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Abstract 

Rationale:  Recent research has indicated that cuprotosis, or copper induced cell death, is a novel type of cell death 
that could be utilized as a new weapon for cancer management. However, the characteristics and implications of 
such signatures in cancers, especially in clear cell renal cell cancer (ccRCC), remain elusive.

Methods:  Expression, methylation, mutation, clinical information, copy number variation, functional implication, and 
drug sensitivity data at the pan-cancer level were collected from The Cancer Genome Atlas. An unsupervised clus-
tering algorithm was applied to decipher ccRCC heterogeneity. Immune microenvironment construction, immune 
therapy response, metabolic pattern, and cancer progression signature between subgroups were also investigated.

Results:  Cuprotosis related genes were specifically downregulated in various cancer tissues compared with normal 
tissues and were correlated with hypermethylation and copy number variation. Cuprotosis scores were also dysregu-
lated in tumor tissues, and we found that such a signature could positively regulate oxidative phosphorylation and 
Myc and negatively regulate epithelial mesenchymal translation and myogenesis pathways. CPCS1 (cuprotosis scores 
high) and CPCS2 (cuprotosis scores low) in ccRCC displayed distinctive clinical profiles and biological characteristics; 
the CPCS2 subtype had a higher clinical stage and a worse prognosis and might positively regulate cornification and 
epidermal cell differentiation to fuel cancer progression. CPCS2 also displayed a higher tumor mutation burden and 
low tumor stemness index, while it led to a low ICI therapy response and dysfunctional tumor immunity state. The 
genome-copy numbers of CPCS2, including arm- gain and arm- loss, were higher than those of CPCS1. The prog-
nostic model constructed based on subgroup biomarkers exerted satisfactory performance in both the training and 
validation cohorts. In addition, overexpression of the copper death activator DLAT suppressed the malignant abil-
ity, including cell migration and proliferation, of renal cell lines in vitro and in vivo. Finally, activation of cuprotosis in 
tumors could enhance antitumor immunity through dsDNA-cGAS-STING signaling in ccRCC.
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Conclusion:  The activation of cuprotosis might function as a promising approach among multiple cancers. The 
cuprotosis related signatures could reshape tumor immunity in the ccRCC microenvironment via cGAS-STING signal, 
thus activating tumor antigen-presenting process. Upregulation of DLAT expression in ccRCC cell lines could reacti-
vate the copper death pattern and be treated as a suitable target for ccRCC.

Keywords:  Copper induced cell death, Pan-cancer, Clear cell renal cell carcinoma, Molecular subtypes, Tumor 
immunity

Introduction
Even equipped with advanced diagnostic and therapeu-
tic approaches, cancer is still the leading disease that 
accounts for approximately 15% of all deaths worldwide 
[1]. With the prolongation of human lifespan, the inci-
dence and mortality of cancers continue to increase. 
Considering the heterogeneity and homogeneity of 
tumorigenesis, it is extremely significant to explore and 
evaluate novel prognostic or therapeutic targets, which 
could function as a paradigm in the systematic manage-
ment era. Renal cancer is a common urinary tract tumor 
with insidious onset and the most common type is clear 
cell renal cell carcinoma (ccRCC). Early-stage renal 
cancer has no obvious symptoms. Approximately 20%-
30% of patients have metastasized at the first visit, and 
nearly 30% of renal cancer patients suffer to recurrence 
and metastasis after surgery [2, 3]. However, advanced 
metastatic renal cancer is not sensitive to radiotherapy 
and chemotherapy, so the clinical treatment for those 
patients is extremely limited, and the prognosis is very 
poor, with a 5-year survival rate of less than 5% [4]. TKI-
targeted drugs and immune checkpoint inhibitors that 
have emerged in the past decade have brought some 
hope to ccRCC patients. However, current treatments 
lack specificity in the treatment of advanced renal cancer, 
with large toxicity and side effects, frequent drug resist-
ance, and median survival of patients less than 3  years. 
Thus, the combination of drug therapy might a be proper 
approach to cure renal cancer. The European Associa-
tion of Urology Guidelines advise immunotherapy com-
bined with targeted therapy as the first-line treatment of 
ccRCC. Lisa et  al. recorded that gut bacterial composi-
tion derived primary resistance to cancer immunother-
apy in renal cell carcinoma patients. Homeostasis of the 
gut microbiota may help to attenuate immunotherapy 
resistance [5]. Accordingly, combination therapies might 
be promising directions for ccRCC treatment. It is com-
pelling to develop new targets or assistant targets based 
on molecular features.

Copper induced cell death is a newly discovered type 
of cell death that is different from apoptosis, ferropto-
sis, pyroptosis and necroptosis. Copper is an impor-
tant enzymatic cofactor in cellular processes, but even 

modest intracellular concentrations could be toxic, 
leading to cell death. It has been recognized that the 
demand for copper is elevated in tumor cells relative to 
most other tissues, and represents a metabolic vulnera-
bility that can be exploited by limiting copper availabil-
ity [6]. Genetic variations in copper homeostasis cause 
life-threatening diseases, and both copper ionophores 
and copper chelators are considered anticancer agents. 
Copper can induce multiple forms of cell death through 
various mechanisms, including reactive oxygen species 
accumulation, proteasome inhibition, and anti-angio-
genesis. The introduction of copper in vivo has become 
a research hotspot in the field of tumor therapy. Lu 
et  al. showed that copper-based Mcl-1 inhibitors can 
be used to treat Mcl-1-related cancers with high effi-
ciency and low toxicity [7]. Zhang et  al. found that 
copper oxide nanoparticle exposure leads to mitochon-
drial dysfunction and the accumulation of mitochon-
drial superoxide anions in HUVECs, mediating p38 
MAPK activation and inducing DNA oxidative damage 
and cell death [8]. More recently, Peter et  al. explored 
and demonstrated the specific mechanism of copper 
induced cell death [9]. They observed that cuproptosis 
was dependent on mitochondrial respiration and that 
cuproptosis occurs through the direct binding of cop-
per to the fatty acylated component of the tricarboxylic 
acid (TCA) cycle. This leads to fatty acylated protein 
aggregation and subsequent loss of iron-sulfur cluster 
proteins, causing proteotoxic stress and ultimately cell 
death. Therefore, copper ionophore therapy could tar-
get cancers with high levels of fatty acylated proteins. 
It is believed that in the future, the use of copper ion 
metal carriers to kill cancer cells will become a new 
method for cancer treatment.

In this study, we conducted a characterization study 
of cuproptosis related genes by pan-cancer analysis 
and stratified ccRCC patients by integrating multiom-
ics data, including prognostic analysis, gene mutation 
analysis, immune infiltration analysis, and drug sensi-
tivity analysis, and constructed a reliable risk stratifica-
tion model to predict the prognosis of ccRCC patients. 
In addition, we identified and confirmed a promising 
cuproptosis target DLAT, which could function as a 
new therapeutic target for ccRCC.
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Materials and method
Data collection and processing
The workflow of this study is depicted in Additional 
file  1: Fig. S1. Pan-cancer normalized expression pro-
filing data, DNA methylation data, tumor mutation 
burden (TMB), microsatellite instability (MSI), copy 
number variation (CNV), somatic mutation data and 
clinical characteristics were downloaded from the 
UCSC XENA dataset (http://​xena.​ucsc.​edu/) [10]. The 
external ccRCC cohort, E-MTAB-1980, or JAPAN-
KIRC which included expression profile and prognos-
tic information, was downloaded from Express-array 
database (https://​www.​ebi.​ac.​uk/​array​expre​ss/), and 
different stage single cell sequence data of ccRCC 
patients were collected from GEO (ID PRJNA705464; 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Two ccRCC sin-
gle cell sequence datasets, including GSE159115 and 
GSE171306, were also adopted. This study also uti-
lized several public cancer datasets, including UAL-
CAN (http://​ualcan.​path.​uab.​edu/​index.​html), TIMER 
(https://​cistr​ome.​shiny​apps.​io/​timer/), TIDE (http://​
tide.​dfci.​harva​rd.​edu/), and MEXPRESS (https://​mexpr​
ess.​be/) [11]. Ethical Review Committee approval and 
informed consent were not required for datasets down-
loaded from public datasets. Patients without prog-
nostic information or expression profiles or who died 
within 30 days were excluded from this study.

Identification of distinct cuproptosis subgroups in ccRCC​
We collected 10 cuproptosis related genes according 
to Tsvetkov et  al. Additional file  2: Table  S1 R package 
corrplot was used to calculate the correlation among 
these genes via Spearman and Pearson rank algorithms. 
Consensus clustering was performed according to the 
expression matrix of cuproptosis related genes via R 
package ConsensusClusterPlus [12]. The subtype number 
k = 2 was determined as the best classification number.

Enrichment analysis between subgroups
R package DEseq2 was used to identify differentially 
expressed genes (DEGs) between subgroups; thresh-
olds were set at adjusted p < 0.01, and the abstract log 
Foldchange > 2. After calculating the DEGs, R pack-
age ClusterProfiler was used to perform Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways, Gene Set Enrichment Analysis 
(GSEA) and Gene Set Variation Analysis (GEVA), aiming 
to explain the biological function and molecular mecha-
nism between CPCS1 and CPCS2. All gmt files used for 
enrichment analysis were downloaded from the MSigDB 
(https://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp) and the 

ConsensusPathDB (http://​cpdb.​molgen.​mpg.​de/) data-
base [13–15].

Differences in immune infiltration signatures and therapy 
response
We utilized multiple immune cell infiltration algorithms 
including TIMER, CIBERSORT, QUANTISEQ, MCP-
COUNTER, XCELL, and EPIC to calculate cellular com-
ponents or immune cell enrichment scores in ccRCC 
tissues [16–19]. In addition, single-sample gene set 
enrichment analysis (ssGSVA) was introduced to further 
validate such differences [20]. R package ESTIMATE was 
used to evaluate the stromal and immune scores based-
on transcriptome profiling. Tumor Immune Dysfunction 
and Exclusion (TIDE, http://​tide.​dfci.​harva​rd.​edu/) algo-
rithm was used to compare immunotherapy responses 
between subgroups [21].

Mutation spectrum characteristics 
between subpopulations
Somatic data were analyzed and visualized via R pack-
age Maftools to compare mutational patterns between 
subgroups [22]. Through the transformation analysis 
function module, the drug and gene interactions and 
the differences in oncogenic signaling pathways of dif-
ferent subsets were also analyzed. Analysis of recurrent 
extensive and focal somatic copy number alterations 
(SCNA) was performed by the GISTIC 2.0 (https://​cloud.​
genep​attern.​org/​gp/​pages/​index.​jsf ) algorithm based on 
Euclidean distance [23, 24].

Drug susceptibility prediction
Each patient was assessed for their susceptibility to 
molecular drugs using the Genomics of Cancer Drug 
Sensitivity (GDSC, https://​www.​cance​rrxge​ne.​org/) data-
base. R package pRRophetic was utilized to estimate the 
half-maximal inhibitory concentration-IC50. In addition, 
CellMiner (https://​disco​ver.​nci.​nih.​gov/​cellm​iner/​home.​
do) and CCLE (https://​sites.​broad​insti​tute.​org/​ccle) data-
bases were also introduced to compare the different sen-
sitivities between ccRCC cell lines [25–27]. Spearman’s 
correlation coefficient was used to identify whether gene 
expression was associated with drug sensitivity. A posi-
tive correlation means that high expression of the gene 
indicates resistance to the drug, and low expression indi-
cates sensitivity to such therapy.

