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Applications and analytical tools of cell 
communication based on ligand‑receptor 
interactions at single cell level
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Abstract 

Background:  Cellular communication is an essential feature of multicellular organisms. Binding of ligands to their 
homologous receptors, which activate specific cell signaling pathways, is a basic type of cellular communication and 
intimately linked to many degeneration processes leading to diseases.

Main body:  This study reviewed the history of ligand-receptor and presents the databases which store ligand-recep-
tor pairs. The recently applications and research tools of ligand-receptor interactions for cell communication at single 
cell level by using single cell RNA sequencing have been sorted out.

Conclusion:  The summary of the advantages and disadvantages of analysis tools will greatly help researchers ana-
lyze cell communication at the single cell level. Learning cell communication based on ligand-receptor interactions 
by single cell RNA sequencing gives way to developing new target drugs and personalizing treatment.

Keywords:  Cell communication, Ligand-receptor interactions, Single cell RNA sequencing, Target therapy, Tumor 
microenvironment
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Background
Every cell in multicellular organisms lives in a variety 
of signaling environments, and its biological behavior 
is regulated by extracellular signaling molecules. Cell 
communication is a basic feature of multicellular organ-
isms [1]. The dynamic communicating network formed 
through communication and cooperation between cells 
plays crucial roles in numerous biological processes [2, 
3]. By specifically recognizing and binding with signal 
molecules, receptors converting these molecules into 
intracellular signals and perform specific physiologi-
cal functions. Complex cellular reactions begin with the 
binding of ligands to their homologous receptors, which 
activate specific cell signaling pathways [4]. Therefore, 

the analysis of ligand-receptor pairs interactions are the 
basis for understanding cell behavior and responses to 
neighboring cells.

Recently, Single-cell RNA sequencing (scRNA-seq) has 
led to breakthroughs in scientific research. scRNA-seq 
conducted analysis on cellular basis, which makes it fea-
sible to investigate undiscovered cellular commutations. 
There are some progresses that have been learning inter-
cellular communication through scRNA-seq, which con-
tinues to advance at such a rapid pace that even recent 
reviews [3, 5, 6]. Many research has focued on ligand-
receptor interaction-based strategy to construct cellular 
communication network, rather than the physically vici-
nal structure-based strategy [3]. Ligand-receptor interac-
tions are effective way to learn cellular communication at 
single cell level.

Here, we reviewed the recently research progress of 
ligand-receptor interaction for intercellular communica-
tion through scRNA-seq under multiple conditions, and 
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compared the analysis tools for ligand-receptor interac-
tions on single-cell level. These will help to better under-
stand the crucial role of ligand-receptor interactions in 
cell communication research.

Ligand‑receptor pairs in disease
In 1971, the receptor was first reported to play an impor-
tant role in cancer with estrogen receptor expressed dys-
regulated in breast cancer patients [7]. Later, Obesity 
and hyperinsulinemia were later found to be caused by 
insulin receptor deficiency in mice [8]. The relationship 
between ligand-receptor and disease has been discovered 
gradually. Ligands and receptors are involved in disease 
development mainly in two ways: structural or genetic 
alterations and the expression of receptor/ligand change. 
Familial Hypercholesterolemia (FH), which is caused by 
low density lipoprotein receptor (LDLR) deficiency [9], 
and diabetes mellitus which is a consequence of abnor-
mal insulin receptor.

Immune checkpoint is a common and widely stud-
ied receptor ligand in tumor research. They are ligand-
receptor pairs that inhibit the interaction of the immune 
response. Cytotoxic T lymphocyte-associated antigen-4 
(CTLA-4) was the first immune checkpoint receptor 
identified. Studies have shown that CTLA-4 is closely 
related to tumor progression and treatment, and blocking 
the inhibitory effect of CTLA-4 can enhance the effective 
immune response against tumor cells [10]. Subsequently, 
researchers found that various tumor cells can inhibit 
the function of T cells by working on the immune check-
point programmed death 1 (PD-1), which allows the 
tumor cells to escape from immune surveillance [11, 12]. 
Moreover, the expression of immune checkpoints, such 
as CD137 (4-1BB), inducible co-stimulator (ICOS), T cell 
immunoglobulin and mucin domain 3 (TIM-3) changed 
in the tumor microenvironment could affect tumor pro-
gression [13]. The understanding of ligand-receptor 
interaction is the foundation for current studies of inter-
cellular communication. It gives researchers a deeper 
insight into the processes of cellular biological activity 
and disease progression.

