RT-qPCR.

RT‑qPCR with TaqMan gene expression assays
RNAs (500 ng) were reverse transcribed using 
SuperScript™ IV VILO™ Master mix (Invitrogen, 
Waltham, MA, USA). RT-qPCR quantitation was per-
formed using TaqMan™ Gene expression assays [FAM] 
(Applied Biosystems, Carlsbad, CA, USA) for TNFSF4 
(Hs01911853_s1), TNFRSF18 (Hs00188346_m1), and 
IL12RB2 (Hs00155486_m1) and TaqMan™ Gene expres-
sion Master Mix (Applied Biosystems, Foster City, CA, 
USA) on a Bio-Rad CFX96 Real-Time PCR Detection 
System (Bio-Rad). TBP (Hs00427620_m1) was used as a 
control to allow quantitation of relative gene expression 
in RNA samples. All PCR reactions were amplified in 
duplicate, and relative gene expression levels were calcu-
lated using the − ΔCt method.

Immunohistochemistry and digital image analysis
Immunohistochemistry for CD3 (2GV6) (Roche Diag-
nostics International AG, Rotkreuz, Switzerland), CD8 
(SP57) (Roche Diagnostics International AG, Rotkreuz, 
Switzerland), and CD68 (KP-1) (Roche Diagnostics Inter-
national AG, Rotkreuz, Switzerland) was performed on 
formalin-fixed paraffin-embedded (FFPE) tissues from all 
12 cases on a fully automated stainer (VENTANA Bech-
Mark ULTRA, Roche Diagnostics International AG, Rot-
kreuz, Switzerland). The secondary antibodies with horse 
radish peroxidase (HRP)-3,3′-diaminobenzidine tetrahy-
drochloride (DAB) were applied as instructed by the 
manufacturer (See Additional file  3: Table  S1 for more 
details). For each immunohistochemical stain, the num-
ber of positive cells per mm2 was detected and calculated 
on QuPath [15]. Whole slide images were scanned at 20x 
using a digital slide scanner (APERIO AT2, Leica Biosys-
tems, Nussloch, Germany). Tumor and non-tumor areas 
of the whole slide image of representative sections for 
each patient were annotated with QuPath.

Transwell migration assay for NK cell migration to assess 
the function of the three genes
To assess whether these three genes were expressed in 
T cells and whether they were related to NK cell migra-
tion to the tumor, we performed a Transwell migra-
tion assay mimicking the tumor microenvironment. We 
detected the number of NK cells in the upper chamber 
that migrated to the lower chamber, which contained 
GBM cancer cells and T cells that either expressed or did 
not express these three genes. The human glioblastoma 
cell line U87MG was purchased from the American Type 
Culture Collection (ATCC, Manassas, VA, USA) and was 
cultured under the conditions recommended by ATCC. 
The method for preparing T and NK cells is described in 
the Additional file 2: Supplementary Methods.

To detect TNFSF4, TNFRSF18, and IL12RB2 expres-
sion, the cells were stained with anti-TNFSF4-PE 
(#318,706), anti-TNFRSF18-PE (#311,603), or anti-
IL12RB2-PE (#394,205) (BioLegend, San Diego, CA, 
USA) in the dark at 4  °C for 20  min. Stained cells were 
analyzed using a CytoFLEX flow cytometer (Beckman 
Coulter, ‎Brea, CA, USA), and data were analyzed using 
FlowJo software version 10.1 (Treestar Inc., Ashland, 
OG, USA).

For Transwell migration assays, 5 × 105 U87MG cells 
alone or with 5 × 105 T cells were seeded into the lower 
chamber of a Transwell insert with 8  μm pore (SPL life 
science, Pocheon, Korea) in culture medium. After the 
NK cells were stained with carboxyfluorescein succin-
imidyl ester (CFSE) (MA 02451, Thermo Fisher Sci-
entific, Waltham, USA), 5 × 105 NK cells were placed 
to the upper chamber in serum free-medium, and the 
plates were incubated for 8 h at 37 °C. To block TNFSF4, 
TNFRSF18, and IL-12RB2 expression in T cells, T cells 
were pre-incubated with 20  µg/mL of the anti-TNFSF4 
(MAB10541-SP), anti-TNFRSF18 (MAB689-SP), and 
anti-IL12RB2 antibodies (AF1959) (R&D Systems, Min-
neapolis, MN, USA) for 1 h at 37 °C. The number of NK 
cells that migrated to the lower chamber was determined 
by automated counting of CFSE-positive cells using a 
Luna cell counter. Data are presented as the percentage of 
migration based on total cell input.

Results
Clinical information of immune‑cell therapy participants
Twelve patients participated in this study based on 
inclusion and exclusion criteria [10] and received AKC 
treatment, as summarized in Table  1 and Additional 
file  3: Table  S2. Of the 12 patients, five showed durable 
responses and survived for at least 28 months and for a 
maximum of 76 months after tumor recurrence; these 
patients were designated as the responder group. The 
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median OS and PFS times of the responder group were 
22.5 and 10 months, respectively. Five patients were alive 
over 2 years later and were active in their daily lives. The 
survival time of the seven patients in the non-responder 
group was less than 2 years, and MRI revealed progres-
sion during AKC treatment. The isocitrate dehydroge-
nase (IDH1) mutation (R132H) was detected in only 1 
patient in the non-responder group. MGMT methylation 
was found in 3 and 4 patients in the responder and non-
responder groups, respectively.

