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Abstract 

Background: Mice with humanized livers are important models to study drug toxicology testing, development of 
hepatitis virus treatments, and hepatocyte transplantation therapy. However, the huge difference between mouse 
and human in size and anatomy limited the application of humanized mice in investigating human diseases. There‑
fore, it is urgent to construct humanized livers in pigs to precisely investigate hepatocyte regeneration and human 
hepatocyte therapy. CRISPR/Cas9 system and somatic cell cloning technology were used to generate two pig models 
with FAH deficiency and exhibiting severe immunodeficiency (FAH/RAG1 and FAH/RAG1/IL2RG deficiency). Human pri‑
mary hepatocytes were then successfully transplanted into the FG pig model and constructed two pigs with human 
liver.

Results: The constructed FAH/RAG1/IL2RG triple‑knockout pig models were characterized by chronic liver injury and 
severe immunodeficiency. Importantly, the FG pigs transplanted with primary human hepatocytes produced human 
albumin in a time dependent manner as early as 1 week after transplantation. Furthermore, the colonization of 
human hepatocytes was confirmed by immunochemistry staining.

Conclusions: We successfully generated pig models with severe immunodeficiency that could construct human 
liver tissues.
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Introduction
Liver can regenerate itself after injury. Regeneration of 
human livers in animal models can yield a substantial 
number of human hepatocytes, which could be used for 
subsequent liver transplantation [7, 17, 18, 34]. Replace-
ment of diseased mouse liver by allogenic hepatocyte 
transplantation has been shown to be feasible in a uroki-
nase-type plasminogen-activator (uPA) transgenic mouse 
model [29]. The transplanted woodchuck hepatocytes 
could reconstitute up to 90% of the uPA with depletion 
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of the recombination activating gene 2 (RAG2) in mouse 
liver [27]. Using the same model and a similar method, 
human hepatocytes were estimated to constitute up to 
15% in the uPA/RAG2 mouse liver [5]. Further study 
indicated that human hepatocytes repopulated in the 
uPA+/+-SCID mouse liver, preserved normal HBV-
infected function [20]. Depletion of fumarylacetoacetate 
hydrolase (FAH), an enzyme that catalyzes the last step of 
tyrosine metabolism, led to a hereditary tyrosinemia type 
I (HT1). FAH-deficiency caused a lethal defect in utero 
in human and after birth in animal model of mice. The 
defect can be corrected by administration of 2-(2-nitro-
4-trifluoromethylbenzoyl)-1,3 cyclohexanedione 
(NTBC). The humanized liver mouse model with FAH 
deficiency provided a reliable model of liver repopulation 
using transplanted cells [8, 23, 24]. The triple-knockout 
(KO) mouse model (FRG), generated by crossing double 
KO FAH−/−RAG2−/− mice with IL2RG−/− mice with defi-
ciency in the common γ-chain of the interleukin receptor, 
can be efficiently repopulated with human hepatocytes 
[3]. The animals pretreated by urokinase-expressing ade-
novirus showed a high capability for engraft (up to 90%) 
with human hepatocytes from multiple sources [1, 9, 11, 
15].

Due to small body size of mice, it is difficult to obtain 
large numbers of human hepatocytes in the mouse mod-
els. Therefore, it is necessary to generate a large animal 
model for humanized liver, and intrauterine methods 
were employed to solve immune-related problems. Pig-
lets postnatally engrafted with human hepatocytes pro-
duced significant levels of human albumin in their serum, 
but the efficiency was far to satisfied [22]. FAH pigs were 
also produced [12, 14]. Besides, RAG1-knockout pigs 
were confirmed to lack mature T-cells and B-cells, but 
contained a substantial number of cells which appeared 
to be T-cell or B-cell progenitors caused by animal T/B 
cell developmental disorder as well as NK-cells [16, 19, 
31].

In this study, we characterized the humanized liver pigs 
generated based on the severely immunodeficient FAH-
deficient cloned pigs using CRISPR/CRISPR-associated 
protein 9 (Cas9) and somatic-cell nuclear transplantation 
(SCNT). The FRG pigs transplanted with primary human 
hepatocytes produced human albumin and exhibited 
colonization of human hepatocytes confirmed by immu-
nochemistry staining. Therefore, our pig models offer 
valuable evidences for the usage of pigs in the field of 
hepatocyte transplantation and liver regeneration.