Construction of a risk prediction model related 
to cuproptosis
First, using subgroup-related biomarkers and overall 
prognostic information from the TCGA-KIRC cohort, 
univariate Cox regression analysis was performed to 
select survival-related signatures. Then, random survival 
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forest variable hunting (RSFVH) algorithm was further 
performed to select crucial signatures. Finally, a risk scor-
ing model was constructed using the best combination of 
prognostic genes to screen. The JAPAN-ccRCC cohort 
was used to validate our risk scoring model, and patients 
in both datasets were divided into high- and low-risk 
groups based on median risk scores.

Western blotting, IHC and RT‑qPCR
RT-qPCR and immunohistochemical (IHC) staining were 
performed to validate DLAT expression in paired tumor and 
adjacent renal tissue (including 40 clear cell renal carcinoma 
tissues from Changhai Hospital). Primer sequences for RT-
qPCR were as follows: primer for DLAT (forward: CGG​
AAC​TCC​ACG​AGT​GAC​C, reverse: CCC​CGC​CAT​ACC​
CTG​TAG​T), STING(forward: TCG​CAC​GAA​CTT​GGA​
CTA​CTG, reverse: CCA​ACT​GAG​GTA​TAT​GTC​AGCAG), 
TBK1(forward: GGA​GCC​GTC​CAA​TGC​GTA​T, reverse: 
GCC​GTT​CTC​TCG​GAG​ATG​ATTC), cGAS(forward TTC​
CAC​GAG​GAA​ATC​CGC​TGAG, reverse: CAG​CAG​GGC​
TTC​CTG​GTT​TTTC), IRF2(forward GAG​AGC​CGA​ACG​
AGG​TTC​AG, reverse: CTT​CCA​GGT​TGA​CAC​GTC​CG) 
and GAPDH (forward: GGA​GCG​AGA​TCC​CTC​CAA​AAT, 
reverse primer: GGC​TGT​TGT​CAT​ACT​TCT​CATGG). 
Antibodies of DLAT (Cat no: 13426–1-AP), cGAS (Cat no: 
ab252416) and GAPDH (Cat no: ab8245) were purchased 
from ProteinTech and Abcam Group. Ltd. The detailed 
procedure referred to our previous researcher’s protocols 
[28–30].

Investigation of DLAT biological function in vitro 
and in vivo
All the cell lines used in our study, including human 
and mouse normal renal epithelial cell lines HK-2 and 
CP-M062 and cancer cell lines (including 769-P, 786-
O, A-498, Caki-1, Caki-2, OSRC-2 and RENCA), were 
purchased from the American Type Culture Collec-
tion (ATCC). Cell lines were cultured according to the 
instructions. The DLAT overexpression plasmid was 
chemically synthesized by Shanghai GeneChem Co., 
Ltd. 786–0 and OSRC-2 cells were cultured in 6-well 
culture dishes at 60% density and then infected with 
DLAT overexpression lentivirus and the negative con-
trol (NC) lentivirus. All transfections were supplied 
with 4ug/ml polybrene (H8761; Solarbio, Inc) and 
lasted for 12 h. Screening was conducted with 2ug/ml 
puromycin (P8833; Sigma, Inc) for 3  days to acquire 
stably transfected cells. QT-PCR and Western blotting 
were applied to verify the overexpression efficiency of 
the lentivirus. CCK-8 (Cell Counting Kit-8) was used 
to detect the difference in cell viability between the 

negative control and DLAT-overexpression groups. 
Scratch assays and Transwell migration assays were 
used to evaluate cell migration ability. A colony-form-
ing experiment was conducted to determine the repro-
ductive ability in vitro. A nude mouse xenograft tumor 
model assay was applied to investigate the effect of 
DLAT overexpression in  vivo. Nude mice were given 
xenografts of DLAT overexpression and control 786-O 
cells (5 × 106 cells per site). The tumors were dissected 
and photographed after approximately 4  weeks (n = 5 
per group). The tumors were dissected and photo-
graphed after approximately 4 weeks (n = 5 per group). 
Tumor volumes were measured after tumor resection. 
The detailed procedure of the in  vivo experiments is 
described in our previous study [31].

Impact of cuprotosis in ccRCC tumor immunity
Cuprotosis reagents, Elesclomol and Cucl2, were 
obtained from MedChemExpress. Immune check inhibi-
tor agent (anti-PD-1) was purchased from BioXcell 
(Clone RMP1–14). ELISA kits for mouse IL6, TNF-α, 
IFN-γ, CXCL10 and CXCL11, and cytotoxicity assays 
based lactate dehydrogenase (LDH) release were pur-
chased form Thermofisher. The cGAMP Activity Assay 
Kit was obtained from BellBrook. Tumor cell growth 
was evaluated via IVIS at 12 and 24 days after tumor cell 
injection. The antibodies for fluorescent dye-conjugated 
of flow cytometry, including CD45-BV510 and CD8-
APC-Cy7, CD3-PE-Cy7, were purchased from Biolegend 
and eBioscience. The detailed procedure of intracellular 
staining can be found in each protocol. Flow cytometry 
analysis was performed with a FACS LSRII or Fortessa 
X-20 (BD Biosciences, San Jose, CA, USA) and data were 
analyzed by FlowJo v.10 software (FlowJo, Ashland, OR, 
USA).

Co‑culture system
The optimal concentration of cuprotosis inducer rea-
gents (Elesclomol + Cucl2) for renal cancer cell lines 
were identified by LDH release assay results between 
CP-M062 and RENCA. Dendritic cells, or DCs, were 
a kind gift from Department of Immunology (National 
Key Laboratory of Medical Immunology, Naval Medi-
cal University). In detail, DCs were derived from CD14+ 
monocytes from health donor’s peripheral venous blood, 
which were cultured in RPMI-1650 (containing 10%FBS, 
GM-CSF(50  ng/ml) and IL-4(10  ng/ml)), then stimu-
lated by lipopolysaccharide, or LPS(1ug/ml). Before co-
culture, ACHN were treated with DMSO or cuprotosis 
inducer reagents (Elesclomol + Cucl2) at concentra-
tion of 2 μmol/L for 3 days. Then DCs were co-cultured 
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with tumor cells pre-treated with DMSO or cuprotosis 
inducer reagents at a 5:1 ration in the presence of IL-4 
(10 ng/ml). After 2 days co-culture, DCs were harvested 
to perform Western blotting, qPCR, and ELISA to quan-
tify different level of cGAS-STING signal and immune 
related molecules.

Mouse subcutaneous xenograft model
Athymic nude mice (BALB/c, 4–6-week-old) and 
C57BL/6 mice (5–6-week-old) were obtained from 
Model Organisms (Shanghai, China). Renal cancer cells, 
including ACHN and RENCA treated with DMSO, ICI, 
or cuprotosis inducer reagents (Elesclomol + Cucl2), 
were injected into right flank of mice (1.0 × 106 cells 
per mice), respectively. BALB/c mice inoculated with 
RENCA were observed after 12  days; then those mice 
were randomized divided into three groups receiving 
DMSO, cuprotosis inducer reagents at concentration 
of 2 and 5 μmol/L, and tumor was identified at 24 days 
by bioluminescent imaging by IVIS Lumina K series III 
(PerkinElmer Inc, Hopkinton, MA, USA). After the xeno-
grafts reached a size of approximately 45 mm3, C57BL/6 
mice were randomized into four groups receiving DMSO, 
anti-PD-1mAB, cuprotosis inducer reagents, and com-
bined therapy (anti-PD-1 + cuprotosis inducer reagents) 
by intraperitoneal (i.p., given at days 14, 17, 20), respec-
tively. After one week, all mice treated with those agents 
were euthanized and peripheral blood were harvested to 
quantity the percentage of CD45 + CD8 + T cells among 
different groups by flow cytometry. All those procedures 
were approved by the Institutional Animal Care and Use 
Committee at Navel Medical University.

Statistical analysis
All data processing, statistical analysis and plotting were 
performed via R software (version 4.0.4). Differences 
between subgroups were compared by Kruskal–Wallis 
test and Wilcoxon test. Differences in clinical character-
istics and inhibitor response between subgroups were 
compared by the chi-square test. Differences in progno-
sis, including overall survival (OS) and progression-free 
survival (PFS) were compared by Kaplan–Meier method 
and Log-rank test. Hazard ratio (HR) differences were 
calculated by univariate Cox regression and multiple Cox 
regression analyses. Two-way p-values were taken and 
P < 0.05 was considered statistically significant.

Results
Dysregulation and mutation of copper induced cell death 
related genes in cancers
Copper induced cell death has gradually become the focus 
of attention for cancer research. We first explored the 
expression pattern of copper induced cell death related 
genes across cancers. As shown in Fig.  1A, most copper 
induced cell death genes were downregulated in various 
cancers, such as FDX1 in cholangiocarcinoma (CHOL); 
LIAS and LIPT1 in bladder cancer (BLCA); PDHB in glio-
blastoma (GBM) and kidney chromophobe cancer (KICH). 
The results demonstrated that copper induced death was 
suppressed across cancers. Nonetheless, CDKN2A expres-
sion was significantly up regulated KICH and breast can-
cer (BRCA). The classic regulator of copper induced death 
FDX1 was investigated and was significantly reduced in 
renal cancer, liver cancer, gastric adenocarcinoma, and 
other cancers compared with the normal control (Addi-
tional file  1: Fig. S2A). To comprehensively understand 
the dysregulated expression of copper induced cell death 
genes, we investigated the characteristics of copy number 
variation (CNV) and single-nucleotide variation (SNV) 
across cancers (Fig.  1B). In most cancers, CNV and gene 
expression were significantly correlated, especially in 
BRCA, BLCA, HNSC, LUSC and OV. As depicted in 
Fig.  1C, heterozygous amplifications frequently appeared 
in DLD, PHDA1, and LIPT1, while heterozygous dele-
tions often occurred in PHDB, FDX1, LIAS, and DLAT. 
Figure 1D shows the genomic location of copper induced 
cell death genes, which were distributed on several chro-
mosomes. The SNV frequency of copper induced cell 
death genes was analyzed, and all 729 samples tested had 
at least one mutation site (Fig. 1E). CDKN2A, MTF1, DLD, 
GLS, PDHA1 and DLAT exhibited higher mutation fre-
quencies, and the SNV rate of CDKN2A even exceeded 
50%. Cancers with high rates of SNVs included HNSC, 
LUSC, PAAD, BLCA, LUAD, SKCM and UCEC (Addi-
tional file  1: Fig. S2B). Methylation is usually negatively 
correlated with gene expression. Likewise, the expression 
of most copper induced cell death genes was negatively 
correlated with their methylation status, such as PHDB, 
DLAT, LIPT1 and LIAS (Fig. 2F). Thus, most of the cop-
per induced cell death genes were hypermethylated states 
in cancers. CDKN2A expression was positively related 
to methylation levels in HNSC, ESCA, PCPG and LUSC. 
MTF1 expression in PRAD, COAD, UVM and FDX1 
expression in LIHC exhibited positive correlation with 

Fig. 1  Dysregulation and mutation of copper-induced cell death-related genes in cancers. A Gene expression of copper-induced cell death-related 
genes between multiple cancer tissues and normal tissues. B Correlation analysis of CNV with the gene expression of copper-induced cell 
death-related genes. C Heterozygous and homozygous amplification/deletion of copper induced cell death-related genes in multiple cancers. D 
The genome locations of copper-induced cell death-related genes on 23 chromosomes. E Mutation type of copper induced cell death-related 
genes in multiple cancers. F The methylation analysis of CNV with gene expression of copper-induced cell death-related genes

(See figure on next page.)