Immune landscape profiling by the nCounter PanCancer 
immune profiling panel
To predict the response to AKC treatment, we explored 
the immune landscape of 12 patients using the nCounter 
PanCancer Immune Profiling Panel of 730 immune- and 
cancer-related genes (Fig. 1A). We aligned the results of 
the 730 genes according to functional annotation groups. 
In Fig. 1A, individual patients are represented in each col-
umn and are grouped by treatment response: responders 
(green) on the left and non-responders (red) on the right. 
Responders showed higher immune-related gene expres-
sion compared with non-responders, which suggests a 
pre-existing increased immune response in the tumor 
microenvironment of responders. We also calculated the 
gene signature score of genes in each functional category 
(Fig. 1B). Responders showed high signature scores in the 
TNF superfamily, cytokines, chemokines, and interleu-
kins, while non-responders showed high signature scores 

in senescence and cell cycle (AUC ≥ 0.8, Additional file 3: 
Table S3).

We identified 35 differentially expressed genes (DEGs) 
based on t-tests where p < 0.05; DEGs between respond-
ers and non-responders included TNFSF4 (fold change: 
1.75), IL34 (fold change: 2.85), IL7 (fold change: 2.94), 
and NOTCH1 (fold change: 0.65) (Fig.  1C, Additional 
file  3: Table  S4). Most DEGs (33 DEGs) were highly 
expressed in responders, but interestingly, NOTCH1 
was highly expressed in non-responders compared with 
responders. In the principal component analysis (PCA) 
of 35 DEGs, responders and non-responders, except 
one patient, were grouped separately by PC1 (Fig. 1D). 
When we compared the expression level of ligands of 
various NK-activating receptors, such as MICA, MICB, 
and ULBP2, ULBP2 was significantly overexpressed in 
responders compared with non-responders (1.52-fold 
higher, p < 0.05, Additional file 1: Fig. S1A).

When we analyzed the correlation patterns between 
immune-cell receptors and their ligands, immune-
cell markers were highly correlated in responders but 
not in non-responders (Additional file  1: Fig. S1B). 
For example, TNFRSF18 was highly correlated with 17 
immune activating genes, such as CD40LG, TNFSF4, 
CD70, TNFRSF9, CD28, CD80, IL2RA, IL2RB, CCR5, 
CCL5, CCR4, CCR2, CCR3, CCR7, CCL21, MICA, and 
KLRF1 (Pearson’s correlation coefficient: 0.884–0.995 
and p < 0.05) and 13 immune suppressive genes, such 
as ICOS, ICOSLG, PDCD1, CD274, PDCD1LG2, TIGIT, 
BTLA, CTLA4, CD96, HAVCR2, CEACAM1, IDO1, and 

Table 1  Summary of Patients with GBM who Received AKC immunotherapy

AKC; Activated Killer Cell, F/U; follow-up, KPS; Karnofsky performance scale, OS; overall survival, PFS; progression free survival

Patient Prior recurrence Survival
at last F/U

OS
(month)

PFS
(month)

KPS IDH1 status

A1 2 Alive 76 76 70 wild-type

A2 2 Dead 11 5 60 wild-type

A3 1 Dead 10 7 60 wild-type

A4 2 Dead 27 12 80 wild-type

A5 2 Dead 18 5 70 wild-type

A6 2 Alive 51 21 70 wild-type

A7 1 Alive 52 52 80 wild-type

A8 1 Dead 3 2 60 wild-type

A9 1 Dead 12 7 70 mutation

A10 2 Dead 18 9 60 wild-type

A11 2 Alive 36 36 80 wild-type

A12 1 Dead 8 5 60 wild-type

A13 1 Dead 28 22 70 wild-type

A14 1 Alive 28 28 90 wild-type
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LILRB1 (Pearson’s correlation coefficient: 0.885–0.960 
and p < 0.05) in responders. In contrast, only CCL3, 
CCL4, CCL19, SELL, and CD33 were correlated in non-
responders. Interestingly, CX3CL1 was inversely cor-
related with most other genes, except CD244, in the 
responder group.

Identification of genes significantly associated with NK 
treatment response
To identify genes that are significantly associated with 
treatment response, we performed a three-step analy-
sis (Fig.  2A), and finally, we revealed that TNFRSF18, 
TNFSF4, and IL12RB2 were candidate biomarkers for 

