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An increase in Semaphorin 3A biases 
the axonal direction and induces an aberrant 
dendritic arborization in an in vitro model 
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Gabriella Ferretti1, Alessia Romano2, Rossana Sirabella1, Sara Serafini1, Thorsten Jürgen Maier3 and 
Carmela Matrone1*    

Abstract 

Background:  Semaphorins (Sema) belong to a large family of repellent guidance cues instrumental in guiding axons 
during development. In particular, Class 3 Sema (Sema 3) is among the best characterized Sema family members and 
the only produced as secreted proteins in mammals, thereby exerting both autocrine and paracrine functions. Intrigu-
ingly, an increasing number of studies supports the crucial role of the Sema 3A in hippocampal and cortical neurode-
velopment. This means that alterations in Sema 3A signaling might compromise hippocampal and cortical circuits 
and predispose to disorders such as autism and schizophrenia. Consistently, increased Sema 3A levels have been 
detected in brain of patients with schizophrenia and many polymorphisms in Sema 3A or in the Sema 3A receptors, 
Neuropilins (Npn 1 and 2) and Plexin As (Plxn As), have been associated to autism.

Results:  Here we present data indicating that when overexpressed, Sema 3A causes human neural progenitors (NP) 
axonal retraction and an aberrant dendritic arborization. Similarly, Sema 3A, when overexpressed in human microglia, 
triggers proinflammatory processes that are highly detrimental to themselves as well as NP. Indeed, NP incubated in 
microglia overexpressing Sema 3A media retract axons within an hour and then start suffering and finally die. Sema 
3A mediated retraction appears to be related to its binding to Npn 1 and Plxn A2 receptors, thus activating the down-
stream Fyn tyrosine kinase pathway that promotes the threonine-serine kinase cyclin-dependent kinase 5, CDK5, 
phosphorylation at the Tyr15 residue and the CDK5 processing to generate the active fragment p35.

Conclusions:  All together this study identifies Sema 3A as a critical regulator of human NP differentiation. This may 
imply that an insult due to Sema 3A overexpression during the early phases of neuronal development might compro-
mise neuronal organization and connectivity and make neurons perhaps more vulnerable to other insults across their 
lifespan.
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Introduction
During neuronal development, axons navigate to their 
targets by sensing attractive and repulsive signals through 
receptors located on their growth cones [1]. In particu-
lar, semaphorins (Sema) belong to a large family of guid-
ance cues proteins, consisting of secreted (Sema 2, Sema 

Open Access

Cell & Bioscience

*Correspondence:  carmela.matrone@unina.it

1 Unit of Pharmacology, Department of Neuroscience, School of Medicine, 
University of Naples “Federico II”, Naples, Italy
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6719-0107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-022-00916-1&domain=pdf


Page 2 of 15Ferretti et al. Cell & Bioscience          (2022) 12:182 

3, and Sema V), membrane spanning (Sema 1, Sema 4, 
Sema 5, and Sema 6) or glycosyl phosphatidyl inositol 
anchored (Sema 7A) proteins [2, 3].

An increasing number of studies have indicated a role 
of Sema 3A in the regulation of neurodevelopment. As 
such, Sema 3A has been reported to either trigger or 
inhibit axon repulsion in cortex [4, 5], as well as to pre-
vent the pruning of hippocampal axons [6] or promote 
branching by cerebellar basket cell axons onto Purkinje 
cells in the cerebellar cortex [7]. Inconsistencies have 
been also reported in Sema 3A knock-out (KO) mice, 
where the lack in Sema 3A can cause either a reduction 
or an increase in terminal basket cell axonal arborization 
[8].

Both neuronal and non-neuronal cells in brain express 
Sema 3A, including microglia cells, astrocytes, endothe-
lial cells and oligodendrocytes. Sema 3A expression is 
high during the early stages of embryonic development, 
but it reaches a peak only around the first postnatal week 
[9, 10]. Later, after birth, Sema 3A levels decline, although 
in adulthood its expression still persists in brain areas 
that retain plasticity and/or neurogenesis, such as the 
olfactory bulb, hippocampus, and cerebellum [11–13]. 
The reason why Sema 3A levels change during develop-
ment and after birth, is currently unknown. However, it is 
clear that this pattern of expression is essential for brain 
development and to maintain neurons healthy in adult-
hood. In fact, alterations in the Sema 3A levels are detect-
able in the brain of patients affected by nervous system 
pathologies. Consistently, Sema 3A increase in the cells 
surrounding the ischemic area upon stroke insult in ani-
mal models of brain ischemia [14, 15]. Similarly, high lev-
els of Sema 3A have been reported in brain from patients 
with multiple sclerosis [16] or in the Schwan cells from 
patients with amyotrophic lateral sclerosis [17] and in the 
hippocampus of patients with  Alzheimer’s disease [18]. 
In addition, Sema3A levels are increased in the cerebel-
lum and prefrontal cortex of schizophrenic or autistic 
subjects [19, 20] where several polymorphisms in Sema 
3A or in the Sema 3A receptors have been also described 
[15, 21–27]. On the contrary, a transient downregulation 
of Sema3A mRNA expression has been found in a rat 
model of temporal lobe epilepsy [27–29]. Interestingly, 
increased levels of Sema 3A have been also detected in 
autoimmune diseases, supporting the role of Sema 3A as 
modulator of the inflammatory response [30, 31].

All together these observations have given rise to spec-
ulations whether an increase in Sema 3A during the early 
stages of neuronal development may result in alterations 
in growth and differentiation that can compromise neu-
ronal functions in adulthood.