With the increasing discovery on receptors and ligands 
and their interactions, compilation by sorting and sum-
marizing relevant information into ligand-receptor data-
bases has been done continuously to facilitate research 
(Table  1). Although these databases comprehensively 
organize the available information on ligand-receptor 
interaction, there are still undiscovered receptors, ligands 
and their relationships. Therefore, after analyzing the 
existing ligand-receptor complexes, researchers devel-
oped simulation analysis software for the prediction of 
ligand-receptor interactions, for example, DOCK [14], 
Autodock [15, 16], AutoDock Vina, iGEMDOCK, and 

RosettaDock [17]. Numerous inductive databases and 
simulation tools help researchers to better study ligand-
receptor complexes and their interactions, which in turn 
contributes to drug development and disease treatment.

scRNA sequencing
With the development of research, the researchers found 
that different types of cells in the same sample (such as 
tissue, blood) have different function. Studies have shown 
that research methods which measure characteristics 
only on population level may average or dilute important 
differences between cells. Due to the lack of synchroni-
zation among cells, stochastic events of protein produc-
tion are difficult to observe directly with measurements 
on large ensembles of cells [48, 49]. Sequencing tech-
nology has developed from the first generation to the 
third generation based on nanopore and single molecule 
real-time sequencing [50, 51], which only improves the 
depth, accuracy and throughput of sequencing. However, 
none of them can re-establish cellular barriers and ana-
lyze gene expression at single cell level. Such shortcom-
ing poses a problem for the study of tissue, blood, and 
other experimental samples consisting of mix multiple 
cells types. To address such problem, single cell sequenc-
ing have been developed to perform high-throughput 
sequencing of the genome, transcriptome, epigenome, 
etc. at single cell level [52].

Among them, scRNA-seq was first reported in 2009 
[53] by separating single oocytes in Eppendorf tubes 
containing a lysis buffer [54]. scRNA-seq have enabled 
the simultaneous classification of thousands of cells in a 
single assay based on transcriptome profiling [53], which 
means several novel or rare cell-types that have oppor-
tunities to be discovered. The Human Cell Atlas [55] and 
NIH Brain Initiative projects [56] intend to sequence all 
cell types present in the human body and brain, respec-
tively. Single-cell transcriptomic atlases provide unprec-
edented resolution to reveal complex cellular events and 
deepen our understanding of biological systems [57]. 
More importantly, the advances of scRNA-seq provide 
the possibilities to investigate undiscovered cellular com-
mutations (Fig. 1).

Applications of scRNA sequencing 
in receptor‑ligand analysis
The scRNA sequencing has been applied in various 
research fields to learn the important roles of ligand-
receptor interactions in such cellular communications 
(Fig. 2).

Disease research
Currently, malignant tumors are one of the main threats 
to human life. Zemin Zhang et  al. found that dendritic 
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Fig. 1  General procedures of ligand-receptor studies using scRNA-seq techniques. multicellular samples were isolated and captured individual 
cells. All RNA from each cell was reverse transcribed, amplified and sequenced to obtain transcriptome data for each cell in the sample. Cell types 
were identified. Then, ligand-receptor interaction could analysis by multiple analysis tools

Fig. 2  Current applications of scRNA sequencing in ligand-receptor analysis. The analysis of ligand-receptor interactions using scRNA sequencing 
can be applicate to elucidate in-depth mechanisms underlying disease research, pathogenic infection, physiological process, pharmacological 
research
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cells possess the highest number of ligands, while T 
cells possess the highest number of receptors, by using 
scRNA-seq technology: 10 × genomics and Smart-seq2, 
to analyze cell communications in liver cancer tissues. 
The main role of dendritic cells in tumor immunity is 
tumor antigens presentation, migration to lymph nodes, 
activation of T cells, etc. [58]. After exploring the inter-
cellular communications between cancer stem-like cells 
(CSCs) and macrophages in glioma through 10 × genom-
ics, Dongsheng Yuan et  al. identified 66 ligand-receptor 
pairs, some of which could significantly affect prognos-
tic outcomes [59]. Using 10 × genomics, Zhencong Chen 
et  al.. analyzed infiltrating tumor cells, epithelial cells, 
and T cells which are identified in the lung adenocarci-
noma (LUAD) tumor microenvironment and sequenced 
by Smart-seq2, built a valid prognostic machine-learning 
model based on ligand-receptor interactions for predict-
ing the prognosis of LUAD patients [60]. scRNA-seq is 
used to analyze the communication between tumor cells 
and immune cells in tumor microenvironment, helping 
researchers to better analyze tumor development and the 
body response.