Fig. 1    The immune landscape profiling of 12 patients with recurrent GBM. A Heatmap of the 730-gene pancancer immune panel for 12 patients. 
Columns represent patients and rows represent genes. Expression levels were aligned according to the functional annotation groups. Categories 
of response (responders, non-responders), IDH1 mutation status, and MGMT methylation status are shown. Immunohistochemical stains for CD3, 
CD8, and CD68 are shown as continuous variables. The mRNA expression levels of genes are represented as colors from red (upregulated, z-score 4) 
to blue (downregulated, z-score − 4). B Heatmap of the seven-gene signature scores of the functional annotation groups between responders and 
non-responders. C Volcano plot depicting 35 DEGs between the treatment response groups. D A PCA plot based on 35 DEGs. As seen by the dark 
gray line (PC1 score = 0.00), all patients except one were grouped separately by treatment response
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predicting the response to AKC treatment. First, we cal-
culated the AUC of each gene and selected 114 genes 
with AUC values equal to or higher than 0.85. Second, 
we calculated p-values for OS and PFS of each gene and 
selected 64 genes for which the OS or PFS p-value was 
less than 0.05 (Additional file  3: Table  S5). Figure  2B 

shows the expression patterns of those 64 genes. Each 
gene was grouped according to its functional annota-
tion group. Similar to the DEG results, all genes except 
NOTCH1 were significantly higher in responders than 
in non-responders. Lastly, using the 64 genes, we con-
structed 16 random forest models. One model was 

Fig. 2    Identification of predictive markers and their expression patterns. A Schematic workflow explaining the three steps needed to identify 
the TNFSF18, TNFSF4, and IL12RB2 genes. B Heatmap of 64 genes based on an AUC > 0.85, an overall survival p-value < 0.05, and a progression-free 
survival p-value < 0.05. C A barplot of probability of response to AKC therapy in a random forest model. According to the black line of 
probability = 0.5, responders and non-responders were clearly separated. D The mRNA expression levels of TNFRSF18, TNFSF4, and IL12RB2 in 
responders and non-responders are shown as boxplots
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constructed using all 64 genes, and the other 15 models 
were constructed using each functional group or path-
way, where the 64 genes were annotated (Additional 
file 3: Table S6).

Among the 16 random forest models, the TNF super-
family model of TNFRSF18, TNFSF4, and IL12RB2 
showed the best performance with an out-of-bag error 
rate of 0.0%, a sensitivity of 1.0, a specificity of 1.0, and 
an accuracy of 100% (95% CI 73.5–100%), (Additional 
file  3: Table  S6). Although the individual prediction 
accuracy of TNFRSF18, TNFSF4 and IL12RB2 was not 
perfect (AUC = 0.86 ~ 0.97), using the prediction model 
with the three genes together, its prediction accuracy 
was improved to AUC = 1.0, sensitivity = 1.0 and out-
of-bag error = 0%. It means that the three gene expres-
sions together provide the complementary information 
for better prediction. When we calculated the prob-
ability of treatment response, the random forest model 
of these three genes could explicitly separate respond-
ers from non-responders (Fig.  2C). The same accuracy 
was achieved when tested using the logistic regression 
model, which had a sensitivity of 1.0, a specificity of 1.0, 
and an accuracy of 100% (95% CI 73.5–100%). When 
we compared the expression of each of the three genes 
according to patient response (Fig.  2D), the mRNA 
expression of the three genes clearly differed accord-
ing to patients’ treatment response. TNFRSF18 expres-
sion in responders was 2.8-fold higher (p = 0.06), that 
of TNFSF4 was 1.7-fold higher (p = 0.0014), and that 
of IL12RB2 was 2.0-fold higher (p = 0.06) in responders 
than in non-responders.

Validation of qRT‑PCR and logistic regression modeling
To validate whether the mRNA expression levels of 
the three selected genes, TNFRSF18, TNFSF4, and 
IL12RB2, could predict the response to AKC treat-
ment, we performed qRT-PCR with different primers 
and probes and found that the mRNA levels were posi-
tively correlated with the expression levels found by 
NanoString nCounter with high Pearson’s correlation 
coefficients (0.419 (TNFRSF18), 0.700 (TNFSF4), and 
0.502 (IL12RB2)), as shown in Fig.  3A. All three genes 
showed significant differences in expression between 
responders and non-responders (TNFRSF18: p = 0.009, 
TNFSF4: p = 0.005, and IL12RB2: p = 0.034) (Fig.  3B). 
Next, we assessed whether the prediction model could 
distinguish responders from non-responders using the 
selected genes. The logistic regression model had high 
accuracy (100%; 95% CI 73.54–100%) when validated 
using the leave-one-out cross-validation. Notably, 
qRT-PCR for the above three genes and logistic regres-
sion modeling are both highly accurate for identifying 
responders.

Clinical implication of the three candidate genes
We investigated the PFS and OS associated with expres-
sion of these three genes in enrolled patients. After 
dividing patients into two groups (high expression and 
low expression groups) based on the median expression 
level of each gene, we investigated whether the prog-
nosis of patients in the two groups was associated with 
expression of these genes. In terms of PFS (Fig. 3C), all 
three genes were significantly associated with patient 
prognosis (TNFRSF18: p = 0.0017, TNFSF4: p = 0.0017, 
and IL12RB2: p = 0.0055). In terms of OS (Fig.  3D), all 
three genes were also statistically significantly associ-
ated with patient prognosis (TNFRSF18: p = 0.0042, 
TNFSF4: p = 0.0042, and IL12RB2: p = 0.018). For both 
PFS and OS, patients with higher expression of all three 
genes exhibited a better prognosis than those with lower 
expression.

