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Abstract 

Background Foraging for food precedes food consumption and is an important component of the overall metabolic 
programming that regulates feeding. Foraging is governed by central nervous system neuronal circuits but how it is 
influenced by diet and hormonal signals is still not well understood.

Results In this study, we show that dietary cholesterol exerted suppressive effects on locomotor activity and that 
these effects were partially mediated by the neuropeptide Agouti-related protein (AgRP). High dietary cholesterol 
stimulated intestinal expression of fibroblast growth factor 15 (Fgf15), an ortholog of the human fibroblast growth 
factor 19 (FGF19). Intracerebroventricular infusion of FGF19 peptide reduced exploratory activity in the open field test 
paradigm. On the other hand, the lack of dietary cholesterol enhanced exploratory activity in the open field test, but 
this effect was abolished by central administration of FGF19.

Conclusions Experiments in this study show that dietary cholesterol suppresses locomotor activity and foraging-like 
behaviors, and this regulation is in part mediated by AgRP neurons. Dietary cholesterol or the central action of FGF19 
suppresses exploratory behaviors, and the anxiogenic effects of dietary cholesterol may be mediated by the effect 
of FGF19 in the mouse brain. This study suggests that dietary cholesterol and intestinal hormone FGF15/19 signal a 
satiating state to the brain, thereby suppressing foraging-like behaviors.
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Introduction
In nature, food availability is highly unpredictable and 
often limited. As such, free-living animals spend consid-
erable time and effort foraging for food. These traits are 
possessed by animals across the animal kingdom, includ-
ing our human ancestors. Even in the modern era, exces-
sive food seeking behaviors are displayed by people with 
Prader-Willi Syndrome or MC4R-deficiency [1–5]. More 
generally, individuals who experience food insecurity also 
exhibit enhanced food seeking behaviors, and they are 

prone to the development of obesity [6–9]. Thus, forag-
ing behaviors are essential for survival and these traits are 
highly conserved in animal species including humans.

Food-seeking precedes food consumption, and these 
two processes are often tightly coupled. Neurons express-
ing agouti-related protein (AgRP) are located in the 
mediobasal hypothalamus and they co-express neuropep-
tide Neuropeptide Y (NPY). Food deprivation potently 
stimulates both AgRP expression and neuronal activity. 
AgRP neurons are widely recognized for their ability to 
promote food intake, as optogenetic or chemogenetic 
stimulation of AgRP neurons leads to voracious feed-
ing, and acute ablation of these neurons leads to severe 
anorexia [10–12]. Paradoxically, release of NPY, but 
not AgRP, from AgRP neurons mediates the orexigenic 
effects induced by acute activation of these neurons [13, 
14]. Notably, activation of AgRP neurons also stimulates 
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locomotor activity and foraging behaviors beyond food 
intake [11, 15–17], and it exerts anxiolytic effects [18]. 
These findings suggest that foraging-like behaviors are 
fundamental innate response to food availability, and that 
AgRP neurons, key regulators of feeding, are involved in 
this process.

To date, the environmental factors that influence for-
aging-like behaviors are still not well understood. We 
recently show that altering dietary cholesterol intake 
affects hypothalamic AgRP expression and dietary pref-
erence [19]. Cholesterol is essential for life, but energeti-
cally costly to synthesize and cytotoxic when in excess. 
Thus, cholesterol production is under extreme tight regu-
lation. The body normally obtains cholesterol from two 
sources: the diet and de novo biosynthesis mainly by the 
liver. When dietary cholesterol is high (i.e.  ≥ 1%), hepatic 
cholesterol synthesis is suppressed by robust negative 
feedback mechanisms [20]. However, when dietary cho-
lesterol is absent, hepatic cholesterol synthesis is mark-
edly stimulated to meet the body’s need [21]. Cholesterol 
is the precursor for bile acids, which are mainly synthe-
sized in the liver and stored in the gallbladder. Bile acids 
are released postprandially into the small intestine where 
they emulsify lipids for absorption by enterocytes. In the 
distal small intestine, bile acids activate nuclear hormone 
receptor farnesoid X receptor (FXR) in enterocytes to 
stimulate the synthesis and release of FGF15/19 into cir-
culation (FGF15 is the mouse ortholog of human FGF19). 
FGF15/19 in turn binds to FGFR4 in hepatocytes to sup-
press the synthesis of bile acids [22, 23]. Notably, mul-
tiple lines of evidence demonstrate that FGF15/19 also 
acts in the brain to affect neuronal functions [24–28]. In 
this study, we demonstrate that high dietary cholesterol 
and FGF19 suppress foraging-like behaviors, and that the 
effects of dietary cholesterol on locomotor activity are 
partially mediated by AgRP.

