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Fanconi anemia pathway as a prospective 
target for cancer intervention
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Abstract 

Fanconi anemia (FA) is a recessive genetic disorder caused by biallelic mutations in at least one of 22 FA genes. 
Beyond its pathological presentation of bone marrow failure and congenital abnormalities, FA is associated with 
chromosomal abnormality and genomic instability, and thus represents a genetic vulnerability for cancer predisposi-
tion. The cancer relevance of the FA pathway is further established with the pervasive occurrence of FA gene altera-
tions in somatic cancers and observations of FA pathway activation-associated chemotherapy resistance. In this article 
we describe the role of the FA pathway in canonical interstrand crosslink (ICL) repair and possible contributions of FA 
gene alterations to cancer development. We also discuss the perspectives and potential of targeting the FA pathway 
for cancer intervention.
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Introduction
Normal cells harbor a delicate system of DNA dam-
age sensing and repair to overcome a variety of DNA 
lesions that otherwise elicit genome instability and cel-
lular toxicity if not repaired properly [1, 2]. A hallmark 
of many cancers is genome instability which results from 
dysregulation of DNA damage sensing and repair [3]. 
Clonal selection of advantageous mutation carriers with 
compromised cell cycle checkpoint, constitutive pro-
proliferative signaling, or dysfunctional cell death consti-
tutes the onset of somatic carcinogenesis [4]. Meanwhile, 
elevated or rewired DNA repair networks function as 
caretakers to handle excessive DNA damage and replica-
tive stress resulting from rapid cancer cell proliferation. 
This reprogramming is frequently found to be associated 
with resistance to common chemotherapies [5]. The Fan-
coni anemia (FA) pathway is known for its role in DNA 
interstrand crosslink (ICL) repair [6]. In addition to its 

pathological relevance to the genetic disorder of Fanconi 
anemia, the FA pathway has been overwhelmingly posi-
tioned in the context of cancer [7, 8], suggesting that tar-
geting the FA pathway is a prospective avenue for cancer 
intervention.

The FA pathway and interstrand crosslink repair
ICLs are a class of DNA lesions that can be introduced 
both endogenously and exogenously. Aldehydes, which 
are produced by many metabolic processes such as 
lipid peroxidation, histone demethylation, and alco-
hol metabolism, cause the formation of ICLs [9–12]. 
Common chemotherapeutic agents such as mitomycin 
C and platinum are DNA crosslinkers that introduce 
both intrastrand crosslinks and ICLs. While intrastrand 
crosslinks are readily repaired by the nucleotide exci-
sion repair (NER) pathway [13], ICLs represent a highly 
cytotoxic lesion that is primarily repaired by the FA 
pathway [14]. Fanconi anemia is a rare genetic disorder 
caused by biallelic mutations in one of the 22 known 
FANC genes [15–21]. Affected patients have deficient 
ICL repair. Clinical diagnosis of FA can be performed 
through observation of elevated chromosomal rear-
rangements (predominately radial chromatids) within 
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patient derived cells after treatment with an ICL-induc-
ing agent such as Diepoxybutane [22, 23]. The 22 FANC 
proteins along with many FA associated factors work 
together to recognize ICL damage, activate the pathway 
by FANCI-FANCD2 (ID2) monoubiquitination, and 
initiate downstream double-strand break (DSB) repair.