The expression of immune‑cell markers 
by immunohistochemistry
To explore the composition of the immune cells in the 
tumor and peritumoral areas, the T cell marker CD3, 
the cytotoxic T cell marker CD8, and the macrophage/
microglia marker CD68 were assessed in responders and 
non-responders (Additional file3: Table  S7). To deter-
mine the impact of infiltration of these immune cells 
on the response to AKC treatment and to adjust for 
variation in immune-cell infiltration between areas, the 
mean density per mm2 was calculated in the tumor and 
peritumoral areas of each sample. The median numbers 
of infiltrating CD3+ T cells per mm2 were not differ-
ent between responders and non-responders (data not 
shown). The mean number of infiltrating cytotoxic CD8+ 
T cells per mm2 in the tumor area in responders was 
11.5-fold higher than in non-responders (169.6 ± 306.8 
vs. 14.62 ± 12.2) (Fig. 4A). Although not statistically sig-
nificant (p = 0.32) because of the small number of sam-
ples, higher numbers of CD8+ T cells per mm2 tended to 
predict AKC treatment response with a high AUC of 0.91 
(Fig. 4B). A higher CD8+ T cell count could discriminate 
the treatment response with a sensitivity of 0.8, a speci-
ficity of 0.86, and an accuracy of 0.83 at a cut-off score 
of 19.225. For the non-tumor area, the mean number 
of infiltrating CD8+ T cells per mm2 in responders was 
5.1-fold higher than in non-responders (82.7 ± 170.5 vs. 
16.1 ± 17.3); however, this difference was not statistically 
significant (p = 0.43) because the median of responders 
and non-responders was similar (6.45 vs. 9.97) (Fig. 4A).

The mean number of infiltrating CD68+ mac-
rophages/microglia per mm2 in the tumor area in 
responders was 2.2-fold higher than in non-respond-
ers (621.2 ± 684.7 vs. 279.5 ± 198.1), but this differ-
ence was not statistically significant (p = 0.33). The 
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Fig. 3    Validation of marker expression and clinical outcomes. A Scatter plots of the expression levels by NanoString nCounter and those by 
qRT-PCR. Patients are represented by different colors according to the response group. Pearson’s correlation coefficients are shown. B Boxplots of 
qRT-PCR quantification for the response group (responders and non-responders). Significance levels of the Wilcoxon rank-sum test are shown as 
*p < 0.05, and **p < 0.01. C Progression-free survival curves according to expression of the three genes. D Overall survival curves
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number of these cells in the non-tumor area was not 
significantly different between responders and non-
responders (295.0 ± 424.1 vs. 189.2 ± 184.3, p = 0.62) 
(Fig.  4C). The numbers of CD8+ and CD68+ cells 
were highly correlated with each other in respond-
ers (Pearson’s correlation coefficient = 0.95, p = 0.013, 
Additional file  1: Fig. S2A), which suggests that these 
immune cells might influence each other’s infiltra-
tion in the responders (Fig. 4D), whereas it was not in 
non-responders.

Based on this result, to examine the pattern of distribu-
tion of CD8+ cytotoxic T cells and CD68+ macrophages/
microglia in the tumor microenvironment of respond-
ers and non-responders, a CD8+ and CD68+ cell density 
map was generated (See Additional file 2). In responders, 
the high-density areas of CD8+ and CD68+ cells seemed 
to be located more frequently in tumor tissue rather 
than in non-tumor tissue, and similar distribution pat-
terns were observed within the same piece of tissue. This 
suggests that cases with close interaction of CD8+ and 
CD68+ cells in the tumor might respond better to NK cell 
therapy. In contrast, non-responders showed somewhat 
nonspecific distribution patterns of high-density CD8+ 
and CD68+ cell areas (Additional file  1: Fig. S2B). The 
infiltration of these two immune cells using immunohis-
tochemical stain was correlated with mRNA expression 
of each genes by NanoString in the responders, whereas 
their correlation was not seen in non-responders (Addi-
tional file 1: Fig. S2C).

In addition, we found that infiltration of CD8+ cyto-
toxic T cells was highly correlated with TNFRSF18 
and TNFSF4 expression (Pearson’s correlation coeffi-
cient = 0.83, p = 9.0 × 104 for TNFRSF18, Pearson’s corre-
lation coefficient = 0.56, p = 0.06 for TNFSF4) (Additional 
file 1: Fig. S3C).

Correlation between three candidate genes and immune 
cell markers
To understand the role of three candidate genes in 
each immune cell, we also investigated the relationship 
between two immunohistochemistry markers, three 
candidate genes, the ligands or receptors of three genes 

and 44 immune cell marker genes. The expression levels 
of three genes and those marker genes were clustered 
as 4 groups in Fig.  5A: (1) TNFSF4 (OX40 ligand) was 
grouped with M2 macrophage markers such as CD206 
and CD163. (2) TNFRSF18 known as GITR was grouped 
with activated immune cells such as NK (CD16) and 
dendritic cell markers (CD16,  CD123, and CD83). (3) 
IL12RB2 was grouped with CD56 NK cell marker and 
IL12A. (4) Lastly, the expression of CD8+ cytotoxic T 
cells and CD68+ macrophages by immunohistochemis-
try were grouped with T cell markers such as CD3, CD8A 
and CD4 and FOXP3 genes.