Results
Locomotor activity increases with food deprivation, and it 
depends on AgRP in a diet‑specific manner
Foraging-like behaviors increase with food deprivation, a 
condition that is associated with enhanced expression of 
hypothalamic AgRP [29]. We thus evaluated if locomo-
tor activity was affected by the loss of AgRP in either ad 

lib fed or fasting condition. To this end, weight-matched 
Agrp+/+ and Agrp–/– mice were individually housed in 
chambers of the Comprehensive Lab Animal Monitoring 
System (CLAMS). Locomotor activity and other meta-
bolic parameters were measured. It has been previously 
established that a 24 h acclimation period is sufficient to 
habituate for measurement of locomotor activity [30], 
so data generated on the first day in the CLAMS were 
excluded from the analysis.

When mice were fed with a cholesterol-containing 
chow diet (Lab Diet 5058; cholesterol 200  ppm), a 24  h 
fast significantly stimulated both ambulatory (walking) 
and vertical activity (rearing and standing), the eleva-
tion only manifested in the dark cycle, but not in the light 
cycle within the fasting period (Fig. 1A–B). Agrp+/+ and 
Agrp–/– mice behaved similarly (Fig.  1A–B). Paradoxi-
cally, when mice were fed with a cholesterol-free chow 
diet (Teklad 2018, Envigo), higher levels of ambulatory 
(Fig.  1A, C) and rearing locomotor activity (Fig.  1B, D) 
were observed. Notably, compared to Agrp+/+ mice, 
Agrp–/– mice exhibited significantly lower levels of ambu-
latory activity during the fasting period (Fig. 1C). Taken 
together, these results reinforce the notion that food 
deprivation, coupled with a nocturnal environment, 
promotes locomotor activity that resembles foraging-
like behaviors. These results also suggest that AgRP 
is required for the control of ambulatory activity, but 
this function is manifested only under specific dietary 
conditions.

Locomotor activity is suppressed by dietary cholesterol, 
and this effect is partly governed by AgRP
Given the above results, we investigated whether dietary 
cholesterol may affect locomotor activity, and if there is 
a functional interaction between dietary cholesterol and 
AgRP function. To minimize animal-to-animal variability 
and differences in various diets, we examined locomo-
tor activity in the same mice that were fed with identical 
diets differing only in cholesterol contents.

Agrp–/– and control littermates were first given a cus-
tom cholesterol-free diet and placed in the CLAMS for 
the measurement of food intake and locomotor activity. 
After a 6 week resting period, the same mice were given 
the same diet as in the first CLAMS run but this time 

(See figure on next page.)
Fig. 1 Locomotor activities increase with food deprivation and are dependent on AgRP in a diet-specific manner. A–B Adult male Agrp+/+ and 
Agrp–/– mice (n = 6 per group; age 3 months) were placed in CLAMS at room temperature and ad lib fed with chow with cholesterol (Lab Diet 
5058), and subsequently fasted for 24 h, as indicated by green line. In CLAMS while ad lib fed with cholesterol-deficient diets (Teklad 2018) at 
room temperature. Sum of ambulatory A or vertical activities B during the most active phase of the dark cycle (7PM to 1AM) were compared. 
C‑D A separate group of adult male Agrp+/+ and Agrp–/– mice (n = 7–9 per group; age 5–6.5 months) were placed in CLAMS while ad lib fed with 
cholesterol-deficient diets (Teklad 2018) at room temperature. Sum of ambulatory C or vertical activities D during the most active phase of the dark 
cycle (7PM to 1AM) were compared. Data from second ad lib fed day in the CLAMS were compared with those from the equivalent time during the 
fasting period. Gray-shaded areas indicate dark cycles. Ns not significant. *p < 0.05. **p < 0.01. ***p < 0.001 by 2-WAY ANOVA with repeated measures
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supplemented with 280  ppm cholesterol. Food intake 
and locomotor activity were measured by CLAMS 
(Fig.  2A). The addition of dietary cholesterol did not 
affect food intake (Fig. 2B). There was a trend towards 
decrease in ambulatory activity in the presence of die-
tary cholesterol but did not reach statistical significance 
(Fig.  2C). However, addition of dietary cholesterol led 
to significant decrease of the rearing activity in the 
control but not in the Agrp–/– mice (Fig.  2D). Energy 
expenditure was not significantly different (Fig. 2E).