Page 6 of 27Jiang et al. Cell & Bioscience          (2022) 12:209 

Fig. 1  (See legend on previous page.)
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Fig. 2  Pathway enrichment analysis and drug sensitivity assessment of copper-induced cell death genes. A Heatmap of multiple cancer-related 
pathways for copper-induced cell death. B The activation of the inhibition pathway in multiple cancers. C The copper-induced death potential 
index (CPI) in cancer and normal tissues. D The association between the expression levels of copper-induced cell death-related genes and patient 
outcomes. E The drug sensitivity assessment of several copper-induced cell death-related genes to molecular inhibitors
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methylation status. Hypermethylated PDHB, LIPT1, LIAS 
and GLS were mainly associated with poor prognosis in 
cancer, whereas hypomethylated FDX1 was dominantly 
related to poor prognosis of LGG and ccRCC (Additional 
file  1: Fig. S2C). Therefore, copy number variation, single 
nucleotide variation and methylation status together con-
tributed to the dysregulation of copper induced cell death 
in pan-cancer.

Pathway enrichment analysis and drug sensitivity 
assessment of copper induced cell death genes
After exploring the fundamental reasons for copper 
induced cell death gene dysregulation, we analyzed the 
effect of these genes on cancer signaling pathways. GSEA 
analyses indicated that copper induced cell death genes 
were mainly positively related to the MYC, MTOR, G2M 
checkpoint and oxidative phosphorylation signaling 
pathways, but negatively correlated with epithelial mes-
enchymal transition (EMT), myogenesis and TNFA—
NFκB (Fig.  2A). Specifically, PDHA1 was associated 
with cell cycle, hormone AR pathway activation, EMT 
inhibition and RTK inhibition. LIPT1 was associated 
with DNA damage response, hormone AR activation, 
and EMT inhibition. LIAS was enriched in hormone AR 
activation and apoptosis inhibition. FDX1 was mainly 
enriched in hormone AR, ER activation and EMT inhi-
bition. MTF1 was related to RTK pathway, RAS-MAPK 
pathway activation and cell cycle inhibition. CDKN2A 
was associated with cell cycle activation and RTK, RAS-
MAPK inhibition (Fig. 2B). The positive factors related to 
copper induced death were mainly enriched in cell cycle, 
metabolism, RAS-MAPK activation and EMT inhibition 
pathways.

Considering the importance of copper induced death, 
we determined copper induced death potential index 
(CPI), similar to ferroptosis in cancer and normal tissues 
[32]. CPI index was significantly lower in most cancers 
than in normal tissues, especially in ccRCC, breast can-
cer and liver cancer (Fig. 2C). In addition, we found that 
high expression of most of these genes predicted poor 
prognosis in cancer patients (Fig.  2D), such as FDX1 in 
LUAD and LGG; LITP1 in SKCM and UVM; DLAT in 
BLCA and LIHC; and CDKN2A in KICH, ACC, THCA, 
LIHC, LIHC, KIRC UCEC and COAD. Notably, most 
genes except CDKN2A indicated a protective function 
for ccRCC patients. The GDSC and CTRP databases 
were used to perform drug sensitivity analysis of copper 
induced cell death-related genes. Spearman correlation 
analysis showed that high CDKN2A expression exhibited 
good sensitivity to PD-0332991 and Nutlin-3a. Similar 
results were found for PDHB to Gefitinib and Afatinib 
(Fig. 2E). GLS was responsible for GSK-J4 and tivantinib 
sensitivity (Additional file 1: Fig. S3). LIAS was associated 

with multiple drug resistance, such as Methotrexate and 
TPCA-1. GLS was closely related to CHIR-99021, dasat-
inib and bortezomib resistance. These drug sensitivity 
results may be developed to find effective targets for can-
cer treatment. LIA and GLS expression might be respon-
sible for therapy resistance, which needs further research.

Establishment of two clusters by clustering analysis 
of copper induced cell death‑related genes in ccRCC​
As we found above, copper-induced cell death-related 
genes were protective factors for ccRCC, which was 
unique and different from other cancers. Thus, we inves-
tigated the characteristics of copper-induced cell death-
related genes in ccRCC. The TCGA ccRCC samples 
were classified into several subtypes using an unsuper-
vised clustering method based on the expression levels 
of copper-induced cell death-related genes. The opti-
mal classification method was validated, and the PAC 
method was used to assess the robustness of the analy-
sis. Consequently, the TCGA ccRCC dataset was divided 
into two subtypes, namely, copper-pattern cancer type 1 
(CPCS1) and type 2 (CPCS2) (Fig. 3A–D). After exclud-
ing patients lacking tumor stage and grade information, 
the clinicopathological characteristics of the 506 ccRCC 
patients with the two subtypes were compared, as shown 
in Additional file  2: Table  S2. Compared with CPCS1 
subtype patients, CPCS2 subtype patients had higher T 
stage and shorter overall survival (OS) and progression-
free survival (PFS) (Fig. 3E, F). We analysed the expres-
sion of copper-induced cell death-related genes in ccRCC 
subtypes and normal kidney tissues. The CSP2 subtype, 
similar to the desert of copper, induced cell death and 
expressed lower levels of copper-induced cell death-
related genes than the CPCS1 subtype and normal tis-
sues. Conversely, CDKN2A showed higher expression 
levels in the CPCS2 subtype than in CPCS1. The desert 
of copper-induced cell death-related genes in CPCS2 
contributed to the suppression of copper-induced death, 
which trained CPCS2 to aggressive clinical subtypes.

Functional enrichment analysis of ccRCC subtypes
Since there were differences in the copper-induced cell 
death profiles and clinical characteristics between the 
subgroups, we next investigated the biological function 
and hallmarks of CPCS1 and CPCS2. GO analysis dem-
onstrated that differentially expressed genes were mainly 
enriched in cornified envelope, blood microparticle and 
lipoprotein particle in cellular component; cornification, 
keratinization, and epidermal cell differentiation in bio-
logical process; and serine hydrolase activity, active ion 
transmembrane transporter activity and anion trans-
membrane activity in molecular function (Fig.  4A–C). 
GSEA pathway analysis indicated that these genes were 
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mainly enriched in cellular responses to external stim-
uli, metabolism of lipids and vesicle-mediated transport 
pathways (Additional file 1: Fig. S4A). Compared with the 
CPCS1 subtype, the CPCS2 subtype was more correlated 
with the PI3K-AKT-mTOR, fatty acid metabolism, oxi-
dative phosphorylation and KRAS and MYC pathways, 
while the CPCS1 subtype was more related to the myo-
genesis, EMT, hypoxia and P53 pathways (Fig. 4D). The 
CSP2 subtype, but not the CPCS1 subtype, was activated 
in tumorigenicity and cancer progression.

The tumor microenvironment (TME) and metabolic 
pathways were compared between the CPCS1 and 

CPCS2 subtypes. The CSP2 subtype was significantly 
activated in exosome secretion, ferroptosis and extra-
cellular vesicle biogenesis and was inhibited in m6A 
methylation modification (Fig.  4E). The TME fraction 
pathways included EMT, CAF, and cytokine signal-
ing pathways. The CSP2 subtype was stimulated for 
immune checkpoint, CD8 T cells, chemokines, and 
interleukin receptors. The CSCP1 subtype was associ-
ated with mast cells, EMT, WNT and TGF-β receptors 
(Figure S4B). Metabolic processes play crucial roles in 
ccRCC [33]. We observed activation of multiple meta-
bolic pathways in CPCS2 subtypes, including amino 

Fig. 3  Establishment of two clusters for copper-induced cell death-related genes in ccRCC. A Consensus matrix of samples in TCGA-ccRCC for 
k = 2. B The cluster numbers are determined by the lowest proportion of ambiguous clustering. C The cumulative distribution function curves, 
k = 2 to 9. D The principal component plot is based on copper-induced cell death-related genes. E, F Survival analysis for overall survival (left) and 
progression-free survival of the two subtypes in the TCGA-ccRCC dataset. G The expression profiles of copper-induced cell death-related genes in 
two subtypes and normal samples
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sugar and nucleotide sugar metabolism, sulfur metab-
olism, oxidative phosphorylation, glutathione metab-
olism, cardiolipin metabolism, and valine, leucine 
and riboflavin metabolism. The CPCS1 subtype was 
stimulated for inositol phosphate metabolism, lysine 
degradation, remethylation and terpenoid backbone 
biosynthesis. The TME and metabolic environment 
shape the different ccRCC subtypes to a certain degree.

Comparison of immune infiltration characteristics 
between subtypes
Immunotherapy has gradually become the main char-
acteristic of ccRCC treatment in recent years. To define 
the effect of copper-induced death on immune profiling, 
we analysed the immune infiltration environment of the 
two subgroups using GSVA. Immune-related genes of 
the CPCS2 subtype showed an overall upwards-regulated 

Fig. 4  Functional enrichment analysis of ccRCC subtypes. GO enrichment analysis between the two subtypes in cellular component (A), biological 
process (B) and molecular function C. D GSEA pathway analysis between the two subtypes. E Tumor microenvironment-related pathways
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trend compared with the CPCS1 subtype. The CSP2 sub-
type expressed higher levels of CCL5, CCL21, CCL26, 
CXCR4, CXCR5, CXCR10, IL10RB, LAG3, CD276, 
CD48, CD70 and TCFRSF8 (Fig.  5A). Similar results 
were seen in several immune infiltration scoring mod-
els, including TIMER and CIBERSORT, QUANTISEQ, 

XCELL and EPIC. The CSP2 subtype was correlated 
with CD8 + T cells, Tregs, cancer-associated fibroblasts 
and NK cells (Fig.  5B). The above investigation con-
firmed the greater immune infiltration in CPCS2 than 
in CPCS1. Consistently, ESTIMATE algorithm analy-
sis showed that the CPCS2 subtype contained a higher 

Fig. 5  Investigations of immune profiling. A Heatmap of immune-related genes between CPCS1 and CPCS2. B Heatmap of tumor-related 
infiltrating immune cells based on the TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms in the two 
subtypes
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stromal score, immune score, and ESTIMATE score 
(Fig.  6A). The specific immune components were com-
pared between CPCS1 and CPCS2 subtypes. The CSP2 
subtype lacked activated dendritic cells, which prompted 
the reduction of identifying tumor cells (Fig.  6B). The 
CSP2 subtype was less capable of repairing DNA damage 

(Fig.  6C). The CSPC2 subtype expressed more CD276, 
IL-6, PDCD1 and TGFB1, while CD274 (PD-L1) expres-
sion was significantly downregulated (Fig.  6D). In the 
antitumour processes, the CPCS2 subtype expressed a 
higher degree of immune infiltration, but tumor clear-
ance abilities were severely impaired, possibly due to 

Fig. 6  Landscapes of specific immune components and immune function scores. A ESTIMATE scores of the two subtypes. B–E The immune cells, 
immune pathways, immune antigens, and tumor kill steps between the two subtypes. F The immune function scores between the two subtypes
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the immunosuppressive states (Fig.  6E). The immune 
function scores were also evaluated in the two sub-
types. The CSP1 subtype gained a higher microsatel-
lite instability (MSI) score, whereas the CPCS2 subtype 
obtained a higher cancer-associated fibroblast (CAF) 
score, stemness-associated score, dysfunction score and 
tumor immune dysfunction and rejection score (TIDE) 
(Fig.  6F). Nearly half of the cases in CPCS1, a copper-
induced death-activated subtype, developed an effective 
immune response. Conceivably, the C2 subtype may gen-
erate more effective immune responses by activating cop-
per-induced death to form abundant presented antigens.