To confirm the relationship between three genes and 
immune cells, the correlation in responders and non-
responders were compared using Pearson’s correla-
tion coefficient in Fig.  5B. The correlation patterns in 
responders and non-responders were similar to heatmap 
in Fig.  5A. In responders, TNFRSF18 known as GITR 
was significantly correlated with most immune cells such 
as T cells (CD3, CD8, Granzyme, Perforin), Treg cells 
(CD4, CD25, FOXP3), NK cells (CD16), and dendritic cell 
markers (CD16, CD11b, CD11c, CD123, CD83). TNFSF4 
known as OX40 ligand was correlated with M2 mac-
rophage markers such as CD206 and CD163. IL12RB2 
was correlated with CD56 NK cell marker. However, 
in non-responders, there was no definite correlation 
between three genes and immune cell markers.

Effect of three candidate genes on NK cell migration
To validate whether expression of the three candidate 
genes (TNFSF4, TNFRSF18, and IL12RB2) in the tumor 
microenvironment is implicated in NK cell migration 
toward cancer cells, we conducted a Transwell migra-
tion assay using GBM U87MG cells, T cells, and NK cells 
derived from PBMCs. First, we evaluated the expression 
of these three candidate genes on T cells and U87MG 
cells. The three candidate genes were highly expressed 
on activated T cells (62.29%, 63.49%, and 69.59% for 
TNFSF4, TNFRSF18, and IL12RB2, respectively) 
(Fig. 6A).

After blocking the expression of these three candidate 
genes on T cells, we compared the percentage of NK 

Fig. 4    The expression of immune-cell markers (CD8+ and CD68+ cells) by immunohistochemistry. A Distribution of cells expressing the cytotoxic 
T cell marker CD8+ per mm2 in tumor and non-tumor areas. R represents responders and NR represents non-responders. B The ROC curve based 
on CD8+ cells in the tumor area of each patient. The cut-off score for calculating sensitivity and specificity is indicated by a blue dot. C Distribution 
of cells expressing the macrophage/microglia marker CD68+ per mm2 in tumor and non-tumor areas. D (i–ii): Histologic features of the tumor 
area in responders and non-responders (Hematoxylin and eosin. 1000 × 1000 μm), (iii–iv) The median number of CD3+ T cells was not significantly 
different between responders and non-responders, as a similar density of CD3+ T cell infiltration was observed in both groups. (v–vi) The density 
(number of cells/mm2) of CD8+ cytotoxic T cells in the tumor was higher in responders than in non-responders. (vii–viii) The density of CD68+ 
macrophages/microglia in the tumor was higher in responders than in non-responders, and in some areas in responders, increased density of these 
cells coincided with high CD8+ T cell density, which suggests intimate interactions with cytotoxic T cells (gray arrows). In some thick-walled vessels, 
a high density of immune-cell infiltration was observed (left angle bracket)

(See figure on next page.)
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cells that migrated from the upper chamber to the lower 
chamber between the GBM + control T cell group and 
the GBM + T cell groups in which expression of these 
genes was blocked. The number of NK cells that migrated 
toward U87MG GBM cells was significantly reduced 

in the TNFSF4-blocked T cell group (26.9% ± 2.0%, 
p = 0.027), and tended to decrease in the TNFRSF18-
blocked T cell group (42.1% ± 9.6%, p = 0.195) and the 
IL12RB-blocked T cell group (37.8% ± 9.6%, p = 0.146) 
compared with the control T cells in which the expression 

Fig. 4  (See legend on previous page.)
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Fig. 5    The correlation of three candidate genes (TNFSF4, TNFRSF18 and IL12RB2) and immune cell markers. A Heatmap of three candidate genes, 
the ligands or receptors of three genes, two immunohistochemistry markers, 44 immune cell markers for 12 patients. The expression levels of genes 
are represented as colors from red (upregulated, z-score 4) to blue (downregulated, z-score − 4). The ligands or receptors of three candidate genes 
were colored as red and two immunohistochemistry markers as blue. B Correlation plots of three genes and immune cell markers in responders 
and non-responders. Pearson’s correlation coefficient scores are represented as colors from red (1.0) to blue (− 1.0)
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of these three genes was not blocked (63.8% ± 5.9%) 
(Fig.  6B). Collectively, these results suggest that higher 
expression of these three genes, especially TNFSF4, in 
T cells contributed to NK cell migration toward cancer 
cells.

Discussion
GBM is the most common and aggressive primary malig-
nant brain tumor and patients with GBM have a very 
poor prognosis, as their median OS is 14.6 months [16]. 
Although newly developed immuno-oncology drugs have 

been used to treat primary GBM, the current therapeutic 
approaches have very limited impact on improvement of 
the survival of patients with GBM. The CheckMate-143 
study [4], a large-scale phase 3 study conducted in 
patients with recurrent GBM, compared Nivolumab, a 
PD-1 immune checkpoint inhibitor, and Bevacizumab, 
a control drug, but failed to demonstrate an effect on 
OS. Other immune checkpoint inhibitors have also not 
shown any significant therapeutic effects.