The effects of Sema 3A depend on the binding to its 
receptors, the neuropilin (Npn) and plexin (Plxn) A 

protein families [32]. This binding results in dynamic 
changes in the cytoskeleton and repulsive mechanisms at 
growth cone level [33]. In particular, Neuropilins (Npn 1 
and 2) have been described to be essential for the Sema 
3A binding to Plexin (Plxn) A receptors and for the acti-
vation of Sema 3A downstream signals [34]. Remark-
able, Sema 3A appears to prioritize the binding to Npn 
1 rather than Npn 2, in order to activate axonal repellent 
downstream signals [35, 36].

The goal of this study is to elucidate how neurons sense 
and respond to exogenous or endogenous changes in 
Sema 3A expression levels during the first days of devel-
opment using human neural progenitors (NP). Our find-
ings highlight a novel mechanism in which an increase 
in Sema 3A levels activates axonal targeting errors and 
branch pruning defects in NP during the first days of dif-
ferentiation. These alterations might likely recapitulate 
possible pathological conditions that compromise neu-
ronal functions during the early stages of development, 
thus affecting the neuronal growth and differentiation 
and predisposing to other neurologic diseases.

Materials and methods
Human neural progenitor cultures
Human neural progenitors (NP) (#ax0015) were obtained 
from Axol Bioscience (Cambridge, UK) and cultured 
following the procedures previously reported [37, 38]. 
According to the customer suggestions, NP were pas-
saged maximum three times before using for the experi-
ments. Shortly, NP were plated in precoated wells as well 
as slides using Geltrex coating solution (ThermoFisher, 
Milan, IT), and differentiated in Neurobasal supple-
mented with B27 media (ThermoFisher, Milan, IT). As 
controls for our experiments, some key results were con-
firmed also in #ax0016 (Axol Bioscience, Cambridge, 
UK).

For RNA silencing, 2 days after plating, NP (2,500,000 
cell/well, diameter/well 35  mm) were incubated with 
a siRNA mix containing Sema 3A (Ambion, Milan, IT, 
#S20284) or Npn 1 (Ambion, Milan, IT, #107,267) or 
Plxn A2 siRNA (5  pmol, Ambion, Milan, IT, #S10700), 
1 µl Lipofectamine Messenger Max mRNA Transfection 
Reagent (Invitrogen, Milan, IT) and 100  µl Opti-MEM 
medium (ThermoFisher, Milan, IT) and left in Neuroba-
sal supplemented with B27 media (ThermoFisher, Milan, 
IT) for additional 48 h. In preliminary experiments to set 
working conditions, we used 5  pmol Silencer GAPDH 
siRNA (Ambion, Milan, IT, #AM4624) as positive control 
and Silencer Negative Control siRNA (Ambion, Milan, 
IT, #AM4611) as the negative control following supplier’s 
suggestions (data not shown).

For DNA transfection, 10  µg/ml of Sema 3A-GFP 
(OriGene Technologies Inc., Rockville, MD, USA, 
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#RG213681) or GFP empty vector (OriGene Technolo-
gies Inc., Rockville, MD, USA #PS100010) were incu-
bated in 1  µl Lipofectamine Stem Transfection Reagent 
(Invitrogen, Milan, IT) for 20 min and then the mix was 
transferred to NP that were left in Neurobasal supple-
mented with B27 media for 48 h. After 48 h, the medium 
was refreshed, and cells were cultured for additional 24 h.

In siRNA and DNA co-transfection experiments, NP 
were incubated with 10  µg/ml Sema 3A-GFP or GFP-
empty vector and 5  pmol siNpn 1 (Ambion, Milan, IT, 
#107,267), siSema 3A (Ambion, Milan, IT, #S20284) or 
siPlxn A2 (Ambion, Milan, IT #S10700) in 1  µl Lipo-
fectamine Stem Transfection Reagent (Invitrogen, Milan, 
IT) and left in Neurobasal supplemented with B27 media 
for 48 h.

Human primary microglia
Human fetal brain-derived primary cultures of micro-
glia (HMC3, 37,089–01), purchased from Celprogen 
Inc. (Benelux, NL), were cultured in Essential medium 8 
(ThermoFisher, Milan, IT), that is routinely used for stem 
cells grow and expansion and we previously used to keep 
in culture NP [37, 39]. DNA transfection was performed 
by incubating 10 µg/ml of Sema 3A with 15 µl of Lipo-
fectamine 2000 (Invitrogen, ThermoFisher, Milan, IT), 
according to the manufacturer protocols. After 20  min, 
fresh media was added, and cells were left in culture for 
48 h. 10 µg/ml of GFP-empty vector was used as transfec-
tion positive control.

Media from Sema 3A, GFP or non-transfected micro-
glia was collected 48 h after transfection and transferred 
to NP culture. In order to minimize events related to 
changes in growth conditions, NP were cultured in 
Essential medium 8 (ThermoFisher, Milan, IT) at least 
48 h before the experiment.

Western blot analysis (WB)
For protein isolation, cells were collected and homog-
enized in RIPA buffer (ThermoFisher, Milan, IT) sup-
plemented with protease inhibitors (Sigma-Aldrich, 
Darmstadt, DE). After 60  min incubation on ice, the 
homogenates were centrifuged (14,000  rpm, 4  °C, 
20 min) and soluble protein samples were stored at -80 °C 
until use. Protein concentration was determined with the 
Bradford assay. Equal amounts (30  μg) of proteins were 
separated on 4–15% precast polyacrylamide gel (Bio-
rad Laboratoires, Milan, IT) under reducing conditions, 
transferred into PVDF membranes (Abcam, Cambridge, 
UK). Membranes were blocked with 5% Bovine Serum 
Albumin (BSA, Sigma-Aldrich, Milan, IT) in Tris-Buff-
ered Saline-Tween (TBS-T, Biorad Laboratoires, Milan, 
IT) and incubated overnight with the appropriate pri-
mary antibody. Anti-mouse or anti-rabbit secondary 

