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Abstract 

The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural 
maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions includ‑
ing the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family 
is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of 
substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for main‑
taining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, 
size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not 
carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized 
functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples 
have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent 
functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members 
support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances 
on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special 
emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting 
the PDIs in cancer.
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Introduction
Approximately one-third of the cellular proteome passes 
through the secretory pathway before they are secreted 
or translocated to their destined subcellular localiza-
tions. The endoplasmic reticulum (ER) constitutes the 
first compartment of this secretory pathway. It orches-
trates the synthesis, folding, and structural maturation 
of many secreted and cell surface proteins. Initially, most 
polypeptides enter the ER unfolded. There, with the assis-
tance of ER-resident proteins and chaperones, they fold 

and mature into proper tertiary or quaternary structures, 
before being transported to the second compartment i.e., 
the Golgi-apparatus for post-translational modifications 
such as glycosylation and lipidation [1].

Crucial to the functions of the ER are the ER-resident 
proteins in the ER lumen [2]. A major component of 
these ER-resident proteins includes the protein disulfide 
isomerases (PDIs), a class of multi-domains, multi-
functional enzymes that belongs to the thioredoxin 
superfamily. The PDI family comprises several divergent 
proteins that can serve as molecular chaperones for pro-
tein synthesis and maturation [3]. As a folding catalyst, 
the PDI proteins are capable of preserving the native 
conformation and stability of other proteins via the for-
mation, isomerization and rearrangement of disulfide 
(S–S) bonds. The formation of S–S bonds between two 
cysteine residues is highly conserved, and at least 30% 
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of all eukaryotic proteins have at least one S–S bond, 
and  ~ 80% of them are secreted or membrane proteins 
[4]. The essential roles of PDIs in oxidative protein fold-
ing are therefore conspicuous, especially the stability of 
the S–S bonds that can be perturbed by the reducing 
environments of most cellular compartments leading to 
protein misfolding. On the other hand, cellular functions 
are heavily dependent on the proper folding of proteins. 
To achieve proteome stability, the proteostasis network, 
that is comprised of conserved stress signaling path-
ways, involves in regulating the synthesis, folding, traf-
ficking and degradation of proteins [5, 6]. Of note, ER 
proteostasis is likewise crucial because even the chronic 
expression of a single misfolded protein can result in the 
imbalance of proteostasis and impact multiple biochemi-
cal pathways [7–9]. These imbalances are associated with 
protein aggregation or proteinopathies which can lead to 
both loss- or gain-of-function diseases [10].

In this review, the structural properties and expression 
of PDIs in cancer are discussed. We describe existing and 
emerging roles as well as molecular mechanisms in sup-
porting key biological processes in cancer emergence, 
with special emphasis on the anterior gradient (AGR) 
subfamily. In addition, the relevance and therapeutic 
strategies targeting the PDIs are highlighted.

The composition and architecture of PDI family 
members
To date, twenty-one members of the PDI protein family 
have been identified, each having a different size, struc-
ture, tissue distribution and enzymatic activity (Table 1) 
[11]. A signature of the PDI family members is the pres-
ence of a catalytic thioredoxin fold (TRX), also known 
as the CXXC (Cys-X-X-Cys) motif, where X can be any 
amino acid. However, there are proteins in this family 
without the catalytic TRX or non-reactive TRX. Thus, 
a more accurate definition of the PDI family is that it (i) 
contains a non-thiol-reactive TRX motif with chaperone-
like folding activities as well as (ii) having sequence and 
structural similarity to the TRX motif. The TRX motif 
contains two free thiol groups at each of the cysteine 
residues which mediate oxidoreductase activity that is 
important for shuffling the S–S bonds during protein 
maturation [12]. Most PDI family members have one to 
three TRX like-motif [13] and the most conserved TRX 
sequence for the PDI family is CGHC [14] (Fig. 1A).

It is worth evaluating the structure–function relation-
ships of the prototypic PDI, also referred to as PDIA1 
(referred to as PDIA1 hereinafter), which is a 57-kDa 
dithiol isomerase redox-dependent protein that catalyzes 
the formation, breakage and rearrangement of the S–S 

Table 1  The human PDI family members

Gene name Protein name Aliases Uniprot ID Chromosome PDB code

P4HB PDI PDIA1, PROHB, DSI, GIT, PDI, PO4HB, P4Hbeta P07237 17q25.3 3bj5, 4ju5, 3uem, 6i7s, 4ekz, 4el1, 
1x5c, 2bjx, 1bjx, 1mek, 2k18

PDIA2 PDIA2 PDIA2, PDI, PDIR Q13087 16p13.3 None

PDIA3 PDIA3 P58, ERp61, ERp57, ERp60, GRP57, PI-PLC, HsT17083 P30101 15q15.3 2h8l, 2alb, 3f8u, 2dmm, 6eny