Considering the results of research conducted thus far, 
both the GBM cancer cells themselves and the tumor 

Fig. 6    Effects of three candidate genes on migration of NK cells toward GBM cancer cells. A Expression of TNFSF4, TNFRSF18, and IL12RB2 in T cells 
and U87MG cells was analyzed by flow cytometry. Left: Representative histogram plots. Gray histograms represent isotype controls. Right: Column 
graphs show the frequencies of TNFSF4+, TNFRSF18+, and IL12RB2+ cells. B Transwell migration assay: CFSE-stained NK cells were plated in the 
upper chamber of a Transwell insert with an 8-mm pore size. Cells were allowed to migrate for 8 h toward U87MG cells with or without T cells in the 
lower chamber. T cells were pre-incubated with blocking antibodies to TNFSF4, TNFRSF18, and IL12RB2 for 1 h. NK cells that migrated to the lower 
chamber were counted using a cell counter. The experiments were performed in triplicate
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microenvironment seem to be the cause of the failure of 
these immuno-oncologic drugs. Since GBM has a low 
tumor mutation burden compared with other cancers, 
it has fewer tumor antigens, and therefore, it is believed 
to be difficult to prime an anticancer immune response 
in GBM. In addition, GBM cells secrete many soluble 
immunosuppressive factors, such as TGF-β, prosta-
glandin E2 (PGE2), vascular endothelial growth factor 
(VEGF), IL10, CCL2, and CCL22, which suppress cyto-
toxic T cells and recruit Treg cells. Treg cells contribute 
to cytotoxic T cell suppression and tumor progression 
via production of IL10, IL35, and TGF-β. GBM cells also 
recruit TAMs by releasing CX3CL1 or CCL5, and they 
promote the acquisition of an M2 phenotype by micro-
glial cells via secretion of IL10, IL4, IL13, and TGF-β. 
Therefore, NK cell-based immunotherapy might become 
an attractive and promising therapy that can overcome 
the immunosuppressive microenvironment of GBM, 
since NK cells, complement the antitumor activity of T 
cells by releasing various cytokines or chemokines, by 
recruiting dendritic cells, and by directly killing cancer 
cells.

Recently, we performed a clinical trial using intra-
venous autologous AKC treatment for patients with 
recurrent GBM after surgical resection to overcome 
the immunosuppressive TME. In our clinical trial, we 
observed that this NK therapy suppressed the tumors 
and resulted in prolonged OS and PFS in patients with 
some subsets of these tumors [10]. Therefore, we exam-
ined the immune profiles in tumor and TME tissues of 
these patients and compared them between responders 
and non-responders to identify the biomarkers predict-
able to treatment responsiveness.

In the present study, we found that the expression of 
genes related to various immune-signaling molecules was 
increased in responders. Interestingly, the DEG analysis 
and filtering of genes by AUC, OS, or PFS revealed that 
the genes commonly related to immune-cell function, 
regulation, and recruitment were significantly increased 
in responders compared with non-responders. When 
the correlation patterns between immune-cell receptors 
and their ligands were analyzed, signaling proteins were 
highly correlated in responders whereas they were not 
correlated in non-responders (Additional file 1: Fig. S1B). 
This immune profiling might be related to higher infiltra-
tion of CD8+ T cells in responders compared with non-
responders, although the difference between the two was 
not statistically significant, and it was not clear whether 
these T cells were activated or exhausted.

Considering that previous studies reported the fre-
quent occurrence of transition to a mesenchymal subtype 
with increased expression of various immune-related 
genes in recurrent glioblastomas after standard therapy 

[17, 18], the responder group is more likely to have the 
mesenchymal molecular subtype, which is considered to 
be more aggressive. In the mesenchymal subtype of GBM, 
an increased subpopulation of TAMs/microglia has been 
described as an integral component that contributes to 
mesenchymal transition [19, 20]. In this study, we also 
demonstrated that responders had a 2.2-fold higher infil-
tration of TAMs/microglia than non-responders, which 
supports the concept that the responder group was 
more likely to have the mesenchymal subtype of GBM. 
In addition, using density maps and correlation analy-
sis by immunohistochemistry, we demonstrated similar 
distribution patterns and highly correlated infiltration 
of CD8+ and CD68+ cells in the tumors of responders. 
Taken together, our results implied that AKC treatment 
might be effective at least in some subset of tumors in the 
highly immune-active group of GBM, such as those with 
the mesenchymal subtype, which is known to have poor 
outcomes.

In addition, the DEG analysis demonstrated that 
NOTCH1 expression was significantly lower in the 
responder group than in the non-responder group, 
whereas the other significantly altered genes were 
upregulated in the responder group. Considering that 
NOTCH1 is a marker of glioma stem cells, it is suggested 
that non-responders harbor more glioma stem cells than 
responders. When the correlation patterns between 
immune-cell receptors and their ligands were analyzed, 
signaling proteins except CX3CL1 were highly and posi-
tively correlated in responders, whereas they were not 
correlated in non-responders (Additional file1: Fig. S1B). 
CX3CL1 is reported to be mostly expressed in neurons 
where it inhibits the overexpression of pro-inflammatory 
molecules. Therefore, it is believed that CX3CL1 expres-
sion was inversely correlated with the expression of other 
inflammatory genes in the responder group.