In a separate experiment, a different cohort of weight-
matched Agrp–/– and control mice were placed in the 
CLAMS and fed with a cholesterol-free diet (Teklad 
2018, Envigo). After locomotor activity was recorded, 
mice were given the same diet but supplemented with 
1% cholesterol, which mimics cholesterol content in 
an egg yolk (Fig. 2F). Food intake was not significantly 
affected by dietary cholesterol (Fig.  2G). In contrast, 
both ambulatory and rearing activity were reduced 
after consuming high dietary cholesterol in wild type 
mice but not the mutant mice (Fig.  2H-I). Similar 
to locomotor activity, energy expenditure was also 
reduced in control mice that consumed high dietary 
cholesterol and not in mutant mice (Fig. 2J). Together, 
these results suggest that high dietary cholesterol atten-
uates locomotor activity and that these effects are par-
tially mediated by neuropeptide AgRP.

The differences in ambulatory activities of control 
mice in Fig. 2C, D and H, I are most likely due to the dif-
ferences in diets the mice were chronically maintained 
prior to the start of the CLAMS experiment. Mice for 
Fig.  2A–E were maintained on cholesterol-contain-
ing diet (Lab Diet 5058) before they were switched to 
a cholesterol-deficient diet for CLAMS study. In con-
trast, mice in Fig.  2F–J were maintained with a cho-
lesterol-free diet (Teklad 2018) and were continued 
with the same cholesterol-free diet in the CLAMS. As 
shown in Fig.  1, mice that were fed with cholesterol-
containing diet (Lab Diet 5058) show marked reduc-
tion of ambulatory activities compared with mice that 
were fed with cholesterol-free diet (Teklad 2018). Thus, 
the differences in ambulatory activities of the control 
mice in  Fig. 2C, D and H, I are consistent with results 
shown in Fig.  1, suggesting that chronic consumption 

of cholesterol-free diets enhances basal ambulatory 
activities.

Dietary cholesterol results in increased FGF15 expression 
in the distal small intestine
It has been previously shown that infusion of FGF19 in 
the brain suppresses Agrp and Npy mRNA expression 
and inhibits AgRP neuronal activity [27]. Since choles-
terol is the precursor of bile acids, known to stimulate 
Fgf15/FGF19 intestinal expression, we examined whether 
cholesterol affected Fgf15 expression in the mouse distal 
small intestine. To this end, mice that were fed with diets 
differing only in the cholesterol content (0% versus 1%) 
were analyzed for various gene expression. Body weight, 
lean or fat mass were not affected upon the consump-
tion of the diets after 4  weeks (Fig.  3A–C). However, 
high dietary cholesterol moderately suppressed expres-
sion of Agrp, but not Npy or Pomc, in the hypothalamus 
(Fig.  3D–F). Notably, high dietary cholesterol caused 
marked elevation of intestinal Fgf15 mRNA expression, 
but did not alter Glp1 expression (Fig. 3G–H). Intestinal 
Fgf15 mRNA expression was also stimulated 36  h after 
refeeding in mice that consumed the diet supplemented 
with 1% cholesterol, but not in the mice that were refed 
the same diet but without cholesterol (Fig. 3I). Intestinal 
Glp1 expression during refeeding was not affected by die-
tary cholesterol content (Fig.  3J). Taken together, these 
results suggest that dietary cholesterol has potent stimu-
latory effects on intestinal FGF15/19 expression.