PDIA4 PDIA4 ERP70, ERP72 P13667 7q36.1 3idv

PDIA5 PDIA5 PDIR, FLJ30401 Q14554 3q21.1 4i6x

PDIA6 PDIA6 P5, ERp5 Q15084 2p25.1 4ef0, 3vww, 4gwr, 3w8j, 1x5d

PDILT PDILT PDIA7 Q8N807 16p12.3 5xf7, 4nwy

ERP27 ERP27 FLJ32115, PDIA8 Q96DN0 12p12.3 4f9z, 2l4c

ERP29 ERP29 ERp28, ERp31,PDI-DB, PDIA9 P30040 12q24.13 none

ERP44 ERP44 KIAA0573, PDIA10 Q9BS26 9q31.1 none

TMX1 TMX1 TMX, PDIA11 Q9H3N1 14q22.1 1x5e

TMX2 TMX2 PDIA12 Q9Y320 11q12.1 2dj0

TMX3 TMX3 FLJ20793, KIAA1830, PDIA13 Q96JJ7 18q22.1 none

TMX4 TMX4 DJ971N18.2, KIAA1162, PDIA14 Q9H1E5 20p12.3 none

TXNDC5 TXNDC5 MGC3178, FLJ21353, FLJ90810, EndoPDI, Hcc-2, 
ERp46, PDIA15

Q8NBS9 6p24.3 3wgx, 3wge, 3uvt, 3wgd, 3uj1, 2diz

TXNDC12 TXNDC12 TLP19, ERP18, ERP19, hAG-1, AGR1, PDIA16 O95881 1p32.3 1sen, 2k8v

AGR2 AGR2 XAG-2, HAG-2, AG2, PDIA17 O95994 7p21.1 2lns, 2lnt

AGR3 AGR3 HAG3, hAG-3, BCMP11, PDIA18 Q8TD06 7p21.1 3ph9

DNAJC10 DNAJC10 ERdj5, PDIA19 Q8IXB1 2q32.1 none

CASQ1 CASQ1 PDIB1 P31415 1q23.2 5crg, 5crd, 5crh, 3uom, 5cre

CASQ2 CASQ2 PDIB2 O14958 1p13.1 6owv, 6oww, 2vaf
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bonds [15]. PDIA1 constitutes  ~ 80% of total ER proteins 
and was also the first PDI to be identified as a catalyst for 
protein folding [16, 17]. Structurally, PDIA1 harbors four 
distinct domains i.e., a, a′, b, b′ [16, 18, 19] (Fig. 2). Other 
notable structural determinant includes the acidic C-ter-
minal and x-linker (connecting a′ and b′-domains). The 
TRX-like domain is typically categorized as harboring 
the a-type (catalytic) and b-type (non-catalytic) domains, 
whereby the a′ and b′ symbols are often used to indicate 
the positions of such domains in the polypeptide. The 
a-type domain contains a thiol group responsible for 
mediating S–S bond formation, while the b-type domains 
act as spacers for protein recruitment [20]. The x-linker is 
a 19-amino acid residue located in between the a′ and b′ 
domains that are deemed to cushion the substrate-bind-
ing on the b′ domain [21, 22].

Other members of the PDI family differ substan-
tially in terms of the a/b-domains configurations and 
other important motifs (Fig.  1A). Phylogenetic analy-
sis that is based on sequence similarities of PDI reveals 
the existence of multiple subfamilies, markedly the AGR 
(TXNDC12, AGR2, AGR3), TMX (TMX1-4) and CASQ 
(CASQ1, CASQ2) subfamilies (Fig.  1B). The AGR sub-
family and some thioredoxin-related transmembrane 
proteins such as the TMX protein subfamilies only 

possess the catalytic a-type domain, but not the b-type 
domain [22, 23]. Another notable feature of PDI proteins 
is the presence of an ER-retention motif at the uppermost 
C-terminus end. The founding PDIA1 protein contains a 
highly acidic tetrapeptide ER-retention motif KDEL (Lys-
Asp-Glu-Leu) and is considered a canonical motif for 
ER retention. This motif is recognized by KDEL recep-
tors in a post-ER compartment and such binding triggers 
retrieval back to the ER, thus ensuring that the proteins 
harboring this motif stay in the ER. However, there are 
variations of this motif (e.g., KTEL, EDEL, QSEL) within 
the PDI family suggesting that some PDIs have differ-
ent tolerances in binding affinity to KDEL receptors and 
thus may escape the ER or are secreted into extracellu-
lar space [24]. The CASQ1, CASQ2 ERP27, and ERP29 
proteins do not carry the TRX motif and contain only 
the b-type domains suggesting that they are incapable of 
mediating S–S bonds. Interestingly, the CASQ subfam-
ily proteins are the only PDI proteins missing the ER-
retention motif. Another interesting subset of the PDI 
family is the more recently discovered transmembrane 
domain-containing TMX subfamily of proteins (TMX1-
4) suggests possible protein localization in the ER mem-
brane or other membranous organelle. Additionally, 
phylogenetic studies revealed that members of PDI and 

Fig. 1  Domain representation of PDI family members and family tree. A Schematic representation highlighting the a- and b-type domain 
arrangements, transmembrane domain (TM), and ER retention motifs of all 21 PDI family members. B Protein sequences of all 21 PDI family 
members were aligned using Clustal Omega and the corresponding matrix represented as a circular tree using the iTOL website (http://​itol.​embl.​
de/)

http://itol.embl.de/
http://itol.embl.de/
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Rho guanine-dissociation inhibitors (Rho-GDI) have a 
syntenic linkage and were co-regulated by the same cis-
regulatory elements, suggesting that PDI/RhoGDI pairs 
have a common ancestor and functional linkages [25].