In this study, we identified three candidate genes, 
TNFRSF18, TNFSF4, and IL12RB2, which can best 
predict responsiveness to AKC treatment; these were 
selected through the random forest method (Fig.  3C). 
These genes are members of the TNF family, which is 
known to coordinate co-stimulation or co-inhibition of 
the immune response in the tumor microenvironment.

TNFRSF18, also known as GITR (glucocorticoid-
induced tumor necrosis factor receptor related pro-
tein), was initially known to play a co-stimulatory role 
in T cell activation. However, GITR-GITRL interac-
tions are far more complex. GITR is expressed at high 
levels on T regulatory cells [21] as well as on acti-
vated CD4+ and CD8+ T cells [22] and at intermedi-
ate levels on NK cells. According to previous reports, 
GITR expression on tumor-infiltrating Tregs is higher 
than that on tumor CD8+ T cells and peripheral Treg 
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cells [23]. On the contrary, agonistic GITR antibodies 
directly suppressed Tregs and reduced the sensitivity 
of effector T cells to Treg-mediated suppression [24]. 
A current clinical trial reported that an agonistic anti-
GITR mAb reduced Treg levels both in the circulation 
and the tumors of treated patients [25, 26]. Considering 
the previous reports and the finding that our NK cells 
expressed high GITR ligands (2.65-fold higher than 
PBMCs, data not shown), GITR-GITRL signaling might 
have induced anticancer immunity by Treg suppression 
when we introduced our NK therapeutics.

TNFSF4, also known as OX40 ligand, is primar-
ily expressed on antigen-presenting cells, activated T 
cells, and some endothelial cells, where it stimulates 
OX40 expression on the surface of activated T or NK 
cells. OX40-OX40L signaling increases the adap-
tive immune response to pathogenic antigens by pro-
moting effector and memory T cell survival [27]. The 
previous study using The Cancer Genome Atlas and 
the Cancer Cell Line Encyclopedia RNA sequencing 
data from anti-PD1-treated patients with melanoma 
demonstrated that the low TNFSF4 mRNA expres-
sion group was associated with worse prognosis and 
showed a worse outcome after anti-PD1 treatment [28]. 
On the contrary, a recent analysis [29] of a TNF fam-
ily based-signature in diffuse gliomas using 4 datasets 
reported that 35 TNF family genes including TNFSF4 
were related to the high-risk group of patients, who 
had a poor prognosis. However, several preclinical 
studies using a murine glioma model [30, 31] demon-
strated that OX40-OX40L activation was related to a 
better prognosis and prolonged survival by agonistic 
OX40 antibody therapy through reverse intracranial T 
cell exhaustion. The findings from previous preclini-
cal research [32] that OX40 on NK cells interacts with 
OX40L on dendritic cells resulting in increased IFN-γ 
release and T cell induction, and from our previous 
report that shows a high-level of OX40 in our AKC cells 
[10, 33], provide reasonable evidence for OX40L as a 
predictive biomarker of our AKC therapeutics. Accord-
ing to our Transwell migration assay, it is assumed that 
T cells expressing TNFSF4 in the TME of GBM might 
induce NK cell migration into the tumor, resulting in a 
better therapeutic effect of our AKC treatment.

IL12RB2 encodes the β2 chain of the high-affin-
ity receptor that binds to IL-12, which is well-known 
cytokine that bridges innate and adaptive immunity [34]; 
the β2 chain is expressed by antigen-presenting cells, 
including macrophages and microglia. IL-12 drives T 
helper responses, enhances T and NK cell cytotoxic-
ity, and induces IFN-γ production by T and NK cells 
[35]. IL12RB2 is essential for IL-12 signal transduction 

and functions as a tumor suppressor. Higher expression 
of IL12RB2 was reported to be associated with better 
prognosis and longer survival in various human tumors, 
including lung and laryngeal cancers [36, 37]. Accord-
ingly, it could be expected that higher expression of 
IL12RB2 is predictive marker for responsiveness to NK 
cell therapeutics.

When we investigated the correlation between expres-
sions of these three candidate genes, and 44 immune 
cell marker genes, including CD8+ T cells, Treg cells, 
DCs, macrophages and NK cells, the result suggested 
that GITR (TNFRSF18) seemed to be derived from T 
cells (CD3, CD8, Granzyme, Perforin), Treg cells (CD4, 
CD25, FOXP3), NK cells (CD16) and dendritic cells 
(CD16, CD11b, CD11c, CD123, CD83) as we expected. 
And there were significant correlations between OX40 
ligand (TNFSF4) and M2 macrophage markers (CD206, 
CD163), and between IL12RB2 and CD56 NK cells in the 
responders, whereas there were not in non-responders. 
In addition, we found that T cells with higher expression 
of OX40 ligand (TNFSF4) contributed to NK cell migra-
tion toward cancer cells.