ICL recognition and the FA core complex
ICLs that occur outside of S phase are sensed and 
repaired by the NER pathway [14]. The FA pathway-
mediated ICL repair occurs primarily in S phase and 
starts with the formation of an X shaped DNA structure 
that occurs upon convergence of two head-on replica-
tion forks surrounding the ICL site [24, 25] (Fig. 1a). The 
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Fig. 1  The Fanconi anemia pathway of DNA repair. a Repair of ICL in replicative phase starts with convergence of two replication forks surrounding 
the ICL site. b FANCM/FAAP24 complex recognizes the X shaped DNA structure and recruits other members of the FA core complex and FAAPs. 
Monoubiquitination of the ID2 complex represents the step of activation of the FA pathway. c ID2 recruits FAN1 and structure specific nucleases for 
incision surrounding the ICL sites to unhook the damage. d Translesion synthesis polymerases REV1/pol ζ bypass the unhooked ICL damage. The 
unhooked ICL remnant will be subsequently repaired by NER. e Double strand break intermediates can be repaired via four sub-pathways of DNA 
DSB repair depending on the result of end resection
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CMG (Cdc45-MCM-GINS) helicase complex is ubiq-
uitinated by the E3 ubiquitin ligase TRAIP [26]. Short 
ubiquitin chains recruit NEIL3 glycosylase for incision-
independent unhooking mechanism of ICL resolution. 
Long ubiquitin chains promote CMG unloading from 
the chromatin in a p97 dependent manner [26, 27] which 
allows further approach of the two replication forks 
toward the ICL (Fig.  1b), and commitment to Fanconi 
anemia pathway-mediated ICL repair. It has been dem-
onstrated that the FANCM/FAAP24 complex recognizes 
the ICL lesion and initiates recruitment of other com-
ponents of the FA core complex [28] (Fig.  1b). The FA 
core complex assembles through several sub-complexes: 
FANCA-FANCG-FAAP20, FANCE-FANCF-FANCC, 
FANCB-FANCL-FAAP100 [29–33], and other FAAPs. A 
most recent structural study described an 8-FA-protein 
core complex that assembled surrounding the scaffold 
comprised of two central heterodimers of FANCB and 
FAAP100. FANCB and FAAP100 adopt similar structure 
despite limited sequence homology [30]. Two RING fin-
ger FANCL subunits flank the FANCB-FAAP100 scaffold 
in different conformations suggesting functional asym-
metry. Selective incorporation of the E2 ubiquitin-conju-
gating enzyme UBE2T (FANCT) into the core complex 
by the E3 ubiquitin ligase FANCL determines substrate 
specificity and modification type [34]. Mutations or loss 
of any core complex components lead to diminished 
monoubiquitination activity and thus inefficient activa-
tion of the FA pathway. As the activation signal in the 
FA pathway, FANCD2 and FANCI (ID2) are monoubiq-
uitinated on Lysine-561 and -523 respectively [35–38] 
by FANCL and UBE2T. The most recent structure-based 
study suggests that the monoubiquitination of FANCD2 
during DNA repair stabilizes a closed clamp conforma-
tion of the FANCI-FANCD2 complex [39]. Under non-
damaging conditions, accessibility to these residues 
are buried in the complex. Damaging conditions allow 
guidance from ATR-CHK1-mediated FANCI phospho-
rylation that promotes ID2 dissociation and interface 
exposure [40, 41] (Fig.  1b). Meanwhile, modification of 
FANCD2 allows a functional switch where a cluster of 
phosphorylation sites between residues 882 and 898 are 
substrates of casein kinase 2 (CK2) [42]. Upon comple-
tion of ICL repair FANCD2 is deubiquitinated by chro-
matin bound USP1-UAF1-RAD51AP1 complex and 
released from the initial damage site for the next round of 
repair events [43–45].

Unhooking and translesion synthesis (TLS)
FANCD2 binds to H4K20me2 via its histone-binding 
domain (HBD) and an embedded methyl-lysine-bind-
ing domain (MBD). A HBD/MBD mutant of FANCD2 
that can be efficiently monoubiquitinated demonstrates 

impaired chromatin binding and foci formation, suggest-
ing that monoubiquitination precedes ICL recruitment of 
FANCD2 [46]. However, arguing against this time course 
are studies that showed the ID2 complex is recruited to 
ICLs before the occurrence of FANCD2 monoubiquit-
ination [41]. Nevertheless, ubiquitinated ID2 complex is 
required for the recruitment of structure specific endo-
nucleases (SSEs) and translesion synthesis (TLS) poly-
merases for downstream repair [47]. Removal of the 
ICL starts with nucleolytic cleavage at stalled forks to 
incise the ICL on one parental strand, a process known 
as unhooking (Fig. 1c). ERCC1/XPF (FANCQ), MUS81/
EME1, and FAN1 have been implicated as necessary for 
ICL incision [2, 14, 48–60]. SLX4 (FANCP) is the master 
scaffold and regulator of ERCC1/XPF, MUS81/EME1/2, 
and SLX1 nucleases for ICL processing [7]. SLX4 enters 
the ICL site through its N-terminal ubiquitin-binding 
zinc finger (UBZ) domain [61] and further recruits and 
activates the ERCC1/XPF (FANCQ) endonuclease activ-
ity [62]. The mechanism for selective recruitment of 
downstream nucleases by SLX4 remains elusive. Never-
theless, a recent study suggests that SLX4IP, a constitu-
tive member of the SLX4 complex promotes ERCC1/XPF 
incorporation [63].