Dietary cholesterol and FGF19 action in the brain 
suppresses exploratory behavior
Foraging for food requires coordinated actions of loco-
motion and willingness to explore in an unfamiliar envi-
ronment. Open field test is a widely used research tool to 
evaluate exploratory and anxiety-like behaviors in small 
animals [31, 32]. Mice have a natural tendency to avoid 
the center of the open field, which poses a high risk of 
being exposed to predators in nature. Thus, the number 
of entries and the time spent in the center of the open 
field reflect the levels of anxiety and exploratory activity. 
Of note, by using the open field test, activation of AgRP 
neurons has been shown to exert anxiolytic effects [18]. 
Since AgRP neurons release neuropeptide Y and GABA 

Fig. 2 Locomotor activities are suppressed by dietary cholesterol, and this effect is partly governed by AgRP. A Experimental procedure. Briefly, 
a cohort of 7-month-old male Agrp+/– (n = 6) and Agrp–/– (n = 6) mice were transitioned from chow (Lab Diet 5058; cholesterol 200 ppm) to a 
cholesterol-free HFD diet (60% Kcal fat, 30.4% Kcal Carb, 9.6 kcal% protein, < 10 ppm cholesterol) and underwent metabolic measurements in 
CLAMS under thermoneutrality. The procedure was repeated 6 weeks later only this time the same mice were fed with the same diet containing 
cholesterol (280 ppm). B Food intake, C ambulatory activity, D vertical activity and E energy expenditure during the early night cycle (7PM-1AM) 
were compared between the two diets. F In a separate experiment, adult male Agrp+/+ and Agrp–/– mice (n = 7–9 per group; age 4–6 months old), 
maintained on a cholesterol-free chow diet (Teklad 2018), were placed in CLAMS at room temperature and ad lib fed with the same diet for first 
2 days and then switched to the same diet supplemented with 1% cholesterol. G Food intake, H ambulatory activity, I vertical activity and J energy 
expenditure during the early night cycle (7PM-1AM) were compared. *p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001 by two-way ANOVA with repeated measures

(See figure on next page.)
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in addition to AgRP, we evaluated whether AgRP plays 
an indispensable role in mediating the anxiolytic effects 
of AgRP neurons. To this end, a cohort of Agrp+/+ and 
Agrp–/– mice, maintained with the cholesterol-free chow 

(Teklad 2018), were subjected to open field test. No dif-
ferences were observed between control and mutant mice 
in any of the parameters examined (Additional file 1: Fig-
ure S1). This result suggests that AgRP is not required for 
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the anxiolytic effects of AgRP neurons or that this func-
tion of AgRP is readily compensated by other compo-
nents of the AgRP neurons.

We next evaluated if dietary cholesterol and FGF19 
may affect exploratory behaviors in mice by using the 
open field test. To do so, wildtype C57BL6 mice, main-
tained on cholesterol-free chow (Teklad 2018), were can-
nulated in the lateral ventricle of the brain and infused 
with aCSF via subcutaneous osmotic minipumps 
(Fig.  4A). After 2  weeks of recovery, mice were divided 
into 2 weight-matched groups, and the minipumps 
were replaced with infusion of either aCSF or FGF19 
(15 ng/0.5 µl/h). Mice then underwent open field testing. 
Next, in a cross-over experimental design, the osmotic 
minipumps were replaced with new pumps filled with 
either FGF19 or aCSF in a reciprocal fashion, and mice 
were then placed in open field testing (Fig. 4A). Mice that 
were infused with FGF19 intracerebroventricular (i.c.v.) 
showed significantly fewer entries to the center, spent 
less time, and traveled less distance in the center of the 
open field (Fig.  4B). FGF19 i.c.v. infusion did not affect 
the total distance traveled in the periphery, total distance, 
and rearing activity (Fig.  4B). These results suggest that 
central infusion of FGF19 may have an anxiogenic effect 
and reduce exploratory behaviors without altering total 
locomotor activity.