Taken together, we hypothesized that in respond-
ers, highly expressed OX40L in the TME enhanced the 
recruitment of activated NK cells with high expression 
of OX40 into the tumor, and then OX40-OX40L inter-
action between NK-T, and NK-DC cells might augment 
anti-tumor immunity by increasing T cell survival and 
activation, as well as development of memory T cells. In 
addition, highly expressed GITR ligand of activated NK 
cells engaged GITR of Treg cells, which might convert 
Treg cells into the effector T cells and suppress Treg cell 
function. Although we could not give the direct evidence 
for the role of IL12RB2 in our study, we could assume 
that IL12RB2, probably expressed on NK cells, enhanced 
anti-tumor immunity by increasing T or NK cell cytotox-
icity and developing memory T cells under the condition 
of IL12 production. On the other hand, those processes 
may not be taking place in TME of non-responders.

In conclusion, we identified TNFRSF18, TNFSF4, and 
IL12RB2 as biomarkers that predict response to NK cell 
therapeutics by studying the tumor immune microen-
vironment using NanoString and qRT-PCR analyses in 
patients with recurrent GBM who received activated NK 
cell treatment. Given the fact that the early clinical trial 
sample size is usually small, however, those samples are 
worthy for predicting clinical efficacy, the results would 
be very valuable although the sample size was small 
in this study. Therefore, these three genes can be used 
to screen individuals who might benefit from NK cell 
therapy. In addition, our results show that responders to 
NK therapy have an immune-activated TME, whereas 
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non-responders do not. Considering that immune and 
inflammatory response-enrichment is related to the 
high-risk group in this tumor type, our findings high-
light a new treatment strategy of NK cell therapeutics for 
patients with highly aggressive recurrent GBM.
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Additional file 1: Figure S1. The expression patterns of ligands of various 
NK-activating receptors. (A) Heatmap for 40 genes related to immune 
response including NK-activating receptors from 12 patients. Expression 
levels were aligned according to functional annotation groups. Patients 
were grouped by treatment response. Responders are in green and non-
responders are in red. Genes with a p-value< 0.05 are denoted with an 
asterisk (*). The mRNA expression levels are represented as colors from red 
(up-regulated, z-score 4) to blue (down-regulated, z-score −4). (B) Correla‑
tion plots of immune-cell receptors and their ligands in responders and 
non-responders. Pearson’s correlation coefficient scores are represented 
as colors from red (1.0) to blue (−1.0). Figure S2. The correlation of CD8+ 
and CD68+ cells in the tumor area. (A) The dot plots between CD8+ 
cells and CD68+ cells in the tumor area, the trend line, and confidence 
interval (gray area) between them. In responders, they are significantly 
correlated (Pearson’s correlation coefficient = 0.95, p = 0.013), but in 
non-responders, they are not (Pearson’s correlation coefficient = 0.47, p 
= 0.29). (B) Density map of high-density areas of CD8+ and CD68+ cells. 
In responders, the high-density areas of CD8+ and CD68+cells seemed to 
be located more frequently in the tumor tissue rather than the non-tumor 
tissue, with similar distribution patterns within the same piece of tissue. 
This suggests that the cases with close interaction of CD8+ and CD68+ 
cells in the tumor might respond better to NK cell therapy. In contrast, 
non-responders showed somewhat nonspecific distribution patterns of 
high-density CD8+ and CD68+ cell areas. Only a few areas showed similar 
distributions in the same piece of tissue from non-responders. (C) The 
correlation plots between protein expression by immunohistochemistry 
and the mRNA expression of each gene by NanoString in responders and 
in non-responders. In responders, they are significantly correlated, but in 
non-responders, CD68 were not significantly correlated to others. Figure 
S3. The correlation of CD8+ cytotoxic T cells by immunohistochemical 
staining and mRNA expression of three genes by NanoString. The dot 
plots show the correlation between CD8+ cells in the tumor area and 
mRNA expression levels of TNFRSF18, TNFSF4, and IL12RB2 according to 
the NanoString analysis. (A) TNFRSF18 was significantly correlated with 
CD8+ cells in the tumor area (Pearson’s correlation coefficient = 0.83, p 
= 9.0 × 104). (B) TNFSF4 was also correlated with CD8+ cells in the tumor 
area (Pearson’s correlation coefficient = 0.56, p= 0.06). (C) IL12RB2 was 

not correlated with CD8+ cells in the tumor area (Pearson’s correlation 
coefficient = −0.20, p = 0.53). (D) The correlation plot also shows the 
same pattern between these genes and CD8+ cells. Pearson’s correla‑
tion coefficient scores are represented as colors from red (1.0) to blue 
(−1.0). The size of the circle represents the statistical significance; the 
bigger the circle, the greater the significance.

Additional file 2: Supplementary Methods.

Additional file 3: Table S1. Immunohistochemical stain reagents and 
staining conditions. Table S2. Prior treatment information of each 
patient. Table S3. Seven signature scores of functional annotation 
groups discriminating responder and non-responder patients. Table S4. 
35 differentially expressed genes between responders and non-
responders. Table S5. 64 significantly associated genes to therapy’s 
response. Table S6. The prediction performance of random forest 
models. Table S7. The mean number of immune cells per mm2 in tumor 
by immunohistochemistry.
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