Following unhooking, the ICL remnant on one parental 
strand becomes a roadblock for replicative polymerases. 
Translesion synthesis polymerases are thus recruited 
to the ICL site by the FA core complex [64] for damage 
bypass. A dCMP transferase Rev1 first inserts a dCMP 
opposite the unhooked ICL and extension of the DNA 
synthesis is carried out by pol ζ [64, 65]. Damage-induced 
mutations are introduced surrounding the ICL posi-
tion with a mutation frequency of ~ 1% [64]. NER medi-
ated removal of the ICL remnant on the parental strand 
completes the repair (Fig.  1d). The other DNA duplex 
with a DSB is ultimately repaired by multiple DSB repair 
sub-pathways.

DSB repair through HR and other sub‑pathways
DNA DSBs can be repaired through four coexisting sub-
pathways, namely homologous recombination (HR), sin-
gle strand annealing (SSA), microhomology-mediated 
end joining (MMEJ), and non-homologous end joining 
(NHEJ) that require differentially resected DSB ends and 
different levels of homology [66, 67] (Fig. 1e). Ku proteins 
readily bind minimally- or non- resected DSBs based on 
their abundance and low Kd for DNA ends [68–70], and 
recruit DNA-dependent protein kinase (DNA-PKCs) and 
DNA ligase-4 (LIG4) to carry out non-homologous end 
joining (reviewed in [24]). Alternatively, a DSB undergoes 
progressive end resection. MRE11 and CtIP nucleases 
generate minimally resected DSB ends with 3′ ssDNA. 
Helicases and exonucleases BLM, EXO1 and DNA2 are 
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brought in to produce extensively resected DSB ends 
[71]. Further resection is prevented by the presence of 
chromatin bound 53BP1 and 53BP1-recruited assembly 
of RIF1, REV7, PTIP, and Artemis [72]. Hyper-resection 
occurs when 53BP1 is unloaded from chromatin flank-
ing the DSB. These differentially processed DSB ends are 
preferred substrates for MMEJ [73], HR, and SSA [74] 
respectively (Fig. 1e).

HR and NHEJ have been known as the two sub-
pathways of DSB repair that are more relevant for FA 
pathway-mediated ICL repair. Among the 22 FA com-
plementation groups a large number are well-established 
HR factors. HR is known as the preferential pathway over 
error-prone end joining for the repair of DSB intermedi-
ates that occur during ICL repair (reviewed in [20, 75]). 
This opinion is supported by the readily available HR 
compatible template (the repaired DNA duplex) that 
occurs at ICL sites, and many other experimental obser-
vations. Monoubiquitinated FANCD2 has been shown 
to interact with CtIP nuclease [76], one of the early exo-
nucleases needed to initiate end resection of DSBs and 
disable NHEJ. FA pathway deficiency not only causes 
reduction in HR efficiency in the DR-GFP assay [77, 78], 
but also leads to increased deleterious repair through 
NHEJ, which is largely responsible for the transloca-
tions and abnormal chromatin structures observed in 
FA patient cells [75]. Accordingly, ICL sensitivity can be 
rescued by inhibition of many NHEJ factors in many FA 
deficiency models including C. elegans, chicken DT40 
cells, mouse embryonic fibroblasts and human cells 
where FA components were knocked down, knocked out, 
or mutated [79, 80]. Besides these two subpathways, SSA 
may also participate in ICL and DSB repair via the newly 
identified strand annealing activity of FANCA [66, 81, 
82].

The relevance of the FA pathway to cancer
Blood and bone marrow stem cell transplants are the 
most effective treatment for various Fanconi anemia 
cases and confer significant improvement for quality 
of life and lifespan of FA patients. A significant cause 
for the death of FA patients has shifted to cancer devel-
opment associated with failure of the FA repair path-
way. A most recent survey of 111 FA patients indicates 
a cancer frequency of 30%. Intriguingly FA-A patients 
develop cancer at the age of 18.5 (mean), significantly 
older than 5.2 (mean) for the other complementation 
groups [83]. Myeloid leukemias, liver tumors, head 
and neck carcinomas, and gynecologic malignancies 
are the most profound predisposing cancers among FA 
patients [7, 84]. Sequencing studies and FISH analysis 
have shown that amplifications of certain oncogenes 

due to chromosomal instability are at least partially 
responsible for blood cancers in FA patients [85].