Results
Generation of FAH−/−IL2RG−/Y(FG) pigs
The FG pig models were generated by CRISPR/Cas9 
system and SCNT techniques. The methods used to 

construct the animal models are illustrated in Fig.  1a. 
Briefly, the sgRNAs targeting pig FAH and IL2RG were 
designed and their cutting efficiencies were tested 
(Fig.  1b). The sgRNA sequences with high cutting effi-
ciency were selected for targeting each gene (Fig.  1b). 
The PFF of Bama miniature pigs were then transfected by 
electroporation with the appropriate vectors. More than 
ten FG single cell colonies were obtained following flow 
cytometry filtering. Sanger sequencing was used to geno-
type the cell colonies and some of the genotyping results 
are listed in Additional file 1: Fig. S1. The cell line FG7-2 
was used to generate 2,897 cloned embryos, which were 
then transferred into 11 surrogates. After 28–32  days, 
five surrogates were detected pregnancy by B-ultrasound, 
one of which aborted in late pregnancy. Finally, 15 pig-
lets were born from four surrogates (Fig. 1c). FG piglets 
were kept in a clean conventional housing environment 
(Fig.  1d). At birth, the umbilical cord tissues of each 
piglet were collected and genotyped. DNA sequencing 
results revealed that all piglets were consistent with their 
corresponding cell-line genotype (Fig. 1e). Furthermore, 
the birth weight of piglets was measured and there was 
no significant difference between FG and wild-type pig-
lets (Fig. 1f ).

Phenotypic identification of FG pig models
To further confirm the phenotype of the FG pigs, liver, 
kidney, and other tissues of piglets were dissected for 
pathological examination (Fig.  2). The liver and kidney 
tissue were subjected to immunohistochemical staining 
and western blotting with FAH antibody. No signal can 
be detected by FAH antibody in either model (Fig. 2a, c). 
The immune system tissues, thymus and spleen of all FG 
piglets were dissected at the endpoint for further immu-
nological phenotype characterization. Six of fifteen FG 
pigs had no thymus and the remaining nine FG pigs dis-
played severe thymus atrophies phenotype. The model 
pigs were absent for spleen tissue structure and showed 
fewer lymphocytes than that of normal pigs (Fig.  2b). 
Peripheral blood collected from the model pigs was ana-
lyzed by flow cytometry (Fig.  2d and e). In detail, the 
proportion of CD3-positive T cells in the wild-type pigs 
was 51%, but was only 1.1% in FG model pigs. The pro-
portion of CD16 and CD335a double-positive NK cells in 
the wild-type pigs was 15.8%, while that in FG model pigs 
was only 0.05%. A combined analysis of CD3-negative 
and CD45RA-positive cells in the peripheral blood was 
performed and the results showed a proportion of 30% in 
wild-type and 23% in FG pigs. Therefore, we observed an 
absence of T cells and NK cells in FG model pigs which is 
consistent with previous reports. Furthermore, the basic 
blood routine and blood biochemistry between the pig 
models was analyzed (Additional file 3: Tables S1 and S2).
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Human hepatocyte transplantation in FG pigs
Five healthy FG pigs were selected for human hepato-
cyte transplantation to generate humanized livers in 
them. The transplantation process were performed as 
previously described [2] (Fig.  3a). Human hepatocytes 
(1 ×  107/mL) were transplanted into the spleen tissue of 
FG pigs at 3–5 days after birth (Fig. 3b). However, one of 

the piglets died 3 days following hepatocyte transplanta-
tion, and the remaining piglets survived for more than 
21  days. The survival curves after transplantation are 
shown in Fig. 3c. To evaluate the survival and regenera-
tion of human hepatocytes in the pigs, peripheral blood 
was collected from the piglets every 7 days. In the first 
7  days, human albumin was detected in the peripheral 