Besides, for other non-neoplastic disease, Braga et  al. 
analyzed changes of ligand-receptor interactions in the 
airways of healthy individuals and patients with asthma 
through 10 × genomics. Unbiased analysis of cell–cell 
interactions identified that the cellular communication 
network dominated by mesenchymal-epithelial interac-
tions in healthy airways, shifts to type 2 helper T cells 
(Th2) dominated interactome in asthmatic lung [61]. 
Using scRNA-seq to analyze ligand-receptor interactions 
between cells in diseased tissues can provide insight into 
the occurrence and progression of the disease.

Pathogenic infection
Identification of pathogen targeted receptors and tar-
geted cells is the key to treatment of pathogenic infec-
tions. Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) has been declared a global public health 
emergency. Angiotensin I converting enzyme 2 (ACE2) is 
the host receptor by SARS-CoV-2 to infect human cells. 
To investigate whether there are other co-receptors/aux-
iliary proteins as ACE2 partner to facilitate virus entry, 
Furong Qi et al. explored the single cell gene expression 
atlas including 119 cell types of 13 human tissues which 
was mostly sequenced by 10 × genomics, and analyzed 
the single cell co-expression spectrum of 51 reported 
RNA virus receptors and 400 other membrane proteins. 
The result showed that the candidate co-receptors, mani-
festing the most similar expression patterns with ACE2 
across 13 human tissues, are all peptidases, including 
ANPEP, DPP4 and ENPEP. The crosstalk between coro-
navirus targets and their surrounding cells indicated that 

macrophages frequently communicate with the coro-
navirus targets through chemokine and phagocytosis 
signaling which highlighting the importance of tissue 
macrophages in immune defense and immune patho-
genesis [62]. Additionally, Qi-Lin Chen et.al. thought 
that cell receptor-related genes of SARS-CoV-2 is criti-
cal for understanding the pathogenesis of SARS-CoV-2 
in various tissues, especially in the kidney. Their results 
showed that ACE2 was widely expressed in specific cell 
subgroups of various human tissues using 10X genomic, 
especially in intestinal epithelial cells, kidney proximal 
tubule (PT) cells, and also alveolar-type (AT) 2 cells of 
the lung [63]. These results indicate multiple routes for 
SARS-CoV-2 to infect with human cells/organs and sug-
gest alternative strategies for therapeutic intervention. 
Studies of ligand-receptor interactions using scRNA-seq 
provided valuable reference data for the prevention and 
treatment of current SARS-CoV-2 infection, which are 
foundation for multi-organ multicellular therapy of path-
ogen infection.

Physiological process
The cells of a multicellular organism are derived from a 
single zygote and genetically identical. Yet, they are phe-
notypically very different. This difference is the result of 
a process commonly called cell differentiation [64]. The 
essence of cell differentiation is the selective expres-
sion of intracellular genomes in time and space as cells 
are stimulated by external signals. Studying the sign-
aling molecules communicated between cells during 
development is a good way to understand the mecha-
nism of selective cell differentiation during the growth 
and development of the organism. Roser Vento-Tormo 
et.al. profiled the transcriptomes and cell–cell commu-
nication of about 70,000 single cells using Smart-seq2 
and 10 × genomics technology, from first-trimester 
placentas with matched maternal blood and decidual 
cells. The results revealed the cellular organization of 
the decidua and placenta, and the interactions that are 
critical for placentation and reproductive success [65]. 
Additionally, Popescu et  al. investigated the interac-
tion between erythrocytes and macrophages by Smart-
seq2 and 10 × genomics technology. The result showed 
that some important ligand&receptor such as VCAM1, 
ITGB1 and ITGA4, related to hematopoiesis in the fetal 
hematopoietic system [66]. During the development of 
the organism, immune cells play an important role in the 
development of the hematopoietic system.