Comparison of tumor somatic mutations and CNVs in two 
subtypes
In addition to the influence of the microenvironment 
on drug therapy, genome mutations are also core fac-
tors in drug effectiveness. We examined the differential 
distribution of tumor somatic mutations between the 
two subtypes. The gene mutations of the CPCS2 subtype 
were more frequent than those of the CPCS1 subtype 
(Fig. 7A). The picture depicts the mutation frequency of 
the top 20 mutant genes. VHL, PBRM1, TTN, SETD2 
and BAP1 were the most frequently mutated genes for 
both subtypes. Compared to CPCS1, the CPCS2 sub-
type had several genes with a higher mutation frequency, 
including KDM5C (9% vs 4%), PTEN (6% vs ≤ 4%), XIRP 
(6% vs ≤ 4%), LPR2 (6% vs ≤ 4%), RYR2/3 (6% vs ≤ 4%) 
and ANKS1B (5% vs ≤ 4%). The forest analysis also con-
firmed the above findings. As shown in Fig.  7B, the 
CPCS2 subtype was more mutated in DNAH11, ZGRF1, 
ESPL1, LAMC1, RYP2, PTEN and ANKS1B. The fraction 
of pathways affected in CPCS1 was more frequent than 
that in CPCS2, while CPCS2 shared a greater fraction 
of affected samples (Fig.  7C). For instance, the CPCS1 
subtype was more frequent than the CPCS2 subtype 
for the fraction of pathways affected in NOTCH (35/71 
vs 17/71), NOTCH (28/68 vs 18/68), Hippo (22/38 vs 
12/38) and MYC (6/13 vs 3/13). The CPCS2 subtype 
was more frequent for the fraction of samples affected 
in WNT (21/109 vs 51/211). The DGldb database was 
used to investigate potential therapeutic targets of 
mutated genes. The potential therapeutic targets of the 
CPCS1 subtype included ARID1A, ATM, BAP1, KDM5C 
and KMT2C, while CPCS2 targets were mainly BAP1, 
FAT3, KDM5C, LAMPCCS1 and mTOR (Fig.  7D). The 
somatic interactions analysis suggested that comutation 

of PBRM1 and PKHD1 caused cell death in CPCS1, and 
comutation of VHL and RYR2/LRP2 also led to death 
(Fig.  7E). These synthetic lethal mutations could poten-
tially be used to develop treatments for different sub-
types. For mutations of copper-induced cell death-related 
genes, the CPCS2 subtype reserved a higher mutation 
frequency (4.59% vs 2.37%) and more abundant mutation 
types than the CPCS1 subtype (Fig. 7F). The DLD gene 
contained frame deletion, frame insertion and missense 
mutations in the CPCS2 subtype.

Copy number variations and not just gene somatic 
mutations were also compared between the two sub-
types. For amplification frequencies, the CPCS2 sub-
type presented higher CNV frequencies than the CPCS1 
subtype on chromosomes 3q, 8q, 12p, 12q, 20p, and 
20q. Regarding deletion frequencies, the CPCS2 sub-
type contained significant CNV frequencies on chromo-
somes 6p, 8p, 9p, 9q, 10q, 11q, 13q, 17p, 18p, 18q, and 
22q (Fig. 8A). The amplification and deletion regions on 
chromosomes were decoded and analysed using GIS-
TIC 2.0 software (Fig. 8B–D, Additional file 3: Table S3). 
The recurrent CNVs of CPCS1 included amplification 
of 5q35.2 (CPEB4), 5q31.3 (KCTD16), 5q33.2 (SGCD), 
5q15 (NR2F1), 14q13.1 (CFL2, NFKBIA, PSMA6, SRP54, 
PPP2R3C), and 7q34 (EPHB6, TRPV6) and deletion of 
9p21.3 (CDKN2A), 1p36.13 (UBR4), 9p21.3 (CDKN2B), 
9p23 (PTPRD), 2q37.1 (ALPI, COL4A3, GPR35, 
PTPRN), and 3p21.2 (ABHD14A, PARP3, RBM15B). 
The specific CNVs of CPCS2 were the amplification of 
5q35.3 (FGFR4, HNRNPH1, MAPK9, RNF44), 5q23.3 
(HINT1), 11q22.2 (MMP7), 3q26.33 (PIK3CA, ZNF639), 
and 8q24.22 (ADCY8, ADCY8, GPR20) and the dele-
tion of 2q37.3 (AGXT, KIF1A), 9p23 (PTPRD), 1p31.1 
(NEGR1), 1p36.11 (C1QA, CD52, GPR3, RUNX3), and 
9p21.3 (CDKN2A, CDKN2B) (Fig.  8B–D). Differences 
in the amplification and deletion of genomic regions may 
lead to the formation of the two subtypes.

Drug sensitivity analysis of two subtypes
After comprehensively inspecting the clinical char-
acteristics, prognosis, immune profile and mutation 
information of the two subtypes, we further searched 
for sensitive targets and potential drugs of the two sub-
types based on the above investigations. The GDSC 
database was used to perform drug sensitivity analy-
sis of the two ccRCC subtypes. Significantly differ-
ent responses were observed between the CPCS1 and 

Fig. 7  Landscapes of somatic mutations and potential targets in the two subtypes. A Waterfall plot showing the mutation patterns of the top 20 
most frequently mutated genes. B Forest analysis indicating differentially mutated genes between the two subtypes. C The fraction of pathways 
or samples of oncogenic signaling pathways in CPCS1 and CPCS2. D Potential druggable gene categories from the mutation dataset in CPCS1 and 
CPCS2. E The synthetic lethal mutations in CPCS1 and CPCS2. F Waterfall plot showing the mutation patterns of copper-induced cell death-related 
genes in CPCS1 and CPCS2

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Fig. 8  Landscapes of copy number variations in the two subtypes. (A) The amplification or deletion frequency in chromosomes between the two 
subtypes. B Specific amplification or deletion location in CPCS1 and CPCS2. C Bar plot of genomic fractions altered in the two subtypes. D The 
GISTIC score and percentage of copy number profiles in ccRCC​
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CPCS2 subtypes. The CSP1 subtype was more sensi-
tive to axitinib, crizotinib, pazopanib and temsiroli-
mus, while the CPCS2 subtype displayed sensitivity to 

dasatinib, erlotinib, lisitinib, saracatinib and gefitinib 
(Fig. 9A). Although most of them were TKI inhibitors, 
there were certain differences in the effective targets 

Fig. 9  Drug sensitivity analysis of the two subtypes. A Estimated IC50 of the indicated molecular targeted drugs in CPCS1 and CPCS2. B Estimated 
IC50 of the potential drugs in CPCS1 and CPCS2
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of CPCS1 and CPCS2 subtypes, which were VEGFR/
PDGFR/MET and EGFR/SRC, respectively. We further 
analysed two subtypes of potential molecular inhibitor 
drugs. CPCS1 subtype indicated sensitivity to PAC.1, 
GW.441756, AKT inhibitor VIII, FH535 and Epothione. 
B, while the CPCS2 subtype was more responsive to 
CGP.6047, sunitinib, GSK269962A, and LFM. A13 and 
vinblastine (Fig.  9B). We then investigated potential 
drugs targeting the oncogenic process. The CellMiner 

database was utilized to determine the relationships 
between copper-induced death-related genes and drug 
sensitivities. Negative correlations were observed 
between GLS expression and the IC50 of TYROTHRI-
CIN, EMD-534085, Batasertib and PDHA1 expression 
and the IC50 of LY-3023414 (Additional file  1: Fig. 
S5A). The results suggested that these were appropri-
ate for ccRCC patients with high expression of GLS and 
PDHA1. In addition, MI-503, LY-3154567 or KPT-9274 

Fig. 10  Verification of the classification model in the external dataset. A Heatmap of the expression profiles of copper-induced death-related 
genes in the two subtypes of GDSC renal cancer cells. B Heatmap of NTP in the JAPAN-KIRC cohort using subtype-specific upregulated hallmarks 
identified from the TCGA-ccRCC cohort. C Survival analysis of the two predicted subtypes of ccRCC in the JAPAN-KIRC cohort. D Drug sensitivity 
values in the form of normalized AUC using the GDSC renal cancer cell database
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may be suitable for patents with low DLD, CDKN2A or 
DLAT expression, respectively.

Verification of classification model in external dataset
To further confirm the robustness of the classification 
model, we performed identification using the GDSC 
ccRCC cell line database and JAPAN-KIRC cohort. A 
significant difference was observed in cell lines between 
CPCS1 and CPCS2 subtypes. Most copper-induced cell 
death-related genes except CDKN2A were downregu-
lated in CPCS2, similar to the TCGA cohort (Fig. 10A). 
The nearest template prediction (NTP) algorithm sug-
gested that the dysregulated hallmarks identified from 
ccRCC subtyping can divide the JAPAN-KIRC cohort 
into two different groups (Fig.  10B). The CSP2 subtype 
predicted a poorer prognosis of renal cancer patients 
than the CPCS1 subtype, which was consistent with pre-
vious data (Fig.  10C). Compared to CPCS2, the CPCS1 
subtype displayed more sensitivity to most tested drugs 
(ACY-1215, BX-912, CP466722, ETOPOSIDE, TEM-
SIROLIMUS, LESTAURTINIB, QS11, KIN001-206, PAL-
BOCICLIB, and SN-38) (Fig. 10D, Additional file 1: Fig. 
S5B, Additional file 4: Table S4). The results suggested the 
effectiveness of targeting the CPCS1 subtype.

Construction of a four‑copper‑induced‑cell death‑related 
genes risk model
To further evaluate the reliability of the subtyping 
model, univariate Cox regression analysis was used to 
explore dysregulated biomarkers between the two sub-
type samples (Fig.  11A). The random forest supervised 
classification algorithm identified the 10 most relevant 
genes (Fig.  11B). To establish the best risk assessment 
model, we performed Kaplan‒Meier (KM) analysis, and 
based on the p value of every model, we finally screened 
out a risk assessment model composed of four genes 
(MGAM, PTPRB, PAGE2B, RTL1), named RCC-CUPT4 
(Fig.  11C, D). The risk score of each patient was calcu-
lated as follows: RCC-CUPT4 = −  7.553304*MGAM-
6.184020*PTPRB + 3.895654*PAGE2B + 4.645926*RTL1. 
To further identify the accuracy of RCC-CUPT4, both 
TCGA-ccRCC and JAPAN-KIRC cohorts were divided 
into high-risk and low-risk groups according to median 
scores (Additional file  1: Fig. S9A). The high-risk group 
predicted worse OS and PFS than the low-risk group in 
both cohorts (Fig. 11E, F, Additional file 1: Fig. S6B). The 
area under the ROC curves also confirmed the high sen-
sitivity and specificity of the RCC-CUPT4 model for pre-
dicting prognosis. The AUC scores for the TCGA ccRCC 
cohort were 0.6956, 0.7175, 0.7041, 0.7154 and 0.705 at 
0.5 years, 1 year, 2 years, 3 years and 5 years, respectively 
(Fig.  11G). Better AUCs were obtained in the JAPAN-
KIRC cohort, and the AUC scores were 0.9485, 0.733, 

0.8478, 0.7804 and 0.7485 at 0.5  years, 1  year, 2  years, 
3  years and 5  years, respectively (Additional file  1: Fig. 
S6C). The above results confirmed the reliability and 
practicality of our classification.