Fig. 1 a Experimental procedures for FG pig model generation. b Schematic diagram of sgRNA‑targeting exons of porcine FAH and IL2RG. c 
Summary of embryo transfer data from SCNT of FG knockout cell‑line to generate mutant pig models. d Appearance of a 15‑day‑old FG model pig. 
e The birth weight between model and wild‑type piglets. f Genomic PCR results of the FAH/ IL2RG knockout pig.
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blood of all four piglets and their concentrations were 
ranging from 85.4 to 266.3  ng/µL. On the fourteenth 
day after transplantation, this concentration of human 
albumin was decreased to 12.7–129.6 ng/mL. At the day 
of 21, human albumin in the peripheral blood was only 
28.8–45.5 ng/mL. The concentration of human albumin 
was further decreased to 2–3  ng   mL−1 at day 28 after 
transplantation (Fig.  3d). Importantly, FAH-positive 

cells can be detected in the hilum and blood vessels by 
immunohistochemical staining on the liver tissue with 
FAH antibody which indicating that a small number of 
human hepatocytes had entered and implanted in the 
liver of the two FG pigs (Fig. 3e). Pig liver tissues trans-
planted with human hepatocytes were subjected to PCR 
analysis and the presence of human-specific genes was 
confirmed by the identification of human DNA (Fig. 3f ).
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Generation of FAH−/−RAG −/−IL2RG−/Y(FRG) pigs
Furthermore, the FRG triple-knockout pig models were 
generated by the same method used in establishing FG 
pig models. The strategy of RAG1 and FRG genes knock-
out is shown in Fig.  4a and 4b, respectively. Three cell 
lines with best growth status, named FRG-9, FRG-15 and 
FRG-20, were selected from the 16 screened cell lines 
with correct genotype. 5,624, 615, and 1,044 embryos 
were constructed from these cell lines, and were trans-
planted into 20, 2 and 4 surrogates, respectively. How-
ever, only two surrogates which were transplanted with 
FRG-9 cell constructed embryos maintained pregnancy 

to term, and finally gave birth to four piglets (Fig.  4c). 
DNA analysis results of umbilical cord tissues indicated 
that their genotypes were consistent with the donor cell 
line which confirmed both of the pigs were FRG triple-
knockouts (Fig.  4d). Importantly, their spleens were 
significantly atrophied and H&E staining results also 
showed that the spleen were not developed completely 
(Fig.  4e). Consistently, the peripheral blood, spleen and 
bone marrow of FRG piglets were further analyzed by 
FACS and the T, B, or NK cells in these tissues were rarely 
detected (Fig.  4f ). However, the body weight at birth of 
FRG pigs was significantly lower than that of the FG and 
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wild-type pigs (Additional file 2: Fig. S2a). Although these 
FRG pigs were reared in a bacteria-free environment, the 
longest survival time for the four piglets was only 13 days 
(Additional file  2: Fig. S2) for some undefined reasons 
which need further in deep investigation.

Discussion
It was reported that FAH−/−RAG2−/−IL2RG−/Y (FRG) 
mice can be used to efficiently repopulated human 
hepatocytes [1]. This model is widely used in toxicologi-
cal testing of drug metabolites and exploring experimen-
tal gene- and cell-based therapies [13, 30, 33]. However, 
given their smaller body size, FRG mice only produce 
a relatively low number of human hepatocytes. Por-
cine liver is a realistic alternative model for human liver 
regeneration because their organ size and anatomical 
structure which are more resemble to human [21]. This 
similarity in size and anatomy between porcine and 
human benefits the evaluation of cell therapy techniques 
and their adverse effects [23]. Therefore, FRG pigs may 
be utilized as bioreactors for large-scale production of 
human hepatocytes and as liver donors for human.

In this study, we successfully generated a severely 
immunodeficient FAH−/− pigs which survived for 3 days 
to 6 weeks in conventional settings. FG pig transplanted 
with human hepatocyte exhibited the highest expres-
sion of human albumin at 1  week after transplantation. 
The human albumin concentration gradually decreased, 
possibly because (1) a proportion of B-lymphocytes were 
remained in the FG model pigs. (2) The shorter survival 
time of the pig leave no enough time for growth of the 
human liver cells. (3) The number of transplanted human 
hepatocytes  (107) is a relatively low cell volume for pig. It 
was reported that, to achieve a best efficiency, 350 to 864 
million live cells are required when performing allogeneic 
hepatocyte transplantation in pigs [13].