Pharmacological research
Moverover, the advent of various targeted drugs which 
are developed based on ligand-receptor interactions has 
solved many clinically difficult diseases and improved the 
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survival of patients. However, targeted drugs have a nar-
row range of applicability, and many patients are unable 
to apply the targeted drugs or have poor therapeutic 
outcomes. Most current cancer patients do not respond 
positively to immune checkpoint blockers or have to 
discontinue their use due to significant side effects. for 
example, the positive percentage of patients for drugs 
related to targeting PD-1-PD-L1 rarely exceeds 40% [67].

Recently, Kathryn E Yost et.al. performed paired 
single-cell RNA and T cell receptor sequencing (10X 
droplet-based sequencing) on 79,046 cells from site-
matched tumors from patients with basal or squamous 
cell carcinoma before and after anti-PD-1 therapy [68]. 
An increased frequency of follicular helper T cells (Tfh) 
cells and exhausted/activated CD8 + T cells appeared 
after anti-PD-1 treatment, which supporting that PD-1 
blockade primarily impacts CD8 + T cells. Single cell T 
cell receptor sequencing (scTCR-seq) analysis indicated 
clonal replacement of exhausted clones when compar-
ing pre- to post-treatment samples, suggesting that T cell 
receptor (TCR) dynamics of exhausted cells were mainly 
influenced by PD-1 blockade, not tumor biopsy timing 
or location. This may suggest that the effectiveness of 
targeted drug therapy is closely related to immune cell 
status. Combination of targeted drugs and immune cell 
therapy may enhance the therapeutic effect and improve 
patient survival.

Analysis of ligand-receptor interactions at the sin-
gle-cell level has shown an important role in science 
research, helping researchers explore the mechanisms 
operating on immune cells in the microenvironment in 
depth. And there is expected to advance disease research 
and treatment.

Analytical tools for ligand‑receptor interactions 
at single‑cell level
Now, multiple analysis tools for investigating cellular 
communications through ligand-receptor interactions 
were developed for deeper analysis of cell crosstalk based 
on scRNA sequencing (Table 2).

General analysis
There are many analysis tools designed for cellular com-
munications analysis through ligand-receptor inter-
actions using scRNA-seq. ProximID [69] is an early 
algorithm for building a cellular network based on 
physical cell interaction and single-cell mRNA sequenc-
ing. It can be used to discover new preferential cellular 
interactions without prior knowledge of component cell 
types. And a Tac1 + enteroendocrine cell-Lgr5 + stem 
cell interaction in small intestine crypts was identified 
by ProximID. ProximID is a potent tool for the discov-
ery of new prospective niches, especially when cell types 

and relative spatial positions are unknown. There’s also 
iTALK [70] (https://​github.​com/​Coolg​enome/​iTALK). 
This tool allows to customizate ligand-receptor libraries, 
and the analysis method is relatively simple and conveni-
ent. However, the default analysis species of this tool is 
human. If you want to analyze other species, there is a 
need to convert gene to the human corresponding gene.

CellTalker is widely used which was developed by 
Anthony et al. in 2020 January [71] (https://​arc85.​github.​
io/​cellt​alker). This R package uses a recently described 
list of receptors and ligands (including soluble ligands 
such as cytokines) [40] to identify putative ligand-recep-
tor interactions between cell types. And the algorithm is 
based on differential gene analysis. The ligands/receptors 
expressions of human papillomavirus (HPV) ± CD4 + T 
follicular helper cells that is associated with longer pro-
gression-free survival in HNSCC patients were signifi-
cantly different found by cellTalker [71]. Additionally, 
in 2020 Apr, Teichmann laboratory and Vento-Tormo 
laboratory co-developed CellPhoneDB [46], which is a 
python package that’s widely used currently. The main 
advantage of CellPhoneDB over other tools that takes 
into account the subunit architecture of both ligands and 
receptors, representing heteromeric complexes accu-
rately. The researchers structured a novel repository of 
ligands, receptors and their interactions including het-
eromeric complexes which stores 1086 proteins, 501 are 
secreted proteins, 585 species as membrane proteins 
(Table  1). Eric Song et.al. found that in the cerebrospi-
nal fluid (CSF) of COVID-19 patients, these activated 
innate immune cell populations are predicted to interact 
with CD8 and CD4 T cells applicating CellPhoneDB, sug-
gesting a coordinated anti-viral immunological response 
occurring in the CSF of COVID-19 patients [72].