The core role of DLAT and functional verification
In view of the importance of copper-induced cell death 
in ccRCC, we evaluated which gene shared the most 
importance proportion in clinical outcome. Unlike previ-
ous studies, DLAT rather than FDX1 may play the core 
role among copper death signatures when we performed 
random forest analysis (Fig.  12A); a similar result was 
shown in the JAPAN-KIRC cohort (Additional file  1: 
Fig. S7A). As previously observed, DLAT was downreg-
ulated in renal cancer, and the magnitude of regulation 
increased with the stage (Additional file 1: Fig. S7B, C). 
The immunohistochemical score of DLAT was down-
regulated in high-stage ccRCC compared with low-stage 
ccRCC (p < 0.05) (Fig.  12B, Additional file  1: Fig. S7D). 
Accordingly, the high expression of DLAT predicted 
good prognosis of ccRCC and was a protective factor 
of ccRCC (Fig.  12C). The TIMER database found that 
DLAT was strongly correlated with neutrophils, mac-
rophages, and DCs (Fig. 12D). In addition, we evaluated 
the AUC efficacy of DLAT with several classic cancer 
risk prediction models and the effect of DLAT mutation 
on immune cell infiltration in ccRCC (Figs.  12E, Addi-
tional file 1: Fig. S7F). The AUC curve of DLAT was 0.54 
in Miao Kidney (ICB) data, while the scores achieved 
1.00 in Zhao glioblastoma (PD-1) and 0.80 in Nathan-
son melanoma (CTLA4). In addition, DLAT expression 
may significantly influence multiple immune signatures 
across cancers, especially in ccRCC (Figure S7G). To 
verify the function of DLAT in renal cancer cell lines, we 
constructed a DLAT-overexpressing lentivirus (DLAT). 
Using the CCK-8 assay, overexpression of DLAT sig-
nificantly inhibited the proliferation of ccRCC cell lines 
(p < 0.001) (Fig. 12F). Transwell assays showed that over-
expression of DLAT significantly reduced the migration 
ability of ccRCC cell lines (p < 0.001) (Fig.  12G). In  vivo 
experiments found that upregulation of DLAT inhibited 
the increase in the volume and weight of xenografts in 
mice (p < 0.01) (Fig.  12H). These results suggested that 
upregulation of DLAT expression could effectively inhibit 
the growth and metastasis of renal cancer. Therefore, it 
makes sense to prompt copper-induced death by acti-
vating DLAT expression to achieve the goal of tumor 
eradication.

Cuprotosis in ccRCC could enhance tumor immunity 
though cGAS‑STING signaling
The results mentioned above reminded us that CPCS1, 
an activated cuproptosis phenotype of ccRCC, led to a 
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better prognosis, enhanced antitumor immunity and a 
higher response rate to ICI therapy. Cuproptosis func-
tioned as a novel programmed cell type. Figure  6C also 
indicates that the DNA damage repair signal was acti-
vated in CPCS1; we thus speculated that cuproptosis 
could activate tumor immunity through DDR-related 
signatures, which then stimulated tumor immunity 

through cGAS-STING signaling. Cell cytotoxicity was 
performed to choose the effective and safe concentration 
of cuproptosis inducer agent, and we applied 2 μmol/L as 
the optimal concentration for the activation of cuprop-
tosis for RENCA, since the cytotoxicity rate of RENCA 
was higher than CP-M062 at 2 μmol/L (Fig. 13A). Acti-
vated cuproptosis significantly inhibited tumor growth 

Fig. 11  Construction of a four-copper-induced cell death-related gene risk model. A Volcano plot showing the dysregulated biomarkers between 
the two subtypes by univariable Cox regression analysis. B Random survival forest analysis screening 10 genes. C Based on various combination 
analyses, the top 20 signatures are ordered by the p value. D Risk score analysis in the TCGA-ccRCC cohort. E–F Survival analysis for OS E and PFS F 
of the two risk signatures in the TCGA-ccRCC cohort. G The time-dependent ROC curves for the two risk signatures in the TCGA-ccRCC cohort



Page 20 of 27Jiang et al. Cell & Bioscience          (2022) 12:209 

Fig. 12  The core role of DLAT and functional verification. A) Number of trees indicating the importance proportion of copper-induced cell 
death-related genes. B Immunohistochemical score of DLAT in high-stage and low-stage ccRCC. C Survival analysis for OS of DLAT expression. D 
The association between DLAT expression and immune cell infiltration in ccRCC. E The comparison among several classic cancer risk prediction 
models in the form of AUC scores. (F, G) Cell proliferation (F) and invasion (G) of 786° and OSRC-2 cells after transfection with NC and overexpressed 
DLAT lentivirus. H Subcutaneous xenograft models were established, and the tumor weight and growth curve of 786° cells infected with NC and 
overexpressed DLAT lentivirus
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in vitro and vivo (Fig. 13B, C, Additional file 1: Fig. S8A, 
B). Through three independent ccRCC datasets, (TCGA-
KIRC, JAPAN-KIRC and Cacner cell-cohort), contain-
ing 1439 ccRCC samples, we found that the cuproptosis 
score calculated by ssGSEA was significantly correlated 
with the cGAS-STING-related signature, including 
TMEM173/STING, TBK1, MB21D1/cGAS and IRF3, 
except for TBK1 in Motzer’s cohort (Fig. 13D). Similar to 
the results in Fig. 2C, the cuproptosis score was lower in 
malignant cells in ccRCC and higher in tumor and stro-
mal cells at single cell level (Figure S8C, D). Previous 
studies have indicated that cGAS-STING signaling was 
correlated with DC in anti-tumor immunity [34–38]. We 
thus adopted the three ccRCC cohorts to investigate cor-
relation between cuproptosis score and DC signatures, 
which also showed that cuproptosis score was signifi-
cantly positive correlated with DC infiltration score (Fig-
ure S9A).

We next applied a co-culture system of DC and renal 
cancer cells to verify our findings (Fig. 13E). Expression 
of the cGAS-STING pathway at both the protein and 
RNA levels was increased in a dose-dependent pattern in 
DCs cocultured with cuproptosis-activated tumor cells 
(Fig.  13F, G). In addition, the intracellular activity level 
of cGAMP in DCs was higher in the cuprotosis-treated 
group (Fig.  13H). The secretion levels of IL2, TNF-α, 
IFN-γ, CXCL10 and CXCL11 were increased in medium 
supernatant from co-culture system (Fig. 13I). 547-553As 
Fig.  13J indicated that, at 14  days after RENCA cells 
inoculation in C57BL/6 mice, all mice carrying similar 
size of tumors were randomized into four groups receiv-
ing DMSO, anti-PD-1mAB, cuprotosis inducer reagents, 
and combined therapy (anti-PD-1 and cuprotosis inducer 
reagents) by intraperitoneal (i.p., given at days 14, 17, 20), 
respectively. After one week, all mice treated with those 
agents were euthanized and peripheral blood were har-
vested to quantity the percentage of CD8 + T cells among 
different groups. Finally, injection of cuproptosis induce 
pre-treated RENCA could increase the percentage of 
CD45+CD8+ T cells from peripheral blood, and com-
bined therapy with cuproptosis and ICI further increased 

this percentage (Fig.  13K). All these results suggested 
that cuprotosis could enhance tumor immunity although 
cGAS-STING signaling in ccRCC (Figure S9B).

Discussion
With the advancement of large cohort cancer projects, 
including TCGA, CPTAC and GEO, and the progress of 
bioinformatics algorithms, such convenience makes the 
perception of homotherapy for heteropathy accessible 
for researchers. ccRCC is the most common subtype of 
renal cell carcinoma, which is treated as an immunogenic 
tumor but notorious for its characteristics of immune 
dysfunction and infiltration of immune inhibitory cells. 
Even the emergence of checkpoint inhibition has alle-
viated this condition, and the combination of immune 
blockade and targeted therapy has been the standard 
of management for advanced ccRCC patients [39]. The 
major challenges facing clinical practitioners were that 
only a substantial proportion of patients could benefit 
from checkpoint blockade and the extremely horrible 
adverse reactions of such therapies [40, 41]. Thus, it is 
urgent to identify new therapeutic targets or adjuvants 
to aid immune therapy for ccRCC. Growing evidence 
indicates that copper-induced cell death plays important 
roles in cell death, while its effects on cancers, especially 
ccRCC, are still unclear. Copper-induced cell death is a 
newly discovered mechanism of cell death that is differ-
ent from apoptosis, ferroptosis, pyroptosis and necropto-
sis. Past research has focused on the effects of Cu ions 
or copper ionophores. Yang and Zhang et al. proved that 
FDX1 was downregulated in various cancers, including 
ccRCC, and overexpression of FDX1 could repress the 
malignant tumor phenotype in ccRCC, and vice versa 
[42, 43]. However, the combined analysis of cuprotosis-
related genes and the interaction of cuprotosis and tumor 
immunity has not been explored. Thus, we described the 
global characteristics of copper-induced cell death, which 
might help to guide cancer treatments.

In this study, we performed a comprehensive and sys-
tematic analysis of copper-induced cell death-related 
genes by mining multiomics analysis data in more than 

Fig. 13  Activation of cuprotosis enhances ccRCC tumor immunity. A The Cell cytotoxicity was measured by lactate dehydrogenase (LDH) release 
assay after DMSO, elesclomol and Cucl2 for 48 h between CP-M062 and RENCA, to identify optimal concentration of cuprotosis inducer agent. B 
Tumor-bearing mice were treated with DMSO or elesclomol and Cucl2, and the total fluorescence intensity of each mouse model was recorded. C 
Comparison of the proportion of EdU positive cells in RENCA treated with DMSO or elesclomol and Cucl2. D Correlation between the cuprotosis 
score and cGAS-STING signature related genes expression level. E Schematic diagram of the coculture system of tumor and DC cells. F Different 
cGAS expression levels of DCs cells after cocultured with tumor cells pre-treated with different concentration level of elesclomol and Cucl2. G 
Expression levels of cGAS-STING signatures of DCs harvested from co-culture system were measured by qRT‑PCR. H Different cGAMP level from 
medium supernatant of co-culture system with tumor cell pre-treated with DMSO or elesclomol and Cucl2. I The IL-2, TNF-α, IFN-γ, CXCL10 
and CXCL11 protein levels in the coculture medium supernatant were measured by ELISA after 48 h of coculture. J Schematic diagram of flow 
cytometry. K Representative flow cytometry plots of the percentage of CD45+CD8+ T cells from peripheral blood from different mice groups 
treated with DMSO, anti-PD-1mAB, cuprotosis inducer reagents, and combined therapy (anti-PD-1 + cuprotosis inducer reagents) by intraperitoneal, 
respectively. 2 μM, 5 μM: elesclomol and Cucl2 at 2 and 5 μmol/L. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance

(See figure on next page.)
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10,000 samples of 33 cancers. We found that copper-
induced genes were specifically downregulated in vari-
ous cancer tissues compared normal tissues, which 
was correlated with hypermethylation and copy num-
ber variation. According to the copper-induced cell 

death index, ccRCC could be divided into two subtypes, 
CPCS1 (copper-induced cell death signature scores high 
groups) and CPCS2 (copper-induced cell death signa-
ture scores low groups). The CSP2 subtype shared a 
higher tumor mutation burden and low tumor stemness 

Fig. 13  (See legend on previous page.)
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index but led to a low ICI therapy response and tumor 
immunity dysfunction state. Notably, activation of cop-
per-induced cell death may reshape tumor immunity in 
the ccRCC microenvironment by facilitating the antigen 
presentation process. In addition, the prognostic model 
constructed based on subgroup biomarkers exerted sat-
isfactory performance in both the training and validation 
cohorts. Finally, DLAT, the core gene of copper-induced 
cell death, could reactivate the copper death pattern and 
might be a suitable target for ccRCC therapy.