antibodies (Santa Cruz Biotechnology, Dallas, TX, USA) 
were used to detect the primary antibody. The detection 
of the protein of interest is achieved using chemilumi-
nescent method utilizing Clarity Western ECL Substrate 
(Biorad Laboratoires, Milan, IT). For digital quantifica-
tion, densitometric analysis of the immunoreactive bands 
was performed using ImageLab 6.1.0 software (2020, 
Bio-Rad Laboratories, Milan, IT). The following primary 
antibodies were used (see also key resource Table): anti-
β-actin (1:20,000, Sigma-Aldrich, #A3854), anti-iNOS 
(1:1000, Proteintech, #18,985–1-AP), anti-TNFα (1:1000, 
Proteintech #17,590–1-AP), anti-Sema 3A (1:1000, Inv-
itrogen, #PA5-67,972), anti-Fyn (1:1000, Cell Signal-
ing, #4023), anti-pFyn Tyr420 (1:1000, Cell Signaling, 
#2101S), anti-p35/CDK5 (1:1000, Cell signaling, #2506), 
anti-pCDK5 Tyr15 (1:1000, Cell Signaling, #94,254). The 
following secondary antibodies were used for immuno-
blotting: anti-rabbit IgG-HRP conjugated (1:5000, Santa 
Cruz, #sc-2357), anti-mouse mIgGk BP-HRP (1:5000, 
Santa Cruz, #sc-516102).

Enzyme‑linked immunosorbent assay (ELISA)
Sema 3A protein levels in media from microglia overex-
pressing Sema 3A (Sema 3A media) or GFP (GFP media) 
or non-transfected (Ctrl media) were assessed using Elisa 
kit (ELISA, Cusabio, Houston, TX, USA #CSB-E15913h), 
according to the manufacturer instructions. Kit sensi-
tivity was 0,156  ng/ml, according to the manufacturer 
information.

Immunofluorescence (IF)
NP were plated on precoated slides for approximately 
2  days in Neurobasal supplemented with B27 media 
(250,000 cells/well; diameter/well 16 mm) and then trans-
fected with siRNA or DNA or exposed to microglia con-
ditioned media as described in each figure. NP were fixed 
in 4% PFA-methanol free solution (ThermoFisher, Milan, 
IT), washed with Dulbecco’s Phosphate Buffered Saline 
(DPBS, ThermoFisher, Milan, IT) and permeabilized with 
0.05% Triton X-100 (Bio-Rad Laboratories, Milan, IT) for 
3–5 min at room temperature. Triton was eliminated and 
cells were rinsed with DPBS. Then, cells were processed 
for the staining and incubated with primary antibodies 
overnight at 4 °C. The primary antibodies used were: anti-
Ankirin G (1:200, Invitrogen, #33–8800), anti-βIII Tubu-
lin (1:1000, Abcam, #ab Ab18207), anti-CD68 (1:1000, 
Proteintech, #66,231–2-Ig) anti-CD86 (1:1000, Protein-
tech, #13,395–1-AP), anti-IBA1 (1:1000, Proteintech, 
#66,827–1-Ig), anti-iNOS (1:1000, Proteintech, #18,985–
1-AP), anti-MAP-2 (1:1000, Invitrogen, #PA517646) 
anti-Npn 1 (1:1000, Abcam, #ab81321), anti-Plexin A2 
(1:1000, Cell Signaling, #5658), anti-TMEM119 (1:1000, 
Proteintech, #66,948–1-Ig) anti-TNFα (1:1000, Cell 
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Signaling, #3707). Fluorescent secondary antibodies con-
jugated to Alexa 488 (1:250, Invitrogen, #A-11029) or 594 
(1:250, Invitrogen, #R37117) were used for primary anti-
bodies’ detection for 45 min at room temperature. Nuclei 
staining was obtained with DAPI (Fluoroshield Mounting 
Medium with DAPI, Abcam, #AB104139) and imaged 
with Plan Apochromat 40x/1,3 Oil DIC M27 (Zeiss, 
Oberkochen, Germany) or EC Plan Neofluar 20x/0,50 
M27 (Zeiss, Oberkochen, Germany) or EC Plan Neofluar 
10x/0,30 (Zeiss, Oberkochen, Germany) objectives on 
a Zeiss LSM700 AxioObserver laser scanning confocal 
microscope equipped with a gallium arsenide phosphide 
photomultiplier tube (GaAsp-PMT) detector and con-
trolled by a Zen black software (Zeiss, Oberkochen, Ger-
many). Fluorescence images presented are representative 
of cells imaged in at least three independent experiments 
and were processed with Fiji, ImageJ2 software (National 
Institutes of Health, Bethesda, Marlan, USA). In order 
to analyze axonal length and dendrite organization, NP 
were plated onto glass slides coated in a 24-well plate 
at a density of 75,000 cells per well. Axonal length was 
assessed using NeuronJ plug-in (ImageJ); Sholl analysis 
and Strahler analysis were performed using Neuroanat-
omy plug-in (ImageJ). Representative skeleton masks in 
Figs. 1B and 3A were obtained using Synapse and Neur-
ites Detector (SynD) software [40].

Pictures in Fig.  2F were acquired with the LMS980 
confocal microscope (Zeiss, Oberkochen, Germany) 
equipped with a Plan Apochromat 63x/1,40 Oil DIC M27 
objective (Zeiss, Oberkochen, Germany), using a GaAsP-
PMT detector (Zeiss, Oberkochen, Germany) and a Zen 
Blue Software (Zeiss, Oberkochen, Germany). Quantita-
tive data of microglia were obtained after acquisition of 
huge tile regions (at least 64 frames) with Celldiscoverer7 
system (Zeiss, Oberkochen, Germany) and measured 
Fluorescence Mean Intensity (MFI) through analysis 
module of Zen 3.1 Software (Zeiss, Oberkochen, Ger-
many) (Fig.  2E). For each marker and each experiment, 
a threshold for the MFI was established and all the cells 
with higher level of fluorescence were counted as positive 
for that specific marker. Percentage of positive cells was 
calculated on total number of nuclei in the field.