Furthermore, to set up a suitable environment for 
human hepatocyte colonization, any residual immune 
cells in model pigs should be removed using antibodies 
or other methods before the transplantation of human 
hepatocytes. Alternatively, we may also need to first 
construct a humanized immune system in pigs and then 
perform human hepatocyte transplantation which will 
improve the survivability of human hepatocyte in the 
porcine model. A study that described an experiment 
for the transplantation of human hepatocytes into the 
RAG2/FAH double knockout pigs, indicated that imma-
ture human hepatocytes successfully engrafted in FR 
swine after IUCT. But the presented NK cells are signifi-
cant barrier to the expansion of hepatocytes [22]. This 
report provides us with some new methods and ideas to 
optimize our model.

The environment in which the pigs live, might be an 
important factor for the shorter survival of the model 
pigs. The FRG pigs survived for only a short period in the 
SPF environment in which period the pigs lack enough 
time to facilitate transplantation of the primary human 
hepatocytes which only can be detected in a short time. 
Many researchers [4] encountered problems for the sur-
vival of immunodeficient pigs, which highlighting the 
importance of the improvement of rearing environment. 
Furthermore, some SCNT-produced animals may be 
subject to early death, due to incomplete reprogramming 
during early embryonic development, or other problems 
caused by cloning techniques itself [10, 25, 26]. However, 
currently FRG pigs could survive for more than 5 months 
in our optimized conditions (data not shown).

Altogether, we generated a porcine model with colo-
nized human hepatocytes which can produce the human 
albumin. Our research could offers a useful experimen-
tal evidence to further improve the method of generation 
of such pig models in a high colonization efficiency for 
human hepatocytes.

Materials and methods
Animals and ethics statement
All pigs were raised under the Guidelines for the Care 
and Use of Laboratory Animals Committee of the Insti-
tute of Zoology, Chinese Academy of Sciences. Pigs were 
raised at the Beijing Farm Animal Research Center.

Design and construction of the sgRNAs
Single-guide RNAs (sgRNAs) targeting the relevant por-
cine genes were designed online (http:// crisp or. tefor. 
net/). sgRNA oligonucleotide sequences complementary 
to the FAH, IL2RG, and RAG1 genes were annealed and 
cloned into the BsaI site of the U6-sgRNA vector. The 
U6-sgRNA and Cas9-eGFP vectors were gifts of Qi Zhou 
(Institute of Zoology, Chinese Academy of Sciences).

Generation of FAH−/−IL2RG−/Y and FAH−/−RAG1−/−IL2RG−/Y 
PFF cell lines
The porcine fetal fibroblast (PFF) cells were isolated 
and cultured as described previously [6]. Cas9-GFP and 
sgRNA plasmids were then co-transfected into PFF cells 
using the 4D-Nucleofector™ system (Lonza, Germany). 
The transfected cells were harvested after 48 h, and single 
cell were prepared via flow cytometry, and cultured for 
7–10  days in DMEM (Gibco, USA) supplemented with 
15% fetal bovine serum (Gibco, USA) at 37  °C, 5%  CO2. 
The culture medium was replaced every 3 days. PCR and 
sequencing analyses were used to determine the propaga-
tion and genotypes of the single cell colonies.

http://crispor.tefor.net/
http://crispor.tefor.net/
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Oocytes maturation, SCNT and embryo transfer
Pig ovaries were collected from local slaughterhouses and 
kept in 0.9% NaCl supplemented with 200  IU/mL peni-
cillin and streptomycin at 35–37  °C and transported to 
the laboratory. Cumulus oocyte complexes (COCs) were 
aspirated from ovarian follicles using an 18-gauge nee-
dle connected to a 10  mL syringe. The collected cumu-
lus-oocyte complexes (COCs) were rinsed three times 
by HEPES-buffered Tyrode’s medium with 0.01% PVA. 
Groups of 50 COCs were cultured at 39 °C, 5%  CO2 for 
42–44 h in the wells of 24-well culture plates for matura-
tion and each well contained 500 μL in vitro maturation 
medium and 400 μL mineral oil. The cumulus cells were 
removed using 0.1% hyaluronidase in HEPES-buffered 
Tyrode’s medium. SCNT was performed as described 
previously [28]. Briefly, matured oocytes and PFFs were 
placed into manipulation medium supplemented with 
7.5 mg/mL cytochalasin B. After enucleation, PFFs were 
placed into the perivitelline space. The reconstructed 
embryos were fused in fusion medium using two direct 
pulses of 1.2  kV   cm−1 each for 30 microseconds. The 
reconstructed embryos were cultured in 500 μL porcine 
zygote medium 3 (PZM3) at 5%  CO2, 38 °C for 20–24 h 
prior to embryos transfer. Embryos were surgically trans-
ferred into the oviduct of a surrogate the day after estrus 
was observed. Pregnancy was diagnosed 30  days after 
embryo transfer. At the day of birth, cloned piglets were 
natural birth or removed for the surrogates by caesarean 
section in bacteria free equipment.