Core functions of PDI members
The core function of PDI-like protein members is to 
facilitate the formation of disulfide bonds for secretory 
and membrane proteins entering the SP, particularly 
in the ER [26–29]. This ensures that the client proteins 
are in a proper stabilization and maturation state prior 
to ER exit. The S–S bond formation occurs primarily in 
the ER under an oxidative environment, in which they 
are formed through oxidizing thiol-reactive cysteine and 
then isomerizing them to attain the right conformation. 
To understand the formation of disulfide bonds of pro-
teins travelling along with the SP, it is worth reviewing 
the enzymatic activity of the founding member PDIA1. 
In the process of native protein folding, PDIA1 under-
goes a redox reaction. The oxireduction cycle of PDIA1 
alters the conformation to enable correct protein fold-
ing. When PDIA1 is in an oxidized state, PDIA1 medi-
ates the enzymatic catalysis of dithiols to disulfides by 
pairing cysteines in the active site with reduced nascent 
polypeptides or substrates to form a disulfide bond [30, 

31]. The reduced cysteine thiols in the substrate bind to 
the CGHC disulfide to produce a PDI-protein complex. 
The complex interacts with a second reduced thiol from 
the substrate, resulting in an oxidized and stable native 
protein. Simultaneously, the disulfide in the active site of 
PDI is reduced to the dithiol state [20]. While PDIA1 is 
in a reduced state, it catalyzes the breakage of disulfide 
bonds of the oxidized protein substrates and reduced it 
to dithiol. To complete the catalytic cycle of PDIA1, the 
PDIA1 protein must be reoxidized by electron transfer, 
for example by an electron transport machinery involv-
ing an enzyme ER oxidoreductin 1 (Ero1) [32]. Isomeri-
zation, on the other hand, occurs during PDIA1 being in 
a reduced state. The cysteine closest to the N-terminus 
active site initiates the intramolecular rearrangement of 
S–S bonds [33]. Client proteins enriched in cysteines are 
predisposed to error, especially with regard to intramo-
lecular disulfide bonds, hence isomerization is required 
to convert incorrectly formed disulfides to their native 
conformation. Isomerization can be thought of a series of 
reduction and oxidation cycles [15].

PDIs have also been proposed to act as molecular chap-
erones [34]. A fundamental characteristic of a molecular 
chaperone is the ability to bind to a partially or com-
pletely disordered client protein. When chaperones bind 

Fig. 2  The 3D structure of full-length human PDI/PDIA1 as predicted by AlphaFold (ID:AF-P07237-F1). The major domains are represented by 
different color surfaces. The active site containing the TRX motif, CGHC is colored in red
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to the substrates, the protein substrates are not in their 
native functional conformation. Non-native states exist 
in all proteins in the cell at some point during their life 
cycle. For example, unfolded polypeptides that have only 
been translated may bind to chaperones before reach-
ing their native conformation. Chaperones are crucial 
in maintaining proteostasis. This ability of a molecular 
chaperone to interact with the misfolded protein is pri-
marily to protect their client protein from aggregation 
and is often referred to as ‘holdase’ activity. Whereas a 
process of a chaperone assisting a protein in folding back 
to its native state is called ‘foldase’ activity. Interestingly, 
PDIs are shown to be capable of distinguishing between 
native, unfolded or misfolded proteins through hydro-
phobic interactions [35]. Misfolded proteins that are 
lacking disulfide bonds can also bind to PDIs to prevent 
the aggregation of damaged proteins, suggesting their 
roles in the ER goes beyond their role in disulfide bond 
formation [36]. For PDI1A, it has been proposed that 
the molecular chaperone activities are independent of 
its redox activity [37, 38]. The C-terminus and a′-domain 
were shown to be crucial for its chaperone activity. Trun-
cation of the C-terminus and a′ domain results in the 
loss of the chaperone function, however, it is not known 
whether this applies to all PDI family members [39, 40].

Since there are multiple PDI family members, their 
functions may be overlapped. It has been shown that 
PDI family members may have at least one function as 
described here, whether it be as oxidases, reductases, 
isomerases, or molecular chaperones. The differences 
in structural determinants especially concerning their 
catalytic thioredoxin fold, hydrophobic pockets, and ER 
retention motif result in their functions being subspe-
cialized depending on cellular settings. PDI proteins are 
therefore crucial in ER proteostasis, which aids in the 
maintenance of several important cellular functions like 
gluconeogenesis, calcium storage, organelle biogenesis, 
and lipogenesis. As a result of its various influences on 
cellular stress, disruption of ER proteostasis frequently 
leads to the development of multiple disease states.

Expression of PDI members in cancer
Several PDIs are frequently overexpressed in cancers 
despite being one of the most abundant cellular proteins 
in the ER [41]. Assessment of PDI proteins expression 
using published microarray datasets revealed that PDIA1 
is significantly upregulated in the brain and CNS cancers, 
lymphoma, kidney, ovarian, lung and male germ tumors. 
Analysis of cytosolic and cell surface proteomes derived 
from various cancers also yielded similar results [42]. 
Likewise, other PDI members namely PDIA3, PDIA4, 
and PDIA6 are also highly expressed in numerous cancer 
types including breast, thyroid, rectal, gastric and liver 

cancers [43–45]. Additionally, we analyzed publicly avail-
able RNA-Seq data of all PDI members that could give 
the overall picture of their expression in the cancer land-
scape. Integration and comparative analysis of TCGA 
(cancer tissues) and GTEx (normal tissues) RNAseq data 
showed almost similar trends to previous data in that 
PDIA1 showed a high level of expression in both normal 
and cancer tissues suggesting that PDIA1 is a universal 
catalyst of disulfide bond formation (Fig. 3). The expres-
sion of PDIA3, PDIA4, PDIA6, ERP29, and TXNDC5 
have also upregulated in most cancer types. On the other 
hand, PDILT, CASQ1, and CASQ2 proteins are expressed 
at low levels in most tissues and their expression seems 
not to be differentially expressed in normal and cancer 
tissues. Perhaps, the most differentially expressed protein 
is AGR2 which is upregulated in lung, pancreas, stom-
ach, breast, prostate, and colorectal cancer tissues com-
pared to their normal tissues. It is important to note that 
these analyses are based on mRNA expression and that 
proteins can undergo various post-translational modifi-
cations (PTMs) that could alter their expression. Current 
database and proteomic technologies do allow us to com-
prehensively scrutinize the expression of each PDI. There 
are several proteomics studies, however, that identified 
PDI proteins as one of the upregulated proteins in can-
cer settings. For example, the mass spectrometry-based 
analysis identified an increased level of PDIA1 in pros-
tate [46], breast [47], and brain [48] tumors. The upreg-
ulation of PDIA3 protein expression in colorectal, liver, 
brain and clear cell ovarian cancer was also revealed by 
high-throughput OMICS platforms [49–52]. The AGR2 
protein was found to be upregulated in esophageal ade-
nocarcinoma as shown by quantitative shotgun proteom-
ics and immunohistochemistry [53].