To further evaluate if dietary cholesterol may exert 
any effects on exploratory or anxiety-like behaviors, the 
aforementioned mice were given a 1-week to rest. The 
mice with functioning osmotic pumps were then pro-
vided with the same diet supplemented with 1% cho-
lesterol for 72  h (Fig.  4A) and subsequently tested in 
the open field. The presence of dietary cholesterol led 
to reduced number of entries into the center, less time 
spent, and less distance traveled in the center of the open 
field in aCSF-infused control mice compared to the same 
aCSF-infused mice on cholesterol-free diet. Notably, the 
anxiolytic effects of cholesterol-free diet compared with 
cholesterol-rich diet were abolished by i.c.v. infusion of 
FGF19 (Fig. 4C). Distance in the periphery, total distance 
traveled, and rearing activity were not significantly dif-
ferent (Fig.  4C). Together, these experiments suggest 
that dietary cholesterol or central infusion of FGF19 sup-
presses exploratory behaviors, and that the anxiogenic 
effects of dietary cholesterol may be mediated by the 
effect of FGF19 in the mouse brain.

Discussion
Feeding is a multi-step process whereby foraging for 
food precedes food consumption. Foraging is fundamen-
tal for survival in an environment where food is often 
scarce and unpredictable. Thus, these behaviors are well 
conserved and possessed by species across the animal 

kingdom including humans [33]. In this study, we present 
evidence that dietary cholesterol modulates locomotor 
activity and exploratory behavior, which are mediated in 
part by AgRP. We further show that dietary cholesterol 
stimulates intestinal production of FGF15/19, a post-
prandial hormone, which acts in the brain to exert anxi-
ogenic effects and reduce exploratory behaviors.

Foraging behaviors and food consumption are tightly 
linked but can be uncoupled. Food deprivation is a potent 
driver for food-seeking behaviors as well as food con-
sumption. In mice that are housed under standard labo-
ratory condition, fasting markedly stimulates locomotor 
activity, which subsides upon refeeding. AgRP expression 
is markedly up-regulated by food deprivation. In Sibe-
rian hamsters, fasting or treatment with AgRP robustly 
increases foraging and food hoarding but has less effects 
on food intake [34–37]. Conversely, knockdown of 
AgRP in Siberian hamsters reduces food hoarding with-
out affecting food intake [38]. These results suggest that 
AgRP triggers the search for food in this species, and 
once they find it, hoarding predominates over eating [37]. 
Our results show that AgRP is necessary for locomotor 
activity but not for food consumption in mice. Our study 
also shows that these behaviors can be influenced by the 
cholesterol content in the diet.

Foraging behaviors are influenced by a number of 
environmental factors. Our results indicate that fasting-
induced increase in locomotor activity manifests only in 
the dark cycle but not in the light cycle, suggesting that 
hunger, when coupled with the anxiolytic effects of a dark 
environment, promotes foraging behaviors. On the other 
hand, our study shows that consumption of dietary cho-
lesterol stimulates the expression of intestinal FGF15/19, 
which produces anxiogenic effects and suppresses 
exploratory activity. As production of FGF15/19 is stimu-
lated by the postprandial release of bile acids, the effects 
of dietary cholesterol and FGF15/19 on exploratory activ-
ity indicate that a satiated state attenuates exploratory 
activity. On the other hand, the lack of dietary choles-
terol or FGF15/19 may induce an anxiolytic state, which 
facilitates foraging activity. Consistent with this notion, 
activation of AgRP neurons exert anxiolytic effects [18]. 
Given that FGF19 suppresses Agrp and Npy expression 
and inhibits AgRP neuronal activity [27], these data sug-
gest that FGF19 may exert anxiogenic effects by acting 
on multiple components of AgRP neurons. Thus, forag-
ing behaviors are influenced by dietary, hormonal and 
environmental factors, and cholesterol-FGF15/19-AgRP 
regulatory axis is involved in this regulation.