Live imaging
Live Imaging analysis was performed at CEINGE 
Advanced Light Microscopy Facility using the automated 
platform Celldiscoverer7 system (Zeiss, Oberkochen, 
Germany) equipped with a heated stage (37  °C and 5% 
CO2) and an Orca flash 4.0 camera (Hamamatsu). Briefly, 
timelapse of 6 well plates containing NP exposed to Sema 
3A, GFP and Ctrl media were acquired using a Plan 
Apochromat 20x/0.7 objective and 1 × tubelens. Images 

(24 frames) were captured at 5  min intervals (Zeiss, 
Oberkochen, Germany) in phase gradient contrast. 
Axonal retraction was quantified by manual measuring 
of the distance between the neuronal soma and the axon 
edge, at time 0 and after 60  min of exposure to Sema 
3A or control media, using the Zen 3.1 Software (Zeiss, 
Oberkochen, Germany).

All materials used for cell culture, WB, IF and live 
imaging experiments are reported in additional files (see 
Additional File 1: Table S1).

Statistical analysis
Data are expressed as mean ± SEM. All of the experi-
ments were performed at least three times. The appro-
priate statistical test was selected using GraphPad Prism 
software version 9.0 for Windows (GraphPad Software, 
San Diego, CA, USA) and reported in the legend for each 
figure.

Data and code availability
Any additional information about this paper is available 
from the lead contact upon request.

Results
Sema 3A overexpression reduces the number of healthy 
neurons 48 h after transfection
We firstly analysed how human neural progenitors (NP) 
sense intracellular increase of Sema 3A expression dur-
ing the first days of differentiation. Our previous stud-
ies indicate that NP start polarizing and generate axon 
growth cone approximately 48  h after plating [37, 38]. 
Then, 4–5  days later, a large portion of NP becomes 
microtubule-associated protein 2 (MAP-2) positive (neu-
rons) and this portion further increases within the next 
7–10  days [37–39]. Therefore, we will here refer to NP 
or neurons depending on whether cells have been culti-
vated two or four days, respectively. We firstly evaluated 
whether NP express Sema 3A. We found that all the NP 
expressed Sema 3A and its receptor Npn 1 two (data not 
shown) and four days after plating (Additional File 2: Fig.
S1A), likely suggesting that there are not specific neu-
ronal subtypes that prioritize Sema 3A expression and is 
more susceptible to Sema 3A signal, at this age. Interest-
ingly, Sema 3A appeared largely distributed both in the 
cytosol and along the neurites, and largely colocalize 
with Npn 1 (Additional File 2: Fig.S1A). Next, to mimic 
an increase in Sema 3A, that may recapitulate neurotoxic 
events like those described by others in animal model 
of neuronal diseases [7, 16, 27, 41], NP were transfected 
with GFP-tagged Sema 3A (Sema 3A) or GFP-empty 
vector (GFP) 48  h after plating. As additional controls, 
we used non-transfected (Ctrl) and silenced Sema 3A 
(siSema 3A) NP. 48  h after transfection (four  days in 
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culture), neurons were collected, and cell extracts were 
used for western blot (WB) or immunofluorescence (IF) 
analysis. Quantification of WB bands indicated a 50% 
increase in Sema 3A expression in transfected neurons 
(Additional File 2: Fig.S1B). In particular, two bands were 
detectable approximately at 95  kDa and 130  kDa corre-
sponding to the native Sema 3A [12, 42] and the trans-
fected GFP tagged Sema 3A, respectively (Additional 
File 2: Fig.S1B). Of note, IF analysis showed a remarkable 
increase of Sema 3A staining (green) in the apical den-
drites in neurons 48 h after Sema 3A transfection com-
pared to non-transfected control (Additional File 2: Fig.
S1A). Conversely, approximately 60% reduction in Sema 
3A expression was observed in siSema 3A treated neu-
rons (Additional File 2: Fig.S1B).

We next investigated whether Sema 3A was secreted in 
our experimental condition, by performing WB analysis 
in media from Sema 3A and Ctrl neurons. We observed 
a slight but significant increase in Sema 3A levels in the 

media from Sema 3A neurons when compared to the 
non-transfected controls (Additional File 2: Fig.S1C).

In addition, we noted that the number of DAPI posi-
tive cells was significantly reduced in Sema 3A neurons 
48  h after transfection (Additional File 2: Fig.S1E), sug-
gesting that Sema 3A overexpression may influence neu-
ronal survival. Relevantly, only the 15% (± 3.2) of the 
total DAPI positive nuclei were properly transfected with 
Sema 3A, suggesting that such neurotoxicity is caused by 
both the secreted as well as the intracellular Sema 3A.

To evaluate whether the Sema 3A transfection acti-
vated a downstream signaling, we performed WB for 
Fyn tyrosine kinase. In this regard, it is worth noting 
that Fyn TK is a downstream effector of Sema 3A sign-
aling, responsible for the regulation of axonal retraction 
and dendrite development [43, 44]. We found an evident 
increase in Fyn activation, assessed as increased phos-
phorylation of Tyr420 residue, 48 h after Sema 3A trans-
fection, indicating that the Sema 3A signal was activated 
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in neurons overexpressing Sema 3A (Additional File 2: 
Fig.S1D).