Immunotherapy has been confirmed to be effective in 
many cancers, including ccRCC. However, therapy resist-
ance diminishes the efficacy of immunotherapy, which 
can be alleviated by combination therapy, such as tar-
geted therapy and gut microbiota therapy. Among them, 
copper-induced cell death may collaborate with immuno-
therapy. Intratumor copper has been shown to influence 
PD-L1 expression in cancer cells, which suggests that 
leveraging copper chelation may improve immunother-
apy. Wang reported that Cu-triggered hydroxyl radicals 
and GSH elimination synergized with radiation therapy, 
remarkably enhancing dendritic cell maturation and 
promoting antitumour CD8 + T-cell infiltration, thereby 
potentiating the development of checkpoint blockade 
immunotherapies against primary and metastatic tumors 
[44]. Based on copper-induced cell death-related genes, 
we divided ccRCC into two subtypes, CPCS1 (cop-
per fertile) and CPCS2 (copper desert). The CSP2 sub-
type exhibited an overall upwards-regulated trend in 
immune infiltration compared with the CPCS1 subtype. 
The CSP2 subtype displayed more CD8 + T cells, lacked 
activated dendritic cells and had reduced DNA damage 
repair ability, which caused immune dysfunction. The 
activation of copper-induced death may generate abun-
dant immune antigens for the immune response. There 
are two ways of copper bonding, including copper che-
lators and copper ionophores. Copper chelators inhibit 
cuproplasia, a copper-dependent cellular proliferation, 
whereas copper ionophores induce cuproptosis. This 
last term defines copper-dependent cytotoxicity (with 
a unique mechanism) leading to cell death [45]. Zheng 
reported that disulfiram/copper codelivery triggered 
tumor cell autophagy and induced immunogenic cell 
death, activated tumor-infiltrating macrophages and den-
dritic cells, and primed T and NK (natural killer) cells, 
resulting in antitumour immunity and tumor regression 
[46]. This codelivery system of disulfiram/copper may 
enhance the immune response of CPCS1 and reactivate 
the immune antigen effect of CPCS2. Kaur demonstrated 
that the reticulum-targeting copper (II) complex, a type 
II immunogenic cell death inducer, elevated intracellular 
reactive oxygen species (ROS) levels, evoked damage-
associated molecular patterns, and promoted breast CSC 

phagocytosis by macrophages [47]. Therefore, activation 
of copper-induced death may reshape tumor immunity in 
the ccRCC microenvironment by regulating the antigen-
presenting process and cGAS-STING signaling.

In addition to immunotherapy responses, copper-
induced cell death is associated with the dysregulation 
of many signaling pathways in cancers. Our study indi-
cated that copper-induced cell death-related genes were 
enriched in RAS-MAPK activation, oxidative phospho-
rylation accumulation, EMT inhibition and MYC path-
ways. Consistent with our research, many studies have 
identified that high copper levels in tumors can regulate 
kinase activity, inhibit autophagy, and regulate fat metab-
olism. Pharmacologic copper-chelator treatment using 
tetrathiomolybdate resulted in decreased tumor burden 
and increased survival in preclinical murine models of 
BRAFV600E-driven melanoma [48, 49]. Combination 
treatment using the BRAF inhibitor vemurafenib together 
with tetrathiomolybdate enhanced patient survival and 
alleviated resistance to vemurafenib. This combination 
was also effective in inducing cell death in melanoma 
cells resistant to BRAF and MEK1/2 inhibitors. Copper-
induced toxicity is inseparable from reactive oxygen spe-
cies (ROS) induction [50–52]. Elesclomol, a well-known 
copper ionophore, induces oxidative stress that leads to 
cancer cell apoptosis. Elesclomol increased copper lev-
els and mitochondrial oxidative stress in the HL-60 leu-
kemic cell line, whereas it did not influence their levels 
in peripheral blood mononuclear cells. As a prerequisite 
for tumor metastasis, EMT determines the ability of dis-
tant metastasis of tumors. Recent research found that 
tetrathiomolybdate reduced copper levels and decreased 
tumor metastasis in triple-negative breast cancer patients 
by decreasing proliferation, blood vessel formation and 
mesenchymal transition. MYC is a broadly acting tran-
scription factor that regulates cell differentiation and 
proliferation through multiple mechanisms, including 
transcriptional amplification of target genes. Du reported 
that disulfiram/copper inhibited glycolysis and xeno-
graft growth of GC cells by suppressing the expression of 
S6K1, c-Myc, and their downstream molecules, includ-
ing GLUT1, PKM2, and LDHA. Past research has usually 
focused on the effects of single genes. We divided ccRCC 
into two distinctive subtypes, which helped to under-
stand alterations in multiple pathways associated with 
copper-induced death-related genes.

For the root cause, signaling pathway dysregulations 
often depend on genome mutations. For copper-induced 
cell death-related genes, we observed that all tested sam-
ples had at least one mutation site (729/729). CDKN2A 
and MTF1 hold the most frequent fractions among 
mutated genes (54% vs 14%). CDKN2A can form com-
plexes with CDK4 kinase to inhibit cell cycle progression. 
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Mutation or deletion of the CDKN2A gene will relieve 
the checkpoint function of the cell cycle, and the cells will 
acquire the ability to proliferate indefinitely. A signifi-
cant correlation was observed between copper-induced 
cell death genes and the G2/M checkpoint pathway 
across cancers. MTF1, a classic metal-sensing transcrip-
tion factor, promoted myogenesis in response to cop-
per [53]. MTF1 directly bonded to metal-responsive 
element e within the ATP7B promoter and was consid-
ered a strong candidate in regulating ATP7B expression 
[54]. MTF1 plays an oncogenic role and leads to ovarian 
cancer metastasis by inducing EMT pathways [55]. In 
the subtype analysis, CPCS2 had a higher tumor muta-
tion burden than CPCS1, such as mutation of KDM5C, 
PTEN and XIRP. KDM5C, a histone demethylase gene, 
could escape from X inactivation and was predomi-
nantly mutated in male ccRCC patients. KDM5C was 
identified to harbor the frameshift mutation in ccRCC 
with the highest glycogen level. Mutation of KDM5C in 
ccRCC promoted tumorigenicity by reprogramming gly-
cogen metabolism and inhibiting ferroptosis [56]. It has 
been found that p53 regulates mitochondrial respira-
tion, where copper depends on mitochondria to function. 
Seo reported that O-GlcNAcylation of XIAP suppressed 
colon cancer cell growth and invasion by promoting 
the proteasomal degradation of O-GlcNAc transferase 
[57]. The results were confirmed by forest analysis. For 
example, whole-exome sequencing detected the somati-
cally mutated gene DNAH11 in RCC samples with PD-
L1-positive expression [58]. Verma reported that the 
rs2285947 variant of the DNAH11 gene predicted poor 
prognosis for ovarian and breast cancer patients [59]. 
For copy number variations, the CPCS2 subtype pre-
sented higher CNV amplification and deletion frequen-
cies than the CPCS1 subtype on chromosomes. Some 
copper-induced cell death-related genes were contained 
in these mutated regions, such as CDKN2B and FGFR4. 
Consistent with our study, Fernandes found that the 
most significant copy number alterations of ccRCC were 
loss of 3p (87.3%), 14q (35.8%), 6q (29.3%), 9p (28.6%) 
and 10q (25.0%) and gains of 5q (59.7%), 7p (29.3%) and 
16q (20.6%). Genes mapping to CNA significant regions 
included SETD2, BAP1, FLT4, PTEN, FGFR4 and NSD1 
[60]. FGFR4 regulates tumor subtype differentiation and 
induces metastatic disease in breast cancer [61]. There-
fore, copper-induced death subtyping, at least in part, 
explains tumor heterogeneity through the regulation of 
various signaling pathways in ccRCC.

Based on multiomics data, our study provided clues 
for choosing clinical treatment options. The drug sensi-
tivity profiles were investigated between subgroups and 
their matched cell lines. There were certain differences 
in the effective targets of CPCS1 and CPCS2 subtypes, 

which were VEGFR/PDGFR/MET and EGFR/SRC, 
respectively. In the era of targeted therapy and immu-
notherapy, the effectiveness of these targets can pro-
vide certain clinical guidance for immunotherapy. The 
CellMiner database provides potential therapeutic tar-
gets for the copper-induced death subtype. For instance, 
although CPCS2 was less sensitive to many molecular 
inhibitors, the ROCK inhibitor GSK269962A displayed 
a unique curative effect on copper-induced death desert 
type (CPCS2). ccRCC is often resistant to chemotherapy. 
Our data suggested that the combination of paclitaxel 
and immunotherapy may reactivate the responses of the 
CPCS2 subtype to paclitaxel. Elesclomol was able to tar-
get resistant cancer cells, including cisplatin and protea-
some inhibitor resistance. Antiapoptotic inhibitors of 
the BCL-2 family synergize with tetrathiomolybdate to 
induce apoptosis in melanoma cells resistant to BRAF 
and MEK1/2 inhibitors [62]. Numerous studies have 
suggested that copper transporters contribute to cispl-
atin resistance by controlling its uptake and export from 
tumor cells. Recent studies demonstrated that deletion 
of ATP7A, a copper pump, increased cisplatin sensitivity 
and limited tumor growth in mice [63]. Molecular pro-
filing based on copper-induced death could lead to the 
development of more individualized therapeutic targets.

Furthermore, the best risk model RCC-CUPT4 was 
established using Cox regression analysis. The four most 
relevant genes were MGAM, PTPRB, PAGE2B and RTL1. 
A high RCC-CUPT4 score indicated poor outcomes 
of ccRCC. Previous studies have shown that MGAM is 
closely related to cancer immunotherapy responsiveness 
in non-small cell lung cancer [64]. Recent studies have 
shown that PTPRB promotes colon cancer invasion and 
metastasis by inducing EMT, and PTPRB is a potential 
therapeutic target for colon cancer [65]. Riordan et  al. 
found that RTL1 was an important oncogene in hepa-
tocarcinogenesis [66]. The high sensitivity and specific-
ity of the RCC-CUPT4 risk model was further identified 
in both the TCGA-ccRCC and JAPAN-KIRC databases. 
By analysing the important fraction of copper-induced 
cell death, we found that DLAT may play a core role in 
copper biology. The AUC of the DLAT prediction model 
achieved 1.00 in Zhao glioblastoma (PD-1) and 0.80 in 
Nathanson melanoma (CTLA4) [67]. In vitro and in vivo 
experiments suggested that DLAT effectively inhib-
ited the growth and metastasis of renal cancer. Faqihi 
reported that radiation-induced blockade of autophagic 
flux stimulated redirection of DLAT to the cell surface via 
a noncanonical secretory autophagy pathway [68]. Such 
trafficked membrane proteins could provide a unique 
pool for therapeutic drug delivery. DLAT may be a suit-
able target to induce the copper death pattern, as indi-
cated by the upregulation of copper and downregulation 
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of DLAT. The mechanism of DLAT has rarely been stud-
ied, and further research is warranted.