Post‑translational modifications of PDIs
It has been well-established that the structure, expres-
sion, and function of a protein can be altered via PTMs. 
Therefore, we discuss briefly the PTMs among PDI mem-
bers that could expand our understanding of their roles. 
In a recent review, it has been shown that S-nitrosylation, 
carbonylation and S-glutathionylation can impair the 
functions of PDIs [54]. These PTMs are aberrant and irre-
versible, and they are the outcome of cellular nitrosative 
or oxidative stress, where high levels of reactive nitrogen 
species (RNS), hydrogen peroxide and reactive oxygen 
species (ROS) accumulate as modifying agents. Among 
these PTMs, S-nitrosylation of PDI has been demon-
strated to inhibit the chaperone and isomerase activity 
of PDIs, which have been observed in neurodegenera-
tive diseases [55, 56]. Whereas, S-glutathionylation, the 
formation of a disulfide bond between glutathione and a 
cysteine residue of another protein has been attributed to 
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protein misfolding and enhancement of the UPR and has 
been associated with cancer [57, 58].

Our investigation of the PhosphoSitePlus repository 
(www.​phosp​hosite.​org), on the other hand, revealed 
that all but one member (ERp27) of the PDI family can 
undergo extensive native PTMs, encompassing phos-
phorylation (p), acetylation (Ac), ubiquitylation (Ub) and 

glycosylation (G), methylation (M) and succinylation (Sc) 
[59]. To elaborate further, we found that human PDIA1 
can accommodate up to 65 PTM sites i.e., Ac (12), G (1), 
M (7), p (19), Sc (9) and Ub (17). Similar to the other 19 
PDI family members, most of these PTMs were iden-
tified with large-scale OMICS approaches, notably by 
mass spectrometry analysis. Of these 65 sites, only 3 

Fig. 3  Expression of PDI members in cancer landscape. The expression of PDIs is based on RNA-seq expression data extracted from the TCGA Pan 
Cancer Atlas

http://www.phosphosite.org
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sites have been investigated for their biological functions 
i.e., Thr331p, Ser357p and Ser427p by Yu et  al., where 
they discovered that the phosphorylation of Ser331 and 
Ser427 affected the conformation and activity of PDIA1 
minimally [60]. In contrast, when Ser357 becomes phos-
phorylated by the secretory pathway kinase Fam20C, 
PDIA1 adopted an open conformation, which converts 
PDIA1 from a “foldase” into a “holdase” for preventing 
protein misfolding in the ER. Besides, the phosphoryla-
tion of Ser357 allows PDIA1 to interact with the lumenal 
domain of IRE1α, a UPR signal transducer to attenuate 
excessive IRE1α activity. Likewise, 83 PTMs have been 
reported for PD1A3 in PhosphoSitePlus, including Ac 
(13), G (4), M (8), p (36), Sc (7) and Ub (15). While it was 
documented earlier that Lyn, a protein tyrosine kinase of 
the Src family is primarily responsible for the phospho-
rylation of tyrosine residues Tyr445, Tyr454 and Tyr467 
in PDIA3, little is known about the biological implica-
tions of these modifications [61]. PDIA3 is well-known as 
an essential component for MHC Class I peptide loading 
complex which presents antigen to CD8 + cytotoxic T 
cells to enable tumor antigen recognition and anti-tumor 
immune responses, hence it is vital for cancer immuno-
therapy [62]. We, therefore, articulate that further func-
tional characterization of the various PTMs located in 
the PDI family is of critical importance.

Functions and mechanisms of PDI members 
in cancer
The high level of expression of PDIs in cancer has been 
shown to be associated with cancer progression, metas-
tasis and invasion [63, 64]. The mechanisms by which 
PDIs promote tumour growth and metastasis has been 
linked with their ability to suppress apoptosis [48, 65, 
66]. For example, ERp29 which lacks the catalytic a-type 
domain has been shown to downregulate eLF2α which 
in turn upregulates Hsp27, resulting in the inhibition of 
apoptosis in breast cancer cells. Besides, ERp29 may also 
promote cancer invasion and metastasis by regulating 
epithelial-mesenchymal transition (EMT) [63]. Inhibition 
of PDI activity by the PDI inhibitor, bacitracin increased 
apoptosis in cancer cells and more evidently in response 
to ER stress [67]. Similarly, inhibition of PDIA1 activity 
by PDI inhibitor PACMA 31 reduced the growth of the 
mouse xenograft model of human OVCAR-8 ovarian 
cancer [68]. In line with this, siRNA-mediated knock-
down of PDI demonstrated caspase-dependent apopto-
sis in the MCF-7 breast cancer cell line [69]. Meanwhile, 
overexpression of cytosolic PDIA1 has been shown to 
inhibit cell death after an apoptotic stimulus [70]. It 
was also shown that PDIA1 has non-canonical func-
tion in supporting ferroptosis in breast cancer cells and 
induced accumulation of lipid ROS [71]. In lung cancer 

cells, PDIA4 and PDIA6 were upregulated in response to 
cisplatin treatment and the inactivation of both proteins 
directly stimulates cisplatin‐induced apoptosis [72]. This 
further suggests that these PDIs have a pro-survival role 
through the regulation of the cell death pathway.