We finally examined whether Npn 1 silencing (siNpn 
1) was able to protect against the Sema 3A mediated 
neuronal death in Sema 3A + siNpn 1 co-transfected 
neurons. siNpn 1 was confirmed by Npn 1 staining quan-
tification (Additional File 2: Fig. S1F). Notably, the Npn 
1 silencing in Sema 3A overexpressing neurons rescued 
neuronal survival to a level comparable to that of Ctrl 
non-transfected neurons (Additional File 2: Fig.S1E).

Sema 3A overexpression causes axonal retraction 
and increases dendritic branching in neural progenitors
To visualize neuronal structure and dendritic arbori-
zation, 48  h after Sema 3A transfection, neurons were 
stained with Ankyrin G (Ank G, axonal initial segment, 
in green) [45] and β-III tubulin (neurites, in red) (Fig. 1A) 
or MAP-2 (dendrites, in red) (Fig. 1D), respectively, and 
examined by confocal microscopy. Axonal length and 
dendritic branching were analysed by Image J software. 
Skeleton mask analysis is reported in Fig.  1B. Neurons 

overexpressing Sema 3A showed a remarkable reduc-
tion in the axonal length when compared to Ctrl or GFP 
neurons (Fig. 1C). This reduction was associated with an 
increased dendrites’ branching, assessed by Sholl analy-
sis (Fig.  1E). Interestingly, in Sema 3A overexpressing 
neurons, dendrite branches significantly increased in the 
areas around the soma (4–19 μm from the soma) (Fig. 1E, 
and Additional File 1: Table  S2), suggesting that Sema 
3A overexpression favours the formation of multiple 
branches rather than driving the formation of one mature 
axon. Moreover, we clustered the dendritic branches in 
I, II and III orders, according to Strahler criteria analysis 
and we found a significant increase in the branches’ num-
ber of order I and II in Sema 3A overexpressing neurons 
compared to both Ctrl and GFP (Fig. 1F), further under-
lining the role of Sema 3A in contributing to the den-
dritic architecture and organization.

Axonal retraction observed in neurons overexpressing 
Sema 3A was significantly preserved when cells were co-
transfected with siNpn 1 (Fig.  1A–C). This finding sug-
gests that Sema 3A requires Npn 1 receptor to explicate 
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these functions in this experimental paradigm. In addi-
tion, an unstructured dendrite architecture in the dis-
tal areas from the soma (40–50 μm from the soma) was 
observed in Sema 3A + siNpn 1 neurons. This dendrite 
organization was different to that observed in Sema 3A 
where, instead, we found that dendrite arborization 
was increased in the proximal areas (Fig.  1E; see also 
Additional File 1: Table  S2 for single value comparative 
Sholl analysis). Of interest, we noted that a large num-
ber of siNpn 1 neurons were positive to MAP-2 stain-
ing (Fig. 1D and Additional File 2: Fig. S1G) and showed 
long axons (Fig. 1C) and irregular dendrite arborization 
(Fig.  1E), when compared to non-transfected, Sema 3A 
and Sema 3A + siNpn 1 transfected. Intriguingly, such 

increased number in MAP-2 positive neurons was only 
observed in siNpn 1 but not in Sema 3A + siNpn 1 neu-
rons where indeed the number of MAP-2 neurons was 
approximately the same than that assessed in Sema 3A 
overexpressing neurons (Additional File 2: Fig. S1G). 
This result seems to indicate that the siNpn 1 increase in 
MAP-2 positive neurons is not contingent to Sema 3A 
overexpression.

Microglia overexpressing Sema 3A release Sema 3A 
and activate neuroinflammatory pathways
As Sema 3A can exert either autocrine or paracrine func-
tions, we developed a different experimental paradigm, 
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consisting in exposing neurons to an exogenous source of 
Sema 3A.

Therefore, we firstly evaluated whether Sema 3A over-
expression induced a switch of microglia from resting to 
activated states. Next, we investigated whether Sema 3A 
elicits M1 or M2 microglia polarization. Microglia were 
transfected with GFP tagged Sema 3A following the pro-
cedure reported in Materials and Methods and the num-
ber of green cells were counted by IF and expressed as 
% of the total cell number in each slide. We found that 
17.06% ± 1.1 Sema 3A and the 17.5% ± 2.9 GFP micro-
glia (N = 6; % of the total number of plated cells) were 
transfected (Fig.  2A). Additionally, a significant amount 
of Sema 3A was released in media from microglia overex-
pressing Sema 3A, as confirmed by Elisa (Fig. 2B).

Notably, Sema 3A overexpression induced a large 
decrease in the number of DAPI positive microglia 
nuclei, consistent with a role of Sema 3A in promoting 
cell death and activating toxic processes (Fig. 2C).

We then evaluated whether Sema 3A overexpres-
sion impacts on microglia M1 or M2 polarization 48 h 
after GFP or Sema 3A transfection. For this, micro-
glia were stained with antibodies against cluster of 
differentiation 68 (CD68) and 86 (CD86) and Ionized 
calcium-binding adapter molecule 1 (Iba 1), that have 
been reported to be expressed mainly in the activated 
microglia [46]. Transmembrane protein 119 (TMEM 
119) was used as specific microglia marker, instead 
[47]. Finally, tumour necrosis factor-α (TNF-α) and 
inducible nitric oxide synthase (iNOS) were used as 
pro-inflammatory markers to recognise M1 polarized 
microglia [48, 49]. We therefore assessed the mean 
fluorescence intensity (MFI) for each marker in Sema 
3A and GFP transfected microglia and we expressed 
such values in respect of the total cell number and as 
% of Ctrl (Fig. 2D, E). As shown in Fig. 2D, the number 
of TMEM 119 positive cells was not significantly dif-
ferent when Sema 3A was compared to GFP and Ctrl 
microglia. Differently, Iba 1, CD86 and CD68 were all 
increased in microglia overexpressing Sema 3A when 
compared to either Ctrl or GFP, indicating that Sema 
3A activates microglia (Fig.  2D). Of note, it is worth 
mentioning that some cells overexpressing Sema 3A 
(green) and expressing Iba 1, showed an ameboid 
shape reminding the M1 phenotype previously shown 
in the human activated microglia [50] (Additional 
File 2: Fig.S2). Relevantly, the number of iNOS and 
TNF-α positive cells were largely increased in Sema 3A 
microglia when compared to GFP and non-transfected 
controls suggesting that Sema 3A promotes M1 polari-
zation (Fig. 2E, F).