Over the last two decades, many Fanconi anemia 
mouse models have been employed to study the pathol-
ogy, and explore the clinical managements of FA (see 
reviews [86, 87] with systematic survey of early mice 
studies). While cells derived from knockout mice reca-
pitulate the phenotypes of FA patient cells in general, 
these mice also partially reproduce the pathological 
characteristics of FA patients especially for the hemato-
logical abnormality and cancer occurrence, albeit with 
lower onset incidence and dissimilar cancer types. This 
allows valuable evaluations of chemo- and radio-ther-
apy efficacy for cancers and genotoxicity alleviation in 
FA patients as FA carriers are hypersensitive to DNA 
lesions.

Beyond the disease of Fanconi anemia, more intrigu-
ingly somatic alteration of FA genes has been widely 
characterized in cancer tissues by large scale sequencing. 
The role of FA genes in cancer development is discussed 
below.

The FA pathway protects cells from R‑loop accumulation 
and genome instability
Genome instability is a hallmark of cancer [88]. The FA 
pathway is a major player for the maintenance of genome 
stability through DNA damage repair, replication fork 
stabilization, and oxidative and mitotic stress alleviation 
(see our previous comprehensive review [75] and [7]). A 
R-loop is a 3-stranded DNA:RNA hybrid structure pro-
duced co-transcriptionally. R-loop formation represents 
a cellular process for gene expression regulation as well 
as a major source of genome instability [89–92]. R-loop 
accumulation largely results in and from collisions that 
occur between replication forks and the transcriptional 
machinery in a head-on orientation [93]. One emerg-
ing function of the FA pathway is to protect cells from R 
loop accumulation and its associated genome instability. 
Both human and murine FA deficient cells (FA-A, FA-D2, 
FA-M) exhibit elevated levels of R-loops and genome 
instability [92, 94]. Monoubiquitination of FANCI-
FANCD2 complex can be enhanced upon their binding 
of both RNA and R-loop substrates in  vitro [95]. It has 
been shown that RNA processing factors such as hnRNP-
U and DDX47 are recruited by FANCD2 for R-loop reso-
lution [96, 97]. Besides RNaseH1, a predominant factor 
for efficient R-loop removal, an alternative resolution of 
R-loop is through the translocase activity of FANCM, as 
FANCM catalyzes displacement of RNA from the R-loop 
structure [94]. These data suggest that many FA com-
ponents or the whole FA pathway participate in R-loop 
suppression.
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Association of FA alterations with somatic cancer
Beyond germline mutations in FA patients, sporadic 
alterations of FA genes are frequently found in many 
cancers. A brief survey of cases in the NIH GDC portal 
reveals that over 65% of the 10,202 listed cancers have 

at least one alteration of one of the FA genes (mutation, 
gain or loss) (Fig.  2a). Alterations of FANCA, FANCC 
and FANCG are the most predominately observed FA 
mutations and account for over 80% of Fanconi anemia 
patient cases. Simple somatic mutation (SSM) frequency 
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of FA genes in the cancer population shows a rather even 
distribution among FA genes, with modest elevation in 
the ID2 complex, FANCA and FANCM of the core com-
plex, and some downstream HR components (Fig.  2b). 
This discrepancy in mutation distribution in cancer and 
Fanconi anemia suggests that molecular actions of FA 
genes during FA development and cancer development 
are different.

Two‑tier contribution of the FA pathway to cancer
In addition to mutations, copy number changes (both 
gain and loss) of FA genes are also commonly present in 
cancer (Fig. 2c). Meanwhile, a survey of differential gene 
expression (tumor vs normal) of individual FA genes 
by using tumors and tissues from the TCGA and GTEx 
database, respectively, clearly indicates overexpression of 
most FA genes across a variety of cancer types (Fig. 2d). 
Consistent with the prevalent upregulation of almost all 
FA genes in cancer, is that FA gene expression receives 
coordinated regulation through the Rb/E2F pathway [98]. 
The coexistence of both gain (copy number increase and 
RNA expression increase) and loss (copy number loss 
and mutations) of function alterations for almost every 
FA gene with no obvious preference suggests that the dis-
tribution of FA genes to cancer is two-tier. On one hand, 
deficient FA pathway and rerouted damage repair path-
ways cause genome instability and “mutator phenotype” 
resulting in accumulation of mutations, deletions and 
translocations that constitute the starting pool for tumor-
ous clonal selection. On the other hand, elevation of FA 
gene expression and thus DNA damage repair capac-
ity is beneficial for mitigating excess DNA lesions and 
chromosomal abnormalities that accompany fast prolif-
eration of cancer cells [5]. This divergence is reconciled 
under a model of biphasic requirement of the FA pathway 
throughout the initiation and progression of cancer, rem-
iniscent of stage-specific alteration of FANCF expression 
by promoter methylation in ovarian cancer [99].