Pin-pointing the exact mechanism by which PDIs 
contribute to tumorigenesis is impossible because PDIs 
interact with a wide range of proteins due to their ver-
satile functions and have been observed to contribute 
to cancer progression via different pathways. The most 
commonly studied PDI-related signalling pathway is the 
Ras/Raf/MEK/ERK pathway, which is one of the key sig-
nalling pathways involved in the regulation of cell pro-
liferation, survival and differentiation. TXNDC5 is an 
endo-PDI that can activate the Ras/Raf/MEK/ERK path-
way and is required for TNFα-induced angiogenesis [73]. 
Recently, a study revealed that TXNDC5 high expression 
was maintained by the SREK1 variant through the inter-
action of nonsense-mediated decay components in hepa-
tocellular carcinoma [74]. In addition, overexpression of 
ERp29 may regulate ERK signalling in mesenchymal-like 
breast cancer cells, which in turn increases E-cadherin 
and further promotes cellular transition into epithelial 
properties [75]. PDIA6 was reported to be involved in 
the Wnt/β-catenin signalling pathway. Overexpression 
of PDIA6 has been demonstrated to promote the prolif-
eration and cell cycle progression of HeLa cells through 
activation of Wnt/β-catenin signalling by inhibiting the 
phosphorylation of β-catenin leading and its proteasomal 
degradation [76]. Studies using Caenorhabditis elegans 
have linked PDI-associated genes to the Wnt signal-
ling pathway. The PDI-1 ortholog is crucial in specifying 
neuronal development and that it controls Wnt3a secre-
tion. Mutation of the cysteine in the TRX motif to serine 
impairs Wnt3a secretion, suggesting that the oxidation 
and rearrangement of disulfide bonds mediated by PDI 
are essential during Wnt biogenesis in C. elegans [77].

Though normally residing in the ER, PDIs may trans-
locate to the cell surface and catalyze thiol-disulfide 
exchange in extracellular proteins to assist in the 
isomerization of disulfide bonds of their interacting pro-
teins such as metalloproteases, selectins and integrins 
[78]. A previous study has shown that the activation of 
ADAM17, a disintegrin and metalloprotease which is 
important for signaling at the cancer cell surface, is mod-
ulated by cell surface thiol-isomerases activity of PDIA1 
[79]. In addition, PDIA1 can interact with cell surface 
thyroid hormone receptors via its reductase/isomerase 
activity suggesting its possible role in thyroid cancers 
[80]. PDIA1 can also be secreted extracellularly and is 
capable of mediating cell adhesion and migration, aiding 
in cancer progression and metastasis by catalyzing thiol-
disulfide exchange, which further activates membrane 
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proteins (e.g., integrins) or proteolytic enzymes (e.g., 
MMPs) [81]. Another cell surface localized PDI member 
is PDIA6 that is highly expressed at the cell surface of 
human platelets in response to platelet agonists and can 
physically interact with the integrin B3 subunit during 
platelet stimulation [82]. Moreover, PDIA4 protein has 
been found to be secreted in the serum of Chinese adults 
with metabolic syndrome which elicit its potential extra-
cellular role in cancer [83]. These findings set new para-
digms in that PDI can have gain-of-function activities 
outside the ER that contribute to the hallmarks of cancer.

Among human PDIs, AGR proteins (TXNDC12, 
AGR2, and AGR3) are notably associated with oncogen-
esis. To date, the AGR gene family is the smallest PDI 
member which has less than 200 amino acids (Fig.  3). 
Since there are growing interest and studies on AGR pro-
teins (mostly AGR2 and AGR3) in cancer; and their role 
in the ER and outside the ER, we ought to emphasize our 
review of this PDI subfamily.

AGR2
AGR2 is perhaps the most studied PDI family mem-
ber and is closely related to tumorigenesis. The human 
homologue named AGR2 was first identified in the EsR-
positive breast cancer cell lines [84]. Subsequent OMICS 
screening identified AGR2 as being overexpressed in the 
human cancers of the prostate, lung, stomach, ovarian, 
pancreas, esophagus, as well as head and neck [85]. It 
has been suggested that AGR2 plays dual roles in cancer 
development. The first role of ER-based AGR2 is to buffer 
ER proteostasis in high metabolic and proliferating can-
cer cells as well as to control protein secretion as widely 
reviewed previously [85–87]. Elevated AGR2 expression 
across several cancers has been shown to support the 
growth of cancer cells through multiple pathways such 
as Wnt/β-catenin and Hippo signaling pathway [88, 89]. 
Although AGR2 contains only a single cysteine in its 
TRX motif, it has been shown that it is capable of form-
ing mixed-disulfide bonds with its substrates [90–92]. 
AGR2 has also been found outside the ER which was 
found at the cell surface and secreted into extracellular 
space. It has been elucidated that extracellularly local-
ized AGR2 contributed to several hallmarks of cancer 
such as ECM remodeling, inflammation, metastasis, 
cell proliferation and angiogenesis [93–95]. For exam-
ple, a recent study demonstrated that the equilibrium of 
AGR2 monomer–dimer influenced AGR2 secretion and 
that the secretion yielded pro-inflammatory phenotypes 
[95]. It has also been found that PDI proteins including 
AGR2 refluxed to the cytosol in cancer and gain new 
functions through a phenomenon called ER-to-cytosol 
Signaling (ERCYS) [96]. The reflux of AGR2 from ER to 
cytosol results in non-genetic inactivation of the tumor 

suppressor p53. There were also multiple interactomics 
studies aimed at expanding the search for AGR2 inter-
action partners to further understand the role of AGR2 
in cancer. From these studies, AGR2 seems to interact 
largely with secreted and cell-surface proteins such as 
EpCAM, MUC5AC, EGFR and PROD1, suggesting that 
AGR2 is predominantly involved in their maturation and 
that the binding is crucial for their signaling [97–100].