Genotyping of FG and FRG piglets
The ear tips of newborn fetuses and piglets were collected 
into 1.5-mL centrifuge tubes. MicroElute® Genomic 
DNA Kits (Omega, USA) were used to extract genomic 
DNA. DNA samples were analyzed using PCR with spe-
cific primers for the FAH, RAG1, or IL2RG genes. The 
PCR reaction program was: 95  °C for 5  min, 35 cycles 
of 95  °C for 30 s, 60  °C for 30 s, and 72  °C for 45 s and 
finally 72 °C for 10 min. Primers are listed in Additional 
file  3: Table  S2. The PCR product (5 µL) was subjected 
to 2% agarose gel electrophoresis in the presence of eth-
idium bromide solution, and visualized using the iBright 
CL1000 imaging system (Invitrogen, USA).

Western blotting
Adipose tissue was dissected and frozen immediately in 
liquid nitrogen, and stored at − 80 °C until further usage. 
Total protein was extracted from the tissue samples using 
RIPA lysis and extraction buffer (Thermo Scientific, 
USA). Anti-FAH antibody (ab83770) and anti-GAPDH 
antibody (ab131602) were purchased from Abcam. 
Equal amounts of tissue sample lysates were resolved by 

SDS-PAGE and immunoblotted with indicated antibod-
ies. The blots were developed using HRP-conjugated sec-
ondary antibodies and an ECL Plus system. All signals 
were visualized and analyzed using the iBright CL1000 
imaging system (Invitrogen, USA).

Immunohistochemical staining
Dissected tissues were fixed in 10% neutral formalin 
solution (Sangon Biotech, China) for 24–36 h, then were 
embedded in paraffin and further sectioned, and stained 
with hematoxylin and eosin (Thermo, USA). Liver sam-
ples were prepared according to the protocol previously 
reported [35], and immunohistochemical analysis was 
performed using SP Rabbit & Mouse HRP Kits (CWBIO, 
China).

Flow cytometry
Cell suspensions of spleen and bone marrow for FG/FRG-
knockout pigs and age-matched control pigs were pre-
pared. Porcine peripheral blood lymphocyte isolation kits 
(Solarbio, China) were used to enrich lymphocytes from 
blood. The erythrocytes in the spleen and bone marrow 
were removed by erythrocyte lysate (BD, USA). To iden-
tify the porcine  CD3+ T-cells,  CD45Ra+CD3−B-cells, 
and  CD16+CD335a+CD3−NK-cells [32], samples were 
analyzed by MoFlo XDP (Beckman Coulter, USA).

Intrasplenic transplantation of primary human 
hepatocytes
Cryopreserved human hepatocytes were provided by 
Celsis In  Vitro Technologies (Baltimore, MD, USA) and 
the information of this cell donor is listed in detail in 
Additional file  3: Table  S1. The cryopreserved primary 
human hepatocytes were suspended in DMEM supple-
mented with 10% fetal bovine serum, and trypan blue 
was used to quantify cell viability and the percentage of 
viable cells are usually more than 90%. Human hepato-
cytes were suspended in normal saline and injected into 
the spleen of 3 to 5-day-old FG pigs [35].

ELISA for detecting human albumin
Tubes containing EDTA as an anticoagulant were used to 
collect the peripheral blood from pigs. Serum was centri-
fuged at 2000g. The concentration of human albumin was 
detected by Human Albumin ELISA Quantitation Kits 
(Bethyl, USA) according to the manufacturer’s protocol.

Statistical analyses
All statistical data reported in this article represent at 
least three biological replicates. P < 0.05 was considered 
as a significant difference between treatment groups.
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