Although our study conducted genomics analysis and 
cell line experiments of copper-induced death, there are 
certain limitations. Our main findings were confirmed by 
bioinformatics analysis, which requires further experi-
mental validation. The drug susceptibility of the two 
subtypes was different, but it also needs to be verified 
by subsequent animal and clinical experiments. More 
importantly, the prognostic model may be affected by 
some confounding factors, and more datasets are needed 
for revision and refinement.

In conclusion, prior to our study, a few reports identi-
fied molecular subtypes of ccRCC based on gene expres-
sion profiles or mutational signatures [32, 69–71]. To the 
best of our knowledge, this is the first study to system-
atically analyse the roles of cuprotosis-related genes in 
multiple cancers and to identify two molecular subtypes 
of ccRCC. Activation of cuprotosis might function as 
a treatment approach among multiple cancers. Such a 
signature could reshape tumor immunity in the ccRCC 
microenvironment by activating antigen presentation 
and cGAS-STING signaling. The upregulation of DLAT 
expression in ccRCC cell lines could reactivate the cop-
per death pattern and be treated as a suitable target for 
ccRCC therapy. Our study provides a new reference for 
understanding the function of copper-induced death in 
cancers, which may provide clinical guidance for ccRCC 
treatment.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13578-​022-​00948-7.

Additional file 1: Figure S1. Workflow of this study. Figure S2. Copper-
induced cell death-related genes are dysregulated in multiple cancers. 
(A) The expression of FDX1 in cancer and normal tissues. (B) Mutation 
frequencies of copper-induced cell death-related genes in multiple 
cancers. (C) The correlations between overall survival and methylation 
levels of copper-induced cell death-related genes. Figure S3. The drug 
sensitivity assessment of several copper-induced cell death-related 
genes to molecular inhibitors in cancer cell lines. Figure S4. Pathway 
enrichment analysis of ccRCC subtypes. (A) GSEA pathway analysis of dif-
ferentially expressed genes between the two subtypes. Heatmap of tumor 
microenvironment-related pathways (B) and metabolism-related pathway 
(C) enrichment scores between the two subtypes. Figure S5. Correlation 
of copper-induced cell death-related gene expression and IC50 of tested 
drugs obtained from the CellMiner and GDSC databases (A) Drug sensitiv-
ity values in the form of normalized AUC using the GDSC renal cancer 
cell database. (B) Drug sensitivity values in the form of normalized AUC 
using the CCLE database. Figure S6. Verification of the copper-induced 
death-related risk model in the JAPAN-KIRC cohort. (A) Risk score analysis 
of patients in the JAPAN-KIRC cohort. (B) Survival analysis for OS of the 
two risk signatures in the JAPAN-KIRC cohort. (C) The time-dependent 
ROC curves for the two risk signatures in the JAPAN-KIRC cohort. Figure 
S7. The functional verification of DLAT. (A) The expression of DLAT in renal 
cancer and normal tissues. (B) The expression of DLAT in renal cancer of 
different stages. (C) Immunohistochemical score of DLAT in cancer and 
normal kidney tissues. (D) Survival analysis for PFS of DLAT expression. 

(E) The association between DLAT mutation and immune cell infiltration 
in ccRCC. (F) The association between DLAT expression and immune 
signatures across cancers. Figure S8. Different fluorescence and Edu level, 
and downregulated cuproptosis state in ccRCC malignant cells. (A)Differ-
ent fluorescence and DdU positive cells (B) between NC and cuproptosis 
inducer treated groups, respectively. (C, D) Umap showing the cuproptosis 
score at the single-cell level for ccRCC. Figure S9. Impact of cuproptosis 
in tumor immunity of ccRCC. (A) Correlation of cuproptosis and immune 
infiltration degree among TCGA-KIRC, JAPAN-KIRC and Cancer cell-KIRC 
cohorts. (B) Schematic diagram of the activation of tumor immunity in 
ccRCC through cuproptosis.

Additional file 2: Table S1. List of copper-induced cell death-related 
genes. Table S2. Clinicopathological features of different subtypes in 
ccRCC.

Additional file 3: Table S3. Recurrent amplification and deletion regions 
in the two subtypes calculated by GISTIC2.0.

Additional file 4: Table S4. List of 138 kinds of small-molecule drugs that 
could be used as potential drugs for ccRCC.

Acknowledgements
The authors would like to thank Dr. Jianming Zeng (University of Macau) and 
all the members of his bioinformatics team, Biotrainee, for generously sharing 
their experience and codes. The use of the Biorstudio high‐performance com-
puting cluster at Biotrainee and Shanghai HS Biotech Co., Ltd., for conducting 
the research reported in this paper.

Author contributions
AJ, PL and MC have contributed equally to this work. CC, LW and AW concep-
tualized and designed this study. YF, BL, ZW and LQ wrote the first draft of the 
manuscript. All authors contributed to the article and approved the submitted 
version. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
[Grant Nos. 81902560, 81730073, 81872074].

Availability of data and materials
All data generated or analysed during this study are included in this published 
article and its supplementary information files.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflicts of interests.

Author details
1 Department of Urology, Changhai Hospital, Naval Medical University (Second 
Military Medical University), Shanghai 200433, China. 2 Department of Oncol-
ogy, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, 
China. 3 Department of Urology, Changzheng Hospital, Naval Medical 
University (Second Military Medical University), Shanghai 200003, China. 
4 Department of Urology, The Third Affiliated Hospital, Naval Medical University 
(Second Military Medical University), Shanghai 201805, China. 5 Department 
of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, 
Nanjing 210046, China. 6 Department of Special Clinic, Changhai Hospital, 
Naval Medical University (Second Military Medical University), Shang-
hai 200433, China. 

Received: 29 April 2022   Accepted: 22 December 2022

https://doi.org/10.1186/s13578-022-00948-7
https://doi.org/10.1186/s13578-022-00948-7


Page 26 of 27Jiang et al. Cell & Bioscience          (2022) 12:209 

References
	1.	 Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics CA. Cancer J Clin. 

2022;72(1):7–33.
	2.	 Ljungberg B, Albiges L, Abu-Ghanem Y, Bedke J, Capitanio U, Dabestani S, 

et al. European association of urology guidelines on renal cell carcinoma: 
the 2022 update. Eur Urol. 2022;S0302–2838(22):01676–81.

	3.	 Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, et al. The 
epidemiology of renal cell carcinoma. Eur Urol. 2011;60(4):615–21.

	4.	 Sun M, Thuret R, Abdollah F, Lughezzani G, Schmitges J, Tian Z, et al. 
Age-adjusted incidence, mortality, and survival rates of stage-specific 
renal cell carcinoma in North America: a trend analysis. Eur Urol. 
2011;59(1):135–41.

	5.	 Derosa L, Routy B, Fidelle M, Iebba V, Alla L, Pasolli E, et al. Gut bacteria 
composition drives primary resistance to cancer immunotherapy in renal 
cell carcinoma patients. Eur Urol. 2020;78(2):195–206.

	6.	 Brewer GJ. The promise of copper lowering therapy with tetrathiomolyb-
date in the cure of cancer and in the treatment of inflammatory disease. J 
Trace Elem Med Biol. 2014;28(4):372–8.

	7.	 Lu X, Liu Y-C, Orvig C, Liang H, Chen Z-F. Discovery of a copper-
based Mcl-1 inhibitor as an effective antitumor agent. J Med Chem. 
2020;63(17):9154–67.

	8.	 Zhang Y, Ding Z, Zhao G, Zhang T, Xu Q, Cui B, et al. Transcriptional 
responses and mechanisms of copper nanoparticle toxicology on 
zebrafish embryos. J Hazard Mater. 2018;344:1057–68.

	9.	 Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. 
Copper induces cell death by targeting lipoylated TCA cycle proteins. 
Science. 2022;375(6586):1254–61.

	10.	 Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas 
(TCGA): an immeasurable source of knowledge. Contemp Oncol. 
2015;2015(19):68–77.

	11.	 Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: visualizing 
expression, DNA methylation and clinical TCGA data. BMC Genomics. 
2015;16:636.

	12.	 Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery 
tool with confidence assessments and item tracking. Bioinformatics. 
2010;26(12):1572–3.

	13.	 Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, 
Mesirov JP. Molecular signatures database (MSigDB) 30. Bioinformatics. 
2011;27(12):1739–40.

	14.	 Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB–a 
database for integrating human functional interaction networks. Nucleic 
Acids Res. 2009;37:623–8.

	15.	 Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for 
comparing biological themes among gene clusters. Omics J Int Biol. 
2012;16(5):284–7.

	16.	 Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server 
for comprehensive analysis of tumor-infiltrating immune cells. Can Res. 
2017;77(21):e108–10.

	17.	 Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling 
tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 
2018;1711:243–59.

	18.	 Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular hetero-
geneity landscape. Genome Biol. 2017;18(1):220.

	19.	 Racle J, Gfeller D. EPIC: a tool to estimate the proportions of differ-
ent cell types from bulk gene expression data. Methods Mol Biol. 
2020;2120:233–48.

	20.	 Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

	21.	 Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunc-
tion and exclusion predict cancer immunotherapy response. Nat Med. 
2018;24(10):1550–8.

	22.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28(11):1.

	23.	 Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. 
GISTIC2 facilitates sensitive and confident localization of the targets of 
focal somatic copy-number alteration in human cancers. Genome Biol. 
2011;12(4):41.

	24.	 Cancer Genome Atlas Research N. Comprehensive molecular characteri-
zation of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

	25.	 Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al. Cell 
Miner: a web-based suite of genomic and pharmacologic tools to 
explore transcript and drug patterns in the NCI-60 cell line set. Can Res. 
2012;72(14):3499–511.

	26.	 Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, 
et al. The cancer cell line encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012;483(7391):603–7.

	27.	 Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of 
clinical chemotherapeutic response from tumor gene expression levels. 
PLoS ONE. 2014;9(9): e107468.

	28.	 Bao Y, Jiang A, Dong K, Gan X, Gong W, Wu Z, et al. DDX39 as a predictor 
of clinical prognosis and immune checkpoint therapy efficacy in patients 
with clear cell renal cell carcinoma. Int J Biol Sci. 2021;17(12):3158–72.

	29.	 Wang A, Jiang A, Gan X, Wang Z, Huang J, Dong K, et al. EGFR-AS1 pro-
motes bladder cancer progression by upregulating EGFR. Biomed Res Int. 
2020;2020:6665974.

	30.	 Jiang A, Meng J, Gong W, Zhang Z, Gan X, Wang J, et al. Elevated SNRPA1, 
as a promising predictor reflecting severe clinical outcome via effecting 
tumor immunity for ccRCC, is related to cell invasion, metastasis, and 
sunitinib sensitivity. Front Immunol. 2022;13:1.

	31.	 Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi J, et al. Long noncoding 
RNA EGFR-AS1 promotes cell growth and metastasis via affecting 
HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis. 
2019;10(3):154.

	32.	 Bai D, Feng H, Yang J, Yin A, Lin X, Qian A, et al. Genomic analysis uncovers 
prognostic and immunogenic characteristics of ferroptosis for clear cell 
renal cell carcinoma. Mol Ther Nucl Acids. 2021;25:186–97.