Transcriptional regulation functions of FA proteins
In addition to ICL repair, a handful of studies also imply 
that the FA pathway is involved in transcriptional regu-
lation that may contribute to cancer development. The 
FA core complex interacts with transcriptional repres-
sor Hairy Enhancer of Split 1 (HES1) [100], binds to the 
HES1 promoter, and regulates HES1 responsive genes 
directly and indirectly [101]. FANCC regulates nuclear 
translocation of β-catenin and works as a transcriptional 
repressor of β-catenin downstream gene DKK1 [102]. 
Besides these case studies, An RNA-seq study revealed a 
collection of genes with altered expression among which 
a large portion are implicated in oncogenic processes 
[103]. Further studies are needed to explore the potential 

transcriptional regulation role of FA proteins especially 
in cancer contexts where FA gene expression is found to 
be high.

The FA pathway as a prospective target for cancer 
intervention
Association of the FA pathway with drug resistance
One way for cancer cells to become refractory to DNA 
damage-inducing chemotherapy is through acquisition 
of higher DNA damage repair capacity. Platinum based 
compounds, such as cisplatin, have been widely used 
to treat various cancers [104]. However, their potency 
is often challenged by acquired resistance [104–106]. 
Elevation of FA gene expression is pervasive in cancers 
(Fig.  2a) and is frequently found to be associated with 
chemo-resistance. A subset of ovarian cancer cell lines 
with FANCF methylation are hyper-sensitive to cisplatin 
while FANCF complementation in these cells restores 
resistance [99]. Similar resistance has also been found 
in the subset of cell lines harboring aberrant demeth-
ylation of the FANCF gene [99]. An A549 NSCLC cell 
derived cisplatin resistant cell line A549/DR exhibits 
upregulation of multiple FA genes and elevated FANCD2 
monoubiquitination compared to its parental and other 
NSCLC lines [107]. Knock down of FA genes success-
fully re-sensitizes A549/DR cells to cisplatin treatments. 
Meanwhile, enhanced FA pathway activation has also 
been shown to be associated with resistance to melpha-
lan in multiple myeloma [108] and pancreatic cancers 
[109]. In addition to DNA crosslinkers, the FA pathway 
also confers resistance to DNA alkylating agents in gli-
oma [110]. Alongside FA-mediated drug resistance are 
observations that FANCA and FANCT/UBE2T correlate 
with poor prognosis and survival of cancer patients [111, 
112]. These pre-clinical data highlight the need for devel-
opment of FA targeted drugs in circumstances where 
chemotherapy resistance emerges as a result of elevated 
FA pathway expression and function.

Exploring the FA pathway for synthetic lethality
When one cellular function is dependent on multiple 
pathways in parallel, activation of either pathway can be 
sufficient for the fulfillment of this function, and thus cell 
viability. Disruption of one pathway frequently enhances 
cell dependency on compensatory pathways. Inactiva-
tion of isolated DNA repair pathways and its associated 
genome instability is a common hallmark for cancer 
and crucial for cancer initiation and promotion [113, 
114]. High levels of association of cancer types to defi-
ciency in DNA repair pathways are widely known: FA/
HR pathway (BRCA1, BRCA2, PALB2) for breast, ovar-
ian and prostate cancer; mismatch and base excision 
repair (MSH2/6, MUTYH) for colorectal cancer; DNA 
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damage response (DDR) genes (ATM) for leukemia and 
etc. Inactivation of these pathways provides a prominent 
advantage to use the synthetic lethal approach for treat-
ments. The most successful practice of synthetic lethality 
is using PARP (poly (ADP-ribose) polymerase) inhibitors 
for BRCA deficiency-carrying cancers [115]. Abroga-
tion of SSB repair by PARP targeting causes overwhelm-
ing DSB accumulation during replication that cannot be 
effectively resolved through the homologous recombi-
nation pathway and eventually leads to cytotoxic DNA 
abnormalities as a product of non-faithful end joining 
[116]. This approach confers lower systematic toxicity 
than traditional chemotherapies as normal cells survive 
the PARP inhibition when they are out of cell cycle and 
maintain functional homologous recombination capabil-
ity. In addition to the BRCA deficient gynecologic can-
cers, PARP synthetic lethality has shown effectiveness 
with PTEN mutated cancers [117, 118], although the 
mechanism remains to be studied [119].