Neural progenitors retract axon 60 min after exposure 
to media from microglia overexpressing Sema 3A and then 
die.
We next exposed NP to media from microglia transfected 
with Sema 3A (Sema 3A) or GFP (GFP) or non-trans-
fected (Ctrl) for 60 or 180 min. 60 and 180 min after expo-
sure, neurons were stained with Ank G (green) and β-III 
tubulin (red) to assess axonal length and with MAP-2 
(red) for dendritic branching (Fig. 3A, C). We found that 
media from Sema 3A induced a significant axonal retrac-
tion (Fig. 3A, B) as also shown by skeleton mask (Fig. 3A) 
and an increased apical dendritic arborization (Fig.  3C, 
D) in NP within an hour after exposure, consistently 
with data reported in neurons overexpressing Sema 3A 
(Fig. 1). In addition, Strahler analysis showed an increase 
in the branches’ number of order I, II and III in neurons 
upon media from Sema 3A microglia (Fig.  3E), when 
compared to media from both Ctrl and GFP. This result 
indicates that an increased structural complexity occurs 
in the dendritic branches of NP exposed to Sema 3A 
when compared to NP overexpressing Sema 3A (Fig. 1F). 
This may suggest that NP are more sensitive to Sema 3A 
if exogenously administered. In addition, the number 
of NP exposed to media from Sema 3A microglia was 
largely reduced 60 min after exposure and 180 min later 
the majority of NP were aggregated to form big clusters 
in which most cells were dead (Fig. 4A, C). By contrast, 
NP exposed to media from GFP or Ctrl microglia neither 
suffered nor died (Fig. 4C).

Axonal retraction started already 30  min after Sema 
3A media exposure (Fig. 4B, see also supporting materi-
als/live imaging videos, Additional File 3, Additional File 
4, Additional File 5). To quantify the axonal retraction 
that was shown in live imaging, we assessed the distance 
between the neuronal soma and the axon edge within the 
60 min after exposure to media from Sema 3A microglia 
and we found that the distance of Sema 3A retraction 
approximately doubled when compared to GFP and Ctrl 
neurons (Fig. 4D).

Finally, NP expressed high iNOS and TNFα levels, sug-
gesting that an exogenous Sema 3A insult from microglia 
M1 activated cells initiates neuroinflammatory pathways 
(Fig.  4E, F), that likely results in NP death (Fig.  4A, C). 
Of note, a similar proinflammatory pathway appeared 
to be also activated in microglia when exposed to media 
from neurons overexpressing Sema 3A. In fact, the num-
ber of iNOS (Additional File 2: Fig.S3A, C) and TNFα 
(Additional File 2: Fig.S3B, D) positive microglia were 
increased and largely died within an hour after Sema 3A 
neuronal media exposure (Additional File 2: Fig.S3E).

We finally performed WB analysis to evaluate whether 
Sema 3A signal was activated, focusing on Fyn and 
its downstream effector, the threonine-serine kinase 
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cyclin-dependent kinase 5, CDK5 (see also cartoon 
reported in Fig. 5A) [51]. Of note, we found an increase 
in the levels of Fyn phosphorylated at of Tyr420 (Fig. 5B) 
in Sema 3A neurons that did not occur in neurons upon 
GFP or Ctrl media, suggesting that Sema 3A activates 
Fyn pathway. Previously, Sasaki et al. demonstrated that 
Fyn phosphorylates CDK5 on the Tyr15 residue [52]. 
Indeed, we detected higher levels of Tyr15 CDK5 phos-
phorylation in neurons exposed to media from Sema 3A 
microglia (Fig. 5C, D). In addition, we found an increased 
processing of CDK5 to generate the active fragment p35 
[53], consistent with a role of Sema 3A in activating the 
Fyn/CDK5 signaling.

As Sema 3A-Fyn-CDK5 signaling mostly involves Plxn 
A2 receptor activation [52], we silenced Plxn A2 (siPlxn 
A2) receptor expression and analysed whether neuronal 
exposure to media from Sema 3A microglia was still 
able to activate Fyn cascade. siPlxn A2 was confirmed 
by quantification of WB analysis (Fig. 6A). Of note, WB 

analysis showed reduced Fyn Tyr420 phosphorylation 
levels in siPlxn A2 neurons incubated in media from 
Sema 3A microglia (siPlxn A2 + Sema 3A MEDIA) when 
compared to neurons in which Plxn A2 was not silenced 
(Ctrl + Sema 3A MEDIA, Fig. 6B), suggesting that axonal 
retraction signal needs the Sema 3A binding to Plxn A2 
receptor to be initiated.