	33.	 Wei G, Sun H, Dong K, Hu L, Wang Q, Zhuang Q, et al. The thermogenic 
activity of adjacent adipocytes fuels the progression of ccRCC and com-
promises anti-tumor therapeutic efficacy. Cell Metab. 2021;33(10):2021-
39.e8.

	34.	 Wang S, Wu Q, Chen T, Su R, Pan C, Qian J, et al. Blocking CD47 promotes 
antitumour immunity through CD103+ dendritic cell-NK cell axis in 
murine hepatocellular carcinoma model. J Hepatol. 2022;77(2):467–78.

	35.	 Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor 
progression: signaling pathways and targeted intervention. Signal Transd 
Targ Ther. 2021;6(1):1–46.

	36.	 de Mingo PÁ, Hänggi K, Celias DP, Gardner A, Li J, Batista-Bittencourt B, 
et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING 
pathway in intra-tumoral dendritic cells by suppressing extracellular DNA 
uptake. Immunity. 2021;54(6):1154-67.e7.

	37.	 Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, et al. Manganese is 
critical for antitumor immune responses via cGAS-STING and improves 
the efficacy of clinical immunotherapy. Cell Res. 2020;30(11):966–79.

	38.	 Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, 
et al. STING-dependent cytosolic DNA sensing mediates innate immune 
recognition of immunogenic tumors. Immunity. 2014;41(5):830–42.

	39.	 Xu W, Atkins MB, McDermott DF. Checkpoint inhibitor immunotherapy in 
kidney cancer. Nat Rev Urol. 2020;17(3):137–50.

	40.	 Li L, Miao Q, Meng F, Li B, Xue T, Fang T, et al. Genetic engineering cel-
lular vesicles expressing CD64 as checkpoint antibody carrier for cancer 
immunotherapy. Theranostics. 2021;11(12):6033–43.

	41.	 Jiang A, Zhou Y, Gong W, Pan X, Gan X, Wu Z, et al. CCNA2 as an 
immunological biomarker encompassing tumor microenvironment and 
therapeutic response in multiple cancer types. Oxid Med Cell Longev. 
2022;2022: e5910575.

	42.	 Zhang G, Chen X, Fang J, Tai P, Chen A, Cao K. Cuproptosis status affects 
treatment options about immunotherapy and targeted therapy for 
patients with kidney renal clear cell carcinoma. Front Immunol. 2022;13: 
954440.

	43.	 Yang L, Zhang Y, Wang Y, Jiang P, Liu F, Feng N. Ferredoxin 1 is a cuprop-
tosis-key gene responsible for tumor immunity and drug sensitivity: a 
pan-cancer analysis. Front Pharmacol. 2022;13: 938134.

	44.	 Wang Y, Ding Y, Yao D, Dong H, Ji C, Wu J, et al. Copper-based nanoscale 
coordination polymers augmented tumor radioimmunotherapy 
for immunogenic cell death induction and T-cell infiltration. Small. 
2021;17(8): e2006231.

	45.	 Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochon-
drial metabolism promotes adaptation to proteotoxic stress. Nat Chem 
Biol. 2019;15(7):681–9.



Page 27 of 27Jiang et al. Cell & Bioscience          (2022) 12:209 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	46.	 Zheng Z, Zhang J, Jiang J, He Y, Zhang W, Mo X, et al. Remodeling tumor 
immune microenvironment (TIME) for glioma therapy using multi-target-
ing liposomal codelivery. J Immunother Cancer. 2020;8(2): e000207.

	47.	 Kaur P, Johnson A, Northcote-Smith J, Lu C, Suntharalingam K. 
Immunogenic cell death of breast cancer stem cells induced by an 
endoplasmic reticulum-targeting copper(II) complex. ChemBioChem. 
2020;21(24):3618–24.

	48.	 Brady DC, Crowe MS, Greenberg DN, Counter CM. Copper chelation 
inhibits BRAFV600E-driven melanomagenesis and counters resistance to 
BRAFV600E and MEK1/2 inhibitors. Can Res. 2017;77(22):6240–52.

	49.	 Kim Y-J, Tsang T, Anderson GR, Posimo JM, Brady DC. Inhibition of BCL2 
family members increases the efficacy of copper chelation in BRAFV600E-
driven melanoma. Can Res. 2020;80(7):1387–400.

	50.	 Shimada K, Reznik E, Stokes ME, Krishnamoorthy L, Bos PH, Song Y, 
et al. Copper-binding small molecule induces oxidative stress and 
cell-cycle arrest in glioblastoma-patient-derived cells. Cell Chem Biol. 
2018;25(5):585-94.e7.

	51.	 Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, et al. 
Disulfiram modulated ROS-MAPK and NFκB pathways and targeted 
breast cancer cells with cancer stem cell-like properties. Br J Cancer. 
2011;104(10):1564–74.

	52.	 Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, et al. 
The oncology drug elesclomol selectively transports copper to the mito-
chondria to induce oxidative stress in cancer cells. Free Radical Biol Med. 
2012;52(10):2142–50.

	53.	 Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-
Gutierrez P, et al. The classic metal-sensing transcription factor MTF1 pro-
motes myogenesis in response to copper. FASEB J. 2019;33(12):14556–74.

	54.	 Stalke A, Pfister E-D, Baumann U, Illig T, Reischl E, Sandbothe M, et al. 
MTF1 binds to metal-responsive element e within the ATP7B promoter 
and is a strong candidate in regulating the ATP7B expression. Ann Hum 
Genet. 2020;84(2):195–200.

	55.	 Ji L, Zhao G, Zhang P, Huo W, Dong P, Watari H, et al. Knockout of MTF1 
inhibits the epithelial to mesenchymal transition in ovarian cancer cells. J 
Cancer. 2018;9(24):4578–85.

	56.	 Zheng Q, Li P, Zhou X, Qiang Y, Fan J, Lin Y, et al. Deficiency of the 
X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma 
promotes tumorigenicity by reprogramming glycogen metabolism and 
inhibiting ferroptosis. Theranostics. 2021;11(18):8674–91.

	57.	 Seo HG, Kim HB, Yoon JY, Kweon TH, Park YS, Kang J, et al. Mutual regula-
tion between OGT and XIAP to control colon cancer cell growth and 
invasion. Cell Death Dis. 2020;11(9):815.

	58.	 Wang J, Xi Z, Xi J, Zhang H, Li J, Xia Y, et al. Somatic mutations in renal cell 
carcinomas from Chinese patients revealed by whole exome sequencing. 
Cancer Cell Int. 2018;18:12.

	59.	 Verma S, Bakshi D, Sharma V, Sharma I, Shah R, Bhat A, et al. Genetic vari-
ants of DNAH11 and LRFN2 genes and their association with ovarian and 
breast cancer. Int J Gynaecol Obst. 2020;148(1):118–22.

	60.	 Fernandes FG, Silveira HCS, Júnior JNA, da Silveira RA, Zucca LE, Cárcano 
FM, et al. Somatic copy number alterations and associated genes 
in clear-cell renal-cell carcinoma in brazilian patients. Int J Mol Sci. 
2021;22(5):2265.

	61.	 Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP, et al. 
FGFR4 regulates tumor subtype differentiation in luminal breast cancer 
and metastatic disease. J Clin Investig. 2020;130(9):4871–87.

	62.	 Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, et al. Cop-
per is required for oncogenic BRAF signalling and tumorigenesis. Nature. 
2014;509(7501):492–6.

	63.	 Zhu S, Shanbhag V, Wang Y, Lee J, Petris M. A role for the ATP7A cop-
per transporter in tumorigenesis and cisplatin resistance. J Cancer. 
2017;8(11):1952.

	64.	 Yu Y, Zeng D, Ou Q, Liu S, Li A, Chen Y, et al. Association of survival and 
immune-related biomarkers with immunotherapy in patients with 
non-small cell lung cancer: a meta-analysis and individual patient-level 
analysis. JAMA Netw Open. 2019;2(7): e196879.

	65.	 Weng X, Chen W, Hu W, Xu K, Qi L, Chen J, et al. PTPRB promotes 
metastasis of colorectal carcinoma via inducing epithelial-mesenchymal 
transition. Cell Death Dis. 2019;10(5):352.

	66.	 Riordan JD, Keng VW, Tschida BR, Scheetz TE, Bell JB, Podetz-Pedersen KM, 
et al. Identification of rtl1, a retrotransposon-derived imprinted gene, as a 
novel driver of hepatocarcinogenesis. PLoS Genet. 2013;9(4): e1003441.

	67.	 Baysal BE, Willett-Brozick JE, Taschner PE, Dauwerse JG, Devilee P, Devlin 
B. A high-resolution integrated map spanning the SDHD gene at 
11q23: a 11-Mb BAC contig, a partial transcript map and 15 new repeat 
polymorphisms in a tumour-suppressor region. Eur J Human Gene. 
2001;9(2):121–9.

	68.	 Faqihi F, Stoodley MA, McRobb LS. Endothelial surface translocation of 
mitochondrial PDCE2 involves the non-canonical secretory autophagy 
pathway: putative molecular target for radiation-guided drug delivery. 
Exp Cell Res. 2021;405(2): 112688.

	69.	 Beuselinck B, Job S, Becht E, Karadimou A, Verkarre V, Couchy G, et al. 
Molecular subtypes of clear cell renal cell carcinoma are associated 
with sunitinib response in the metastatic setting. Clin Cancer Res. 
2015;21(6):1329–39.

	70.	 Jiang A, Meng J, Bao Y, Wang A, Gong W, Gan X, et al. Establishment of a 
prognosis prediction model based on pyroptosis-related signatures asso-
ciated with the immune microenvironment and molecular heterogeneity 
in clear cell renal cell carcinoma. Front Oncol. 2021;11:4486.

	71.	 Jiang A, Bao Y, Wang A, Gong W, Gan X, Wang J, et al. Establishment of a 
prognostic prediction and drug selection model for patients with clear 
cell renal cell carcinoma by multiomics data analysis. Oxid Med Cell 
Longev. 2022;2022: e3617775.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A new thinking: deciphering the aberrance and clinical implication of copper-death signatures in clear cell renal cell carcinoma
	Abstract 
	Rationale: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Materials and method
	Data collection and processing
	Identification of distinct cuproptosis subgroups in ccRCC​
	Enrichment analysis between subgroups
	Differences in immune infiltration signatures and therapy response
	Mutation spectrum characteristics between subpopulations
	Drug susceptibility prediction
	Construction of a risk prediction model related to cuproptosis
	Western blotting, IHC and RT-qPCR
	Investigation of DLAT biological function in vitro and in vivo
	Impact of cuprotosis in ccRCC tumor immunity
	Co-culture system
	Mouse subcutaneous xenograft model
	Statistical analysis

	Results
	Dysregulation and mutation of copper induced cell death related genes in cancers
	Pathway enrichment analysis and drug sensitivity assessment of copper induced cell death genes
	Establishment of two clusters by clustering analysis of copper induced cell death-related genes in ccRCC​
	Functional enrichment analysis of ccRCC subtypes
	Comparison of immune infiltration characteristics between subtypes
	Comparison of tumor somatic mutations and CNVs in two subtypes
	Drug sensitivity analysis of two subtypes
	Verification of classification model in external dataset
	Construction of a four-copper-induced-cell death-related genes risk model
	The core role of DLAT and functional verification
	Cuprotosis in ccRCC could enhance tumor immunity though cGAS-STING signaling

	Discussion
	Acknowledgements
	References