TXNDC12 (AGR1)
TXNDC12, also known as AGR1 was initially identified 
from the ER lumen of healthy mice using a proteomics 
screen and was initially named ERp19 [101] (Table  1). 
TXNDC12 is the only protein within the AGR subfam-
ily to contain dual cysteines, CGHC in the catalytic 
TRX motif. Interestingly, a phylogenetic tree of AGR 
genes across different classes of vertebrates showed that 
TXNDC12 is present exclusively in lower vertebrates, 
but lost in higher evolutionary trees [102]. TXNDC12 
is believed to be the founding gene of the AGR fam-
ily. Structural and biophysical studies have revealed 
that TXNDC12 has oxidase and isomerase activity 
[103–105]. TXNDC12 has been reported to form mixed 
disulfide bonds with substrates in the ER and in this 
case, TXNDC12 shows specificity to pentraxin-related 
protein, PTX3 during its assembly into a decamer [106]. 
Ectopic expression of TXNDC12 can be detected in both 
cell lysates and culture medium from cell lines, suggest-
ing that this protein can be secreted extracellularly, how-
ever, the extracellular function of TXNDC12 has not 
been documented. TXNDC12 has also not been identi-
fied in OMICS screens of human cancer until recently. 
Immunohistochemical analysis and qRT-PCR of gas-
tric cancer tissues and cell lines showed that TXNDC12 
is upregulated in tumors compared to normal tissues 
[107]. Patients with heavy staining of TXNDC12 dem-
onstrate poor prognoses and a positive correlation with 
both tumor size and lymph node metastases. TXNDC12 
can also promote proliferation, migration, and inva-
sion of gastric cancer cells while TXNDC12 knockdown 
significantly abolishes these effects. Interestingly over-
expression of TXNDC12 significantly enhanced FAK 
phosphorylation at Tyr-397 and paxillin phosphorylation 
at Tyr118, suggesting the role of TXNDC12 in the FAK/
paxillin pathway in gastric cancer [107]. This study was 
the first study to show that TXNDC12, like other AGR 
homologues, is involved in tumorigenesis at least in the 
gastric cancer population while its role in other types of 
cancer warrants further investigation.

AGR3
AGR3 is the smallest member of the PDI family contain-
ing only 166 amino acids. It was discovered as a new 
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protein whose sequence is highly homologous to AGR2 
in a proteomics analysis from enriched plasma mem-
brane proteins of breast cancer cell lines and was ini-
tially named BCMP11 [108]. Fluorescently labelled AGR3 
demonstrated that the protein localized in secretory or 
endosome-like organelles in the breast cancer cell line 
[108]. This is another evidence of PDI member that can 
be captured in the plasma membrane of cancerous cell; 
the localization resembles a secretory molecule thus 
suggesting that it may function as a ligand for plasma 
membrane-associated proteins or maybe secreted for 
extracellular function. Furthermore, the same research 
group showed that AGR2 and AGR3 were both co-
expressed in estrogen receptor (EsR)-positive breast can-
cer and can physically interact with LY6/PLAUR Domain 
Containing 3 (LYPD3 /C4.4a) and extracellular alpha-
dystroglycan (DAG-1) [109]. It is also interesting to note 
that both the AGR2 and AGR3 genes are located side-by-
side in chromosome 7p21 and are in close proximity to 
EsR binding sites, therefore it is not surprising that the 
genes are co-expressed particularly in EsR positive breast 
cancer [110]. AGR3 was found to be expressed cytosoli-
cally in four human ovarian cancer subtypes; serous pap-
illary, endometrioid, clear cell, and mucinous where the 
latter showed the highest AGR3 expression [111]. The 
expression of AGR3 was found to be associated with EsR-
negative ovarian cancer. In different studies, the AGR3 
protein was found to be overexpressed in serous ovarian 
cancer and high expression of AGR3 in the serous sub-
type is correlated with poor prognosis [50, 112]. This 
result contradicts the previous study which reported 
that AGR3 expression is confined to the mucinous type 
[111]. AGR3 can also be secreted outside the cell as it was 
found to be secreted into blood serum and can be used as 
an independent prognostic factor for early screening of 
breast cancer patients [113]. AGR2 and AGR3 expression 
are coupled in EsR positive breast cancer and the com-
bination of AGR2 and AGR3 as biomarkers resulted in 
increased sensitivity and specificity thus suggesting that 
they can be used as a prognostic factor [113]. The crys-
tal structure of AGR3 (PDB code:3PH9) has revealed that 
it can form an asymmetric unit consisting of two AGR3 
molecules, however, there was no evidence that AGR3 
can form a spontaneous dimer in solution [114].