SingleCellSignalR is a new R package from Simon et al. 
in June 2020 [45], which used a new regularized product 
score to assess the confidence in predicted ligand-recep-
tor interactions. It relies on a comprehensive database of 
known ligand-receptor interactions, which called LRdb 
(Table  1). LRdb compiled the content of existing data-
bases and integrated informations of Reactome path-
ways [73] and Gene Ontology Cellular Compartment 
(GOCC) annotation. Therefore, singleCellSignalR has 
the abilities to represent a complete intercellular net-
work and to import the latter in systems biology tools 
such as Cytoscape, and to explore receptor downstream 
signaling by integrating Reactome and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways. By map-
ping mouse genes to their human orthologs according 
to Ensembl [74] to exploit LRdb, the result of applicating 
SingleCellSignalR on mouse epidermis data discovered 
an oriented communication structure from external to 
basal layers.

https://github.com/Coolgenome/iTALK
https://arc85.github.io/celltalker
https://arc85.github.io/celltalker
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Signal pathways
In addition to these tools that only anlysis ligand-recep-
tor interactons, there are tools which not only anlysis 
ligand-receptor interactons, but also explore downstream 
signal pathways. More recently, Yvan Saeys’s team pro-
posed NicheNet [75] (https://​github.​com/​saeys​lab/​niche​
netr), which takes into account the changes in the down-
stream signaling network in the receiver cells, using the 
estimated downstream signaling changes to predict the 
activity of the upstream receptors, to identify the func-
tionally influential cell–cell communication. The algo-
rithm is based on a weighting network, which refines 
the intensity of the interaction and allows infer active 
ligands and their gene regulatory effects on interacting 
cells. Andrew L Ji et.al. found a tumor-specific keratino-
cyte (TSK) population unique to cancer, which local-
ized to a fibrovascular niche. And TSK cells were a hub 
for intercellular communication revealed by NicheNet 
[76]. Recently, Suoqin Jin et.al. constructed a database of 
interactions among ligands, receptors and their cofactors 
that accurately represents known heteromeric molecu-
lar complexes. Based on mass action models, they then 
developed CellChat, a tool that is able to quantitively 
infer and analyze intercellular communication networks 
from scRNA-seq data [77]. Application of CellChat to 
several scRNA-seq datasets of mouse skin embryonic 
development and adult wound healing has demonstrated 
the ability to extract complex signal patterns, including 
previously known and new ones.

Spatical cellular communications
Furthermore, Some researcheres believed that cellular 
communication analysis based on known ligand–recep-
tor interactions could reshape tissue cell structure. 
CSOmap [78], SpaOTsc [79] are tools that attempt to 
reconstruct the spatial information of cells through 
ligand-receptor interactions. CSOmap successfully reca-
pitulate the spatial organization of multiple organs of 
human and mouse including tumor microenvironments 
for multiple cancers in pseudo-space, and reveal molecu-
lar determinants of cellular interactions [78]. Differently, 
SpaOTsc not only tries to construct a spatial metric for 
cells in scRNA-seq data, but also reconstruct cell–cell 
communication networks by identifying intercellular reg-
ulatory relationships between genes.

Sequencing
In addition to the aforementioned tools for intercellular 
interaction. do Amit and Amos Tanay jointly presented 
physically interacting cells sequencing (PIC-seq), which 
combines cell sorting of physically interacting cells 
(PICs) with single-cell RNA-sequencing [80]. PIC-seq 

systematically maps in situ cellular interactions and char-
acterizes their ligand-receptor crosstalk by using com-
putational modeling. Analysis of T cell- dendritic cells 
pairs reveals an interaction-specific program between 
pathogen-presenting migratory DCs and T cells. This 
method provides a direct and broadly applicable technol-
ogy to characterize intercellular communication-specific 
pathways.