In nature, dietary cholesterol comes from animal-
based food. Thus, the presence of high dietary cho-
lesterol may signal a state of energy surplus to the 
brain, in part via FGF19, which triggers adaptive 
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Fig. 4 Dietary cholesterol and FGF19 in the mouse brain suppresses exploratory behavior. A 5-month-old male C56BL/6J mice (n = 16) underwent 
ICV osmotic minipump placement with aCSF (Alzet 0.5 µl /h) and were given 2-week recovery period. ICV pumps were then replaced with 
infusion of either FGF19 (15 ng/0.5 µl/h) or aCSF. Mice were placed into neurobehavioral open field testing chamber after being ad lib fed with a 
cholesterol-free diet (Teklad 2018) for 72 h. Using a cross-over design, mice underwent another ICV pump replacement and were given ICV infusion 
of either FGF19 or aCSF via osmotic minipump and placed on ad lib cholesterol-free diets 72 h prior to open field testing. One week later, mice were 
ad lib fed with the same diet supplemented with 1% cholesterol for 72 h and completed open field testing. B Open field testing results comparing 
mice receiving aCSF versus FGF19 infusion while on cholesterol-free diets. C Open field testing results comparing mice on cholesterol-deficient vs 
high cholesterol diet. *p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001 by student t-test for (B) and 2-WAY ANOVA for (C)
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down-regulation of AgRP neuropeptide expression, 
thereby reducing food seeking behaviors. On the 
contrary, when dietary cholesterol is depleted from 
the diet, it signals a state of food shortage, leading 
to enhanced locomotion and forage-like behaviors 
(Fig.  5). Understanding the genetic, dietary and hor-
monal modulators of foraging behaviors may help 
understand the complex feeding behaviors and shed 
light on the etiology of human obesity.

Conclusions
Experiments in this study show that dietary cholesterol 
suppresses locomotor activity and foraging-like behav-
iors, and this regulation is in part mediated by AgRP. Die-
tary cholesterol or central infusion of FGF19 suppresses 
exploratory behaviors, and the anxiogenic effects of die-
tary cholesterol may be mediated by the effect of FGF19 
in the mouse brain. This study suggests that dietary cho-
lesterol and intestinal hormone FGF15/19 signal a satiat-
ing state to the brain, thereby suppressing foraging-like 
behaviors.

Fig. 5 Graphical Abstract—Dietary cholesterol modulates locomotion and exploratory behavior through AgRP neuropeptide and intestinal 
fibroblast growth factor 15/19. In nature, dietary cholesterol comes from animal-based food. Thus, the presence of high dietary cholesterol may 
signal a state of energy surplus to the brain, in part via stimulation of intestinal FGF15/19 and suppression of hypothalamic AgRP expression, as well 
as alteration of other components of AgRP neurons. These effects lead to increased anxiogenic levels and decreased locomotor activities, thereby 
reducing food-seeking behaviors. On the contrary, when dietary cholesterol is depleted from the diet, it signals a state of food shortage, in part via 
suppression of intestinal FGF15/19 and stimulation of hypothalamic AgRP expression, as well as alteration of other components of AgRP neurons. 
These effects result in reduced anxiogenic levels and increased locomotor activities, thereby enhancing food-seeking behaviors. Green arrows 
signify upregulation and red arrows signify downregulation
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Research design and methods
Mice and diets
All animal care and experiments were approved by 
the University of California at San Francisco Institu-
tional Animal Care and Use Committee. All experi-
ments were performed using male mice, unless stated 
otherwise. Mice were housed in a barrier facility with 
12  h light–dark cycles, and fed a mouse chow (Lab-
Diet #5058), unless stated otherwise. C57BL/6J mice 
were purchased from the Jackson Laboratory, while 
Agrp–/– mice were described previously [39]. When-
ever possible, littermates were compared to account for 
variabilities in genetic background and litter dynam-
ics. The macronutrient composition of different diets 
is described in each experiment. Cholesterol-free chow 
diet (Teklad 2018) and the matching diet with 1% sup-
plemented cholesterol (TD. 02026) were manufactured 
by Envigo. To make custom cholesterol-free high-fat 
diet, TD8122 Basal Mix (Harlan Teklad, Madison, Wis-
consin) was ground and mixed with pure virgin olive 
oil (CAS: 8001-25-0). Addition of cholesterol (Sigma-
Aldrich St. Louis, MO, CAS: 57-88-5) to the diets was 
accomplished by dissolving it first in olive oil and then 
mixing it in with the ground diet.

Body composition and metabolic measurements
Metabolic studies and body composition measurements 
were performed at the UCSF Mouse Metabolism Core, as 
previously described [40]. Briefly, body composition was 
measured using magnetic resonance imaging (EchoMRI-
3in1 system, EchoMRI, Houston, TX, USA). Indirect 
calorimetry, locomotor activity, food intake, and energy 
expenditure were measured using a 16-chamber compre-
hensive lab animal monitoring system (CLAMS; Colum-
bus Instruments, Inc.). During metabolic monitoring, 
mice were single-housed for 3 days prior to commence-
ment of measurement and allowed 1  day to acclimatize 
in CLAMS chambers.  O2 consumption,  CO2 produc-
tion, food intake, and locomotor activity were measured 
by CLAMS. Measurements over multiple days were 
recorded and data from the first day were excluded from 
analysis. For fasting-induced feeding measurements, 
mice were fasted at 11am for a duration of 24 h.