PDI regulation during ER stress
The ER governs a unique environment to establish a 
balanced ER proteostasis. This ER proteostasis can be 
perturbed by physiological as well as multiple environ-
mental and cellular signals such as high protein demand, 
viral infections, environmental toxins, inflammatory 
cytokines, and mutant protein expression resulting in 
an accumulation of misfolded and unfolded proteins in 

the ER lumen, a condition termed as ER stress [115]. It is 
known that under ER stress, cells activate a series of com-
plementary adaptive mechanisms to cope with increased 
demands of protein folding in the ER. This adaptive 
system is called the unfolded protein response (UPR) 
which is a highly conserved signal transduction pathway 
to reduce unfolded/misfolded protein load and restore 
proteostasis [116]. When unfolded proteins accumulate 
in the ER, ER-resident proteins including PDIs become 
occupied, releasing transmembrane ER protein sensors 
involved in inducing the UPR. There are three key mam-
malian UPR sensors that comprise the endoribonucle-
ase inositol-requiring enzyme 1-alpha (IRE1α), protein 
kinase RNA-like endoplasmic reticulum kinase (PERK) 
and activating transcription factor 6 (ATF6α) [115]. Dur-
ing physiological stress, upon sensing an imbalance in 
compartmental proteostasis, these sensors will transmit 
stress signals from the ER lumen to downstream signal-
ling. This helps to reduce newly-synthesized proteins, 
thus facilitating the efficient degradation of superfluous 
and misfolded proteins in the ER [117].

An important link between ER and tumour develop-
ment has been established recently [118–121]. In trans-
formed cells like cancer, the SP is exposed to a strong 
environmental pressure such as hypoxia, oxidative stress 
or chemotherapies, aneuploidy, and high proliferation 
rates which together contribute to tumorigenesis. There 
also seems to be crosstalk between UPR with ER-asso-
ciated degradation (ERAD) and autophagy that work 
together to remove unfolded/misfolded proteins or pro-
tein aggregates from the ER [116, 122]. The regulation by 
UPR is usually short-term, and prolonged activation of 
UPR might otherwise induce apoptosis. The prolonged 
activation of UPR that leads to ER stress-induced apopto-
sis is activated via three primary pathways, including the 
IRE1/ASK1/JNK pathway, caspase-12 kinase pathway, 
and the C/EBP homologous protein (CHOP)/GADD153 
pathway [123, 124].

The upregulation of PDIs is generally accompanied by 
the overexpression of UPR-related proteins such as BiP, 
GRP, IRE1α, ATF6 α and elF2a [125, 126]. For exam-
ple, AGR2 expression can be controlled by the UPR 
upon ER stress and most likely depends on both IRE1α 
and ATF6α signalling [127]. Knockdowns of IRE1α and 
ATF6α resulted in decreased basal AGR2 mRNA expres-
sion and also prevented AGR2 induction upon chemi-
cal ER stressor treatment. Under ER stress, PDIA5 is 
crucial for the formation of S–S bonds in ATF6α lead-
ing to its export from the ER and activation of its target 
genes [128]. PDIA6 has been shown to directly interact 
with IRE1α and PERK and inactivates them, resulting in 
the limitation of UPR signalling within the physiological 
range [129–131].
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Targeting PDIs for cancer therapeutics
It is evident that the high expression of some members 
of the PDI family supports cancer growth and thus gives 
them diagnostic/prognostic utility. This also suggests that 
targeting them is relevant to abrogate cancer. Interest-
ingly, some PDIs can be secreted into the bodily fluids of 
cancer patients such as serum, plasma, and urine which 
fits a criterion to be a strong biomarker candidate. Clini-
cal detection of PDI levels in serum could reflect PDI 
expression in cancer patients, thus pointing to a potential 
diagnostic/prognostic significance. PDIA1 has been used 
as a serum marker for the diagnosis of colorectal cancer 
[132]. Moreover, in patients with melanoma or refrac-
tory acute myeloid leukemia, PDIA1 is an immunogenic 
molecule that is targeted by antibodies during immune-
mediated tumor breakdown [133, 134]. The same study 
also showed that PDIA6 can also elicit a similar antibody 
response, suggesting the therapeutic potential of PDIA1 
and PDIA6 in hematologic malignancies. Moreover, a 
recent study showed that PDI inhibition resulted in the 
suppression of tumor cell growth and improve T cell 
tumor control [135].

It is worth noting that some PDIs are expressed at 
high levels even in normal cells (e.g., PDIA1) to main-
tain housekeeping activities such as substrate folding 
and to react to UPR signaling. Therefore, targeting these 
PDIs may need pharmacokinetics fine-tuning to prevent 
adverse systemic effects. Alternatively, a drug delivery 
system could be developed to specifically target PDI in 
cancer cells. Another important aspect to consider is 
that the expression landscape of PDI is different in can-
cer, thus targeting PDI may only work in specific types of 
cancer. This has been shown in the case of PDI inhibitor 
bacitracin which works well in inducing apoptosis in skin, 
breast and brain cancer cells but not in cervical cancer 
cells [67, 69]. For clinical applications, the most common 
treatment for cancer is chemotherapy. Unfortunately, 
chemotherapy resistance is one of the challenges in clini-
cal cancer treatment, as several studies have shown that 
PDI plays a role in mediating chemoresistance in sev-
eral types of cancers. For instance, it is reported that 
PDIA1 protein is overexpressed in ovarian cancer HeLa 
cells in response to aplidin, contributing to resistance to 
this drug. The drug resistance in the cells was abrogated 
through PDIA1 inhibitor bacitracin thus, implicating 
PDIA1 as a contributing factor to aplidin resistance. For-
tunately, these data imply that combining PDI inhibitors 
with traditional anti-cancer compounds could resolve the 
chemoresistance issue and might even attain synergetic 
effects [136].

We summarized several other PDI agents that have 
been experimented on previously, their mode of action 
and their effectiveness in treating cancer cells in Table 2. 