Discussion
Neurodevelopmental disorders, such as schizophrenia 
and autism, are chronic conditions occurring early in 
brain development and resulting in functional neuronal 
abnormalities and aberrant neuronal connectivity, mostly 
consisting in the abnormal sprout of neuronal processes 
or in altered spine growth and dendrite morphology 
[54–56]. Notably, recent evidences have underlined the 
potential critical role of Sema 3A in fostering these alter-
ations [7, 14, 57].
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An increasing number of epidemiological studies are 
stressing the significance of maternal inflammation in 
the onset of autism or schizophrenia [58–61]. In particu-
lar, prenatal exposure to infections have been described 
as causative factor in rise of schizophrenic births [62]. 
Of interest, Meyer et al. [63] demonstrated that neurons 
respond differently to inflammatory stimuli according to 
the foetal age during gestational development, delineat-
ing the hypothesis that the time of prenatal insult may 
differently affect neuronal structure abnormalities. This 
means that insults occurring at the earliest times of neu-
rodevelopment might cause defects persisting through-
out adulthood [64]. Sema 3A has been described as 
critical regulatory checkpoint of the immune response 
[65]. Sema 3A is expressed in oligodendrocytes, astro-
glia and microglia/macrophage where it orchestrates the 
innate immune response being involved in both normal 
and pathological immune processes [66, 67].

Multiple evidence points on microglia and neuronal 
interactions as crucial either in creating the specific 

molecular environment dictating neuronal differentiation 
[66–69], or triggering inflammatory pathways, impair-
ing synaptic functions and increasing susceptibility to 
peripheral insults in neurodevelopmental disorders [70, 
71]. Of interest, a variety of not yet defined stimuli, trig-
ger resting microglia turning into the M1 (neurotoxic) or 
M2 (protective) activated phenotype [72]. In this context, 
Sema 3A has been reported to modulate the microglia 
switching from the resting to the M1 activated phenotype 
[73].

Of interest, Fujita et al., previously proposed a role for 
Sema 3A in mediating neuronal–microglia interactions 
after middle cerebral artery occlusion [70, 71]. Accord-
ingly, Majed et  al. demonstrated that stressed neurons 
can mediate death of activated microglia by increasing 
Sema 3A production [74]. Notably, in an animal model of 
spinal cord injury, Sema 3A inhibits the neuroinflamma-
tory response against microglia [75–77]. However, much 
remains elusive with regard to how and whether Sema 
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3A may influence the neuron-microglia crosstalk during 
neurodevelopment.

Taking into account all these aspects, we hypothesized 
that increased levels of Sema 3A during the early stages 
of neuronal development, may result in alterations in 
neuronal growth or neurochemical dysregulations, such 
as the activation of neuroinflammatory processes. To 
investigate our hypothesis, we analysed how Sema 3A 
impacts on NP differentiation using two different para-
digms consisting one in transfecting NP with Sema 3A 
and the other in exposing NP to media from microglia 
overexpressing Sema 3A. Both the paradigms affected 
the architecture of the NP at the very early stages of their 
differentiation. In particular, when Sema 3A insult came 
from microglia, it activated neuroinflammatory pathways 
in NP and induced cell death. Additionally, Sema 3A 
overexpression promoted the axon growth cone retrac-
tion and initiated an aberrant dendritic arborization in 
the area proximal to the soma, mirroring a phenotype 
previously described in neurons derived from patients 
with autism [78].

Of note, the effects on axonal elongation and branching 
due to Sema 3A overexpression were partially rescued 
in neurons in which Npn 1 and Plxn A2 were silenced, 
pointing on these two receptors as major transducers of 
Sema 3A signal in NP. While there is a large consent that 
Sema 3A requires Npn 1 as additional receptor moiety 
to create a holoreceptor complex with Plxn As and pro-
mote Sema 3A chemorepellent signalling [79], it is still 
controversial which of the Plxn As transduces Sema 3A 
signaling.

Indeed, studies report that Plxn A2 and Fyn, form a 
complex with Npn 1 that results in Plxn A2 phospho-
rylation and promotes the activation of the downstream 
CDK5 pathway [52, 80, 81]. In particular, Fyn, when acti-
vated, phosphorylates the Plxn A2 cytoplasmic domain 
[52] as well as CDK5 and forms a complex with Sema 3A 
receptors, Plxn A2 and Npn 1. As consequence, phos-
phorylated CDK5, triggers Pak/Rac signals and cytoskel-
etal rearrangements [52, 82].

Consistently, Sasaki et al., proposed previously a signal 
transduction pathway in which Sema 3A-Fyn interaction 
was essential in controlling apical dendrite guidance in 
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the cerebral cortex of Sema 3A knock out mice [52]. In 
line with these results, we found that Fyn Tyr420 phos-
phorylation increased in NP exposed to Sema 3A media 
and that, such phosphorylation, was partially reduced in 
neurons in which Plxn A2 was silenced, pointing to Fyn 
as downstream effector of Sema 3A-Plxn A2 signaling in 
human neurons. Notably, although our data indicate Plxn 
A2 as one important player in transducing Sema 3A sig-
nal transduction, the possibility that other Plxn As might 
contribute to all the processes described here, cannot be 
ruled out.

Furthermore, future studies should elucidate which fac-
tors may induce Sema 3A overexpression in microglia as 
well as in neurons during neuronal development. Stud-
ies have reported increased Sema 3A expression levels in 
some neurologic diseases in which neuroinflammation 
appears to play a critical role [15, 16, 18, 83, 84]. How-
ever, as far as we know, it is still unclear which factors 
initiate or promote such Sema 3A increase. Of note, in 
these studies Sema 3A appeared to trigger either protec-
tive [31] or detrimental functions [73, 85]. We found that 
Sema 3A activates microglia and promotes M1 polari-
zation. Intriguingly, iNOS and TNFα markers were also 
increased in neurons 60 min after exposure to Sema 3A 
media, indicating that a very short inflammatory insult, 
during the very early stages of neuronal development 
may promote neuroinflammatory pathways and affect 
differentiation and connectivity. Consistently with this 
hypothesis, also microglia when exposed to media from 
neurons overexpressing Sema 3A polarized toward the 
M1 phenotype and demonstrated increased iNOS and 
TNFα levels associated with increased cell death. These 
last evidences may advise about the role of other fac-
tors, beyond Sema 3A, in contributing to -or potentiat-
ing- Sema 3A effects on neuronal progenitor growth and 
differentiation.