Gene expression analysis
RNA isolation from mouse hypothalamic and intesti-
nal tissues was performed using the RNeasy plus mini 
kit (Qiagen). qPCR was performed using Taqman gene 
expression assay probes: Agrp, Mm00475829_g1; Npy, 
Mm00445771_m1; Pomc, Mn00435874_m1, Fgf15, 
Mm00433278_m1 and Gcg, Mm01269055_m1.

Intracerebroventricular infusion with osmotic pumps
In a single surgical procedure, 5-month-old mice were 
anesthetized with ketamine and xylazine (45 and 5  mg/
kg, respectively) supplemented with isofluorane inha-
lation. Mice were mounted on a stereotaxic apparatus 
(model 1900; David Kopf Instruments) and implanted 
with an Alzet guide cannula (Durect) into the right lat-
eral cerebroventricle (anteroposterior,—0.3  mm to 
bregma; lateral, + 1.0  mm to bregma; and dorsoven-
tral,—2.5  mm below skull). The cannula was connected 
to an osmotic minipump (flow rate of 0.15  µl/h; Alzet 
model 2006; Durect) via a 50  mm-long vinyl tubing 
(inner diameter 1.22  mm, Durect). Each minipump was 
filled with artificial cerebrospinal fluid (aCSF). Pumps 
connected to the intracerebroventricular cannulae were 
primed overnight at 37 °C in 0.9% saline. The minipump 
was then implanted subcutaneously in the back posterior 
to scapulae. Mice were then housed singly and monitored 
for body weight, body composition, and food intake. All 
mice were allowed to recover for 2 weeks before experi-
ments began. After the recovery period, each mouse 
underwent another surgical procedure where the osmotic 
minipump was replaced with a new minipump filled with 
either aCSF or FGF19 (15 ng/0.5 µl/h, Phoenix Pharma-
ceuticals, Inc), which were primed overnight at 37 °C in 
0.9% saline. Mice then underwent open field testing. Two 
weeks later, the mice underwent a second osmotic min-
ipump replacement such that those who initially received 
aCSF were switched to osmotic pumps filled with FGF19 
and vice versa (cross-over study design). After each pump 
replacement, residual volumes in the pumps were meas-
ured to ensure that proper infusion took place.

Open field testing
On the day of the open field testing (OFT), mice were 
transported to the behavioral testing room and allowed 
to habituate for at least 30 min before experiments. OFTs 
were performed in a brightly lit room. Mice were placed 
in the center of the open field (50  cm × 50  cm plexi-
glass chamber with 32 infrared photobeams), and their 
exploratory behaviors were tracked for 10 min and quan-
tified using MotorMonitor software (Kinder Scientific, 
Chula Vista, CA). The arena was cleaned with 70 per-
cent ethanol between trials. The time spent in, entries to 
and distance traveled in the center zone, distance in the 
periphery, total distance traveled and rearing were ana-
lyzed for each mouse.

Statistical analyses
Specific statistical tests for different experiments are 
described in figure legends. Briefly, two-tailed Student’s 
t-test was used to compare two independent groups of 
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mice. Under conditions where two genotypes and mul-
tiple treatments/conditions were compared, two-way 
ANOVA with multiple comparisons was performed. In 
cases where the same animals were analyzed over time, 
repeated-measures two-way ANOVA was used. Sta-
tistical analyses were performed using Prism software 
(GraphPad Software, Inc, La Jolla, CA, USA). Differences 
were regarded as statistically significant if p* < 0.05.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13578- 023- 00955-2.

Additional file 1: Figure S1. AgRP deficiency alone does not affect 
exploratory behavior. Eight-to-nine month-old male Agrp+/+ (WT, n=7) 
and Agrp–/– (KO, n=9) mice were ad lib fed with a chow diet (Teklad 2018) 
for 72 hours and then placed into open field test. WT and KO mice were 
compared by student t-test.
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