For general analysis, expression values of ligand recep-
tor genes are used by many analytical tools to calculate 
the interaction, unlike cellTalker [71], which uses the dif-
ferential expression of ligand receptor genes to perform 
the analysis. SoptSC [83] present similarity matrix-based 
optimization for single-cell data analysis. And the cell–
cell relationships learned via the similarity matrix define 
which cells are clustered. The tools that include signal 
pathways analysis all use gene weighting networks with 
different algorithmic scoring points [75, 77]. The two 
analysis tools that incorporate the spatial localization 
of cells into the interaction factors differ significantly in 
their analysis algorithms. SpaOTsc [79] rely on struc-
tured optimal transport to recover spatial properties of 
scRNA-seq data by utilizing spatial measurements of a 
relatively small number of genes. SpaOTsc has broader 
applications, both in integrating non-spatial single-cell 
measurements with spatial data, and directly in spatial 
single-cell transcriptomics data to reconstruct spatial cel-
lular dynamics in tissues. For CSOmap [78], the algorith-
mic process is composed of two main steps. The first is to 
estimate the cellular interacting potentials by integrating 
thousands of ligand-receptor pairs, resulting in a cell-by-
cell affinity matrix. The second is to embed the inherently 
high-dimensional affinity matrix into three-dimensional 
space.

For these four classes of analysis tools, general analy-
sis and signal pathways are more widely applicable and 
almost all scRNA-seq datas can be used for analysis. 
Spatical cellular communication analysis is suitable for 
analyzing tissue scRNA-seq datas, and the technology is 
not fully mature yet and needs to be combined with the 
results of wet experiments. Sequencing method which 
refer to PIC-seq, is suitable for dissecting cellular cross-
talk of physically interacting cells, and could characterize 
intercellular interaction-specific pathways at high resolu-
tion. PIC-seq is a direct and broadly applicable technol-
ogy [80].

The tools for ligand-receptor interaction at single cell 
level are collated in Table  2. These analytical tools and 
methods greatly facilitate researchers in quantifying the 
statistical significance of cell–cell interactions and reveal 
the potentially critical ligand-receptor pairs mediating 
such interactions. It will gain new insights into the role 
of cells.

https://github.com/saeyslab/nichenetr
https://github.com/saeyslab/nichenetr
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Inadequacy of current research
Although many tools have been developed and applied 
extensively in the study of receptors and ligands, there 
are still limitations of these tools. One problem with all 
the tools is the reliance on databases of known ligand-
receptor pairs interactions. However, continuous update 
of current ligand-receptor libraries is necessary to cover 
more information of receptors, ligands and their inter-
actions. Recently, receptor study of immunoglobulin 
superfamily (IGSFF) identified more than 60 new pairs of 
ligand -receptor [84]. The ligand-receptor pairs network 
is not completely understood and still needs futher explo-
ration and improvement. Secondly, there is still a lack of 
understanding of ligand-receptor binding complexes at 
protein level, which the actual interactions occur, since 
most of the current studies of cellular interactions focus 
on genetic analysis. Post-transcriptional modification, 
binding mode, and the affinity strength etc. are yet to be 
thoroughly learnt. The integrated data which integrated 
the transcriptome profile with highly multiplexed pro-
teomic and genomic data, was more informative than 
transcriptome data alone [85]. Thirdly, spatial location 
of tissue cells is vital. Spatiotemporal alterations in the 
microenvironment have a considerable impact on cells 
interactions. However, current single-cell sequencing 
technology cannot survey the specific spatial locations 
of cells. Lastly, the real cellular communication is carried 
out with single cell as a unit, which current researches 
are analyzed with cell types.

With the recognition of the complexity of the disease, 
personalized precision treatment is the core of treat-
ment. Study of ligand-receptor pairs interactions using 
single-cell sequencing technology unveils the complex 
cell communication networks. Cellular communication 
is a very complicated process which is achieve through 
ligand-receptor signaling, and other mechanisms includ-
ing pressure stimulation, concentration regulation, and 
intracellular signal transduction. Further extensive study 
is needed to get a deeper insight into these inter- and 
intra-cellular interactions for better understanding of dis-
ease progression and discovery of potential drug targets.

Conclusion
Cell–cell communication governs the biological behav-
iors of multicellular populations. Ligand-receptor 
interactions, which is a vital type of cellular commu-
nication, have presented important roles in pharmaco-
logical research and disease progression as reviewed. 
Now, the emergence of scRNA sequencing technology 
gives a new way that are closer to the actual action of 

organisms for the research of ligand-receptor interac-
tion. Many studies have learning cellular communica-
tion based on ligand-receptor interaction by scRNA 
sequencing (Fig.  2), to identify ligand-receptor inter-
actions as biomarkers or potential therapeutic targets. 
Thus, tools or methods for learning ligand-receptor 
interactions by scRNA sequencing were developed, and 
sorted out in this study. It is expectant that us these 
tools to study diseases in more depth.
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