All together these findings point to Sema 3A insult 
as potential trigger of neurodevelopmental deficits in 
human NP and define the downstream effectors of Sema 
3A signals that are responsible for these defects. Indeed, 
whether such aberrant neuronal signaling plays a major 
role in the development of autism or schizophrenia 
deserves additional investigation. Furthermore, research 
on the mechanisms regulating the transcription, expres-
sion, and degradation of Sema 3A and leading to its accu-
mulation in neuronal diseases should be pushed forward.
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Additional file 1: Table S1. Key Resource Table. Table S2. Dendritic 
branching analysis of Figure 1E. Data are the mean ± SEM of three inde-
pendent experiments in triplicate. Two-way ANOVA followed by Tukey’s 

test for multiple comparisons. *P < 0.05; **P < 0,01; ****P < 0,0001 vs Ctrl 
and #P<0.05 vs Sema 3A + siNpn 1.

Additional file 2: Fig.S1. Characterization of Ctrl, Sema 3A-GFP, siSema 
3A, siNpn 1 and Sema 3A+siNpn 1 neurons 48 h after transfection. (A) 
IF analysis with Sema 3A (green) and Npn 1 (red) of neurons transfected 
(Sema 3A) or not (Ctrl) with Sema 3A-GFP. Scale bar: 20μm. Figures were 
acquired by 40x objective and cropped in order to visualize single neuron 
and highlight the preferential Sema 3A localization on the apical dendrites 
in Sema 3A transfected neurons. (B) WB analysis of neurons overexpress-
ing Sema 3A-GFP (Sema 3A) or in which Sema 3A is silenced (siSema 3A) 
48 h after transfection. Non-transfected neurons were used as control. 
Optical density (OD) analysis is reported below. Data are the mean ± SEM 
of three independent experiments and are expressed as % of Ctrl. One-
way ANOVA followed by Tukey’s test for multiple comparisons. *P<0.05 vs 
Ctrl. (C) Representative WB analysis for Sema 3A of media from NP over-
expressing Sema 3A-GFP (Sema 3A) or non-transfected Ctrl. OD analysis 
is reported below. Sema 3A levels were normalized for the corresponding 
IgG value (input). One-way ANOVA followed by Tukey’s test for multiple 
comparisons. N=3 ****P < 0.0001. (D) Representative WB analysis of Fyn 
pTyr420, Fyn and the correspondent  β actin. OD analysis is reported 
below. Fyn pTyr420 levels were calculated as a ratio of Fyn pTyr420 relative 
to the corresponding Fyn OD values normalized to  β actin (Fyn pTyr420/
Fyn). N= 3. One-way ANOVA followed by Tukey’s test for multiple com-
parisons. *P < 0.05. (E) Extent of neuronal survival obtained by counting 
the number of DAPI positive nuclei before and after Sema 3A transfection 
as well as in Npn 1 silencing and Ctrl (non-transfected neurons). Data are 
the mean ± SEM of three independent experiments in triplicate. One-
way ANOVA followed by Tukey’s test for multiple comparisons. *P<0.5, 
****P<0.0001. (F) Staining quantification of Npn 1 RNA silencing (siNpn 1) 
expressed as mean fluorescence intensity (MFI). MFI was normalized on 
the number of DAPI positive nuclei (three slides from three independent 
experiments). Scale bar: 50μm. 40x objective. Unpaired t-test, **P<0.01 vs 
Ctrl. (G) Analysis of the number of MAP-2 positive neurons assessed using 
multipoint tool of Image J. Values were normalized on the number of DAPI 
positive nuclei and expressed as % of Ctrl. Data are the mean ± SEM of 
three independent experiments in triplicate. One-way ANOVA followed 
by Tukey’s test for multiple comparisons. **P<0.01 vs siNpn 1. Figure S2. 
Representative images of Iba1 (red) and Sema 3A or GFP (green) staining. 
Scale bar: 15µm. Figures were acquired by 40x objective and cropped 
in order to highlight the morphology of Sema 3A or GFP transfected 
cells. N=3. Figure S3. Media from neurons overexpressing Sema 3A 
cause inflammatory pathway activation in microglia within an hour after 
exposure. iNOS (A) and TNFα (B) staining in microglia cells transfected 
with Sema 3A-GFP (Sema 3A) or not (Ctrl) and incubated in media from 
neurons overexpressing (Sema 3A neuronal media) or not (Ctrl neuronal 
media) Sema 3A for 60 min. Scale bar: 40 μm iNOS and 50 μm TNFα IF. 
20x objective. The number of iNOS and TNFα positive cells is reported 
in (C) and (D), respectively. One-way ANOVA followed by Tukey’s test for 
multiple comparisons. N=3 *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 
vs Ctrl. (E) DAPI positive nuclei measurement. Data are the mean ± SEM of 
five independent experiments and expressed as % of Ctrl (non-transfected 
microglia). One-way ANOVA followed by Tukey’s test for multiple compari-
sons. N=3. **P<0.01; ****P<0.0001.

Additional file 3: Video Sema 3A. Dynamics of axonal retraction in neu-
rons exposed to Sema 3A media.

Additional file 4: Video Ctrl. Dynamics of axonal retraction in neurons 
exposed to Ctrl media.

Additional file 5: Video GFP. Dynamics of axonal retraction in neurons 
exposed to GFP media. NP were cultured in 6 wells plate, incubated in 
50% Neurobasal supplemented with B27 and 50% E8 microglia growth 
media. 48 h later NP were exposed to media from microglia overexpress-
ing Sema 3A or GFP or control for 60 min. Neuronal dynamic was recorded 
using Zeiss Celldiscoverer 7. Scale bar: 20μm.
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