These include antibiotics [137], sulfhydryl blockers [138, 
139], arsenical [140], natural and synthetic estrogenic 
compounds [141]. Additionally, we searched the Drug-
bank database (https://​go.​drugb​ank.​com/) for potential 
drugs that could potentially be effective or repurposed to 
target all 21 members of the PDI family (Table 3). Only 
three PDI members namely, PDIA1, CASQ1, and PDIA3 
could be targeted by drugs in this repository. Ribosta-
mycin is a WHO-approved broad-spectrum antibiotic 
for the human application that has been repurposed to 
potentially inhibit PDIA1. The antibiotic was shown to 
inhibit PDIA1 chaperone activity but not its isomerase 
activity; however, the pharmacological action of the drug 
has yet to be elucidated [142].

As discussed previously, AGR2 is the most studied PDI 
member in the cancer setting and therefore, researchers 
have a keen interest in targeting this molecule for cancer 
treatment. For example, the AGR2 mouse monoclonal 
antibody has already been developed and was shown to 
suppress the growth of breast cancer cells [180]. A fur-
ther study developed a humanized version of the same 
antibody and demonstrated that the antibody was able 
to inhibit tumor growth in an ovarian cancer xenograft 
model [181]. Another study had developed the same 
monoclonal antibody was also able to inhibit lung cancer 
growth, suppressed tumor metastasis and prolong sur-
vival in mice [182]. Additionally, monoclonal antibodies 
in the form of the synthetic single-chain variable frag-
ment (scFv) isolated from antibody phage display are cur-
rently being developed and current data demonstrated 
that the scFv targeting AGR2 was able to bind the N-ter-
minal of AGR2 with high affinity [183].

Concluding remarks
The founding member PDIA1 was discovered almost 
60  years ago [184], and the idea of the PDI family was 
introduced in 1994 with only 4 members [185]. Since 
then, the family has been expanded to include new mem-
bers with different structural features, sizes and functions 
but having the capability to assist in protein folding espe-
cially vis-à-vis disulfide bond formation. Owing to this 
capability, artificial mini proteins have been developed 
to resemble the PDI-like catalytic activity for promot-
ing the folding process in preparations of peptide-based 
drugs [186]. Though PDI proteins are crucial in the nor-
mal physiology of the ER by ensuring proper folding and 
maturation of substrate proteins before they are exported 
to their destined locations, it has been found that several 
members of the PDI play roles in cancer as discussed in 
the review. It is not surprising that some PDIs are ele-
vated in cancer to cater for the rapid growth of cancer 
cells due to higher protein synthesis demand in cancer 
as opposed to normal cells. PDI proteins have also been 

https://go.drugbank.com/
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implicated in a wide range of diseases other than cancer 
including neurodegenerative, cardiovascular, inflam-
matory bowel, infectious, metabolic and bone diseases 
[187–189]. These diseases are caused or associated with 
protein misfolding, accumulation, aggregation or assem-
bly that requires elevated and robust folding catalysts 
like PDIs. Therefore, the development of drugs that tar-
get these pathways will be of benefit not only for cancer 

therapy but would be applicable for these other associ-
ated diseases as well.

The known and proposed roles PDI proteins in cancer 
setting are summarized in Fig. 4. Attention is now turn-
ing to the non-ER localized function and in particular the 
roles of cell surface and secreted PDI proteins [83, 190, 
191]. This is interesting because PDI proteins are cru-
cial for ER function and integrity, and the localization of 

Table 3  Approved and investigational drugs targeting PDIs

Target Drug name

PDIA1 Ribostamycin, copper, zinc, artenimol, zinc acetate, zinc chloride, zinc sulfate

CASQ1 Calcium citrate, calcium levulinate, calcium phosphate, calcium phosphate dihydrate

PDIA3 Copper, zinc, zinc acetate, zinc chloride, zinc sulfate

CASQ2 Calcium citrate, calcium phosphate, calcium phosphate dihydrate

Fig. 4  Emerging roles of PDI protein family in cancer. Schematic representation summarizing the existing and emerging roles of PDI proteins 
in cancer. Although PDI proteins are crucial for ER function and integrity in normal cell physiology, in cancer cells however, PDI proteins can be 
translocated into different sub-cellular localizations such as the cytosol, cell surface and extracellular milieu. Existing data showed that these non-ER 
localizations of PDI proteins gain new functions in supporting cancer growth suggesting that the roles of PDI proteins go beyond the ER in diseased 
state like cancer



Page 15 of 19Rahman et al. Cell & Bioscience          (2022) 12:129 	

PDI proteins outside the ER has sparked an interest in 
the field because it has been shown that the presence of 
selected PDI proteins in extracellular can contribute to 
the emergence of cancer. The extracellular roles of PDI 
need to be further examined to isolate the key players and 
pathways that can contribute to cancer. Another aspect 
that can be pursued is to closely look at the three-dimen-
sional (3D) structure of each PDIs. The advancement of 
high-resolution structural biology techniques like cryo-
genic electron microscopy and structural bioinformatics 
using prediction-based methods (e.g., AlphaFold [192]) 
could give additional insight into PDI enzymatic and 
chaperone activities. Moreover, cancer cells could be 
highly dependent on molecules or pathways that support 
their growth and progression. Therefore, targeting the 
interfaces between proteins (i.e., protein–protein inter-
action network) had been proposed as a cancer thera-
peutic option. In this case, it is worth it to (1) expand the 
PDIs client proteins and identify the PDIs protein–pro-
tein interaction hubs; and (2) screen and validate drugs/
inhibitors that could collapse these protein–protein 
interaction interfaces. Also, gene targeting technologies 
such as the CRISPR-based genome editing tools could 
be employed to identify the PDIs’ downstream targets 
in cancer cells. Finally, significant attention should also 
be drawn to the other PDI family members, especially 
to those that are least studied. A comprehensive under-
standing of the biology of the PDI family members could 
shed light on how PDIs deregulation would promote the 
pathogenesis of cancers as well as other related protein-
folding diseases.
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