Multiple genes of the FA pathway have been highly 
ranked as genes of interest with synthetic lethality 
potential in a computational study [120]. siRNA screen-
ing reveals many genes, TREX2, PARP1, PLK1, UBE2B, 
ATM and more are synthetic lethal with FA deficiency 
[121]. Experimental models of both human fibroblasts 
and murine embryonic fibroblasts with FA pathway 
deficiency are hypersensitive to ATM inhibition [121]. 
Moreover formaldehyde catabolism has been shown as 
a prospective target for FA deficient cells to achieve syn-
thetic lethality [122]. While the FA pathway synthetic 
lethality relationships are still under evaluation, these 
studies do encourage an inclusion of FA genes as part of 
tumor mutation screening for possible treatment strat-
egy based on synthetic lethality. Vice versa, suppression 
of the FA pathway by FA targeting intervention is plausi-
ble for killing of cancer cells with deficiencies in synthetic 
lethal partner pathways of the FA pathway.

Targeting the FA pathway with FA specific inhibitors
The FA pathway is composed of 22 FA proteins and many 
FAAPs and operates in a progressive multistep manner. 
Will targeting any member impact cancer survival? To 
answer this question we set out to survey dependency 
scores (experimental measurement of genetic vulnerabili-
ties by using CRISPR) of every FA genes within a panel 
of over 600 cancer cell lines of various tissue origins by 
using the depmap portal (https​://depma​p.org/porta​l/, 
[123]). While all the 22 FA genes alone exhibit only low 
to modest cancer cell dependency in general, consider-
able pairs of FA genes display highly correlated (Pearson 
r > 0.5) dependency across cell lines, such as the pair of 
FANCl and FANCL (Pearson r = 0.664, Fig. 3a) suggest-
ing similar consequence when either one is inhibited. 

Nevertheless, low or non-correlation is also observed for 
many FA gene pairs, such as FANCT and FANCD1 (Pear-
son r = 0.010, Fig. 3b). When the correlation coefficients 
are plotted as Z scores and color highlighted, a cluster of 
FA genes emerges with mutually correlated dependency 
that comprise FA core complex and ID2 genes (Fig. 3c). 
This suggests comparable, if not the same outcomes can 
be achieved when either gene in the cluster is inhibited. 
Targeting members in this cluster is preferable if FA-
specific effects are demanded. Divergent dependency 
patterns of the downstream and recently discovered FA 
genes reflects the complexity of these genes’ role in FA 
nonspecific pathways. Targeting these members might be 
beneficial when additional or wide spectral outcomes are 
favored.

While both chemotherapy re-sensitization and syn-
thetic lethality will benefit from FA targeting inhibitors, 
no widely accepted FA specific therapeutic compound 
exists. Proteasome inhibitors are known to inhibit dam-
age-induced FANCD2 foci formation, albeit through 
an unclear mechanism [124]. A few natural compounds 
including curcumin and its derivatives have been iden-
tified as FA pathway inhibitors through cell-based [105, 
125] and Xenopus egg extract-based screening [126]. 
Meanwhile HSP90 facilitates FA pathway function as 
FANCA is a client of HSP90 and needs HSP90 interac-
tion for stability [127]. HSP90i and withaferin A abrogate 
DNA damage-induced FA activation [128]. These inhibi-
tors are capable of chemotherapy sensitization to cross-
link-like damage [105, 124, 126]. However, only a handful 
of FA protein targeting compounds have been described 
(summarized in Table 1). Discovery of novel FA specific 
inhibitors with improved binding kinetics and FA path-
way disruption is in demand. According to Fig. 3, rational 
inhibition of core complex and ID2 proteins are likely to 
sensitize cells to FA-specific impacts whereas the inter-
vention at downstream members will be possibly benefi-
cial for a variety of other pathways.

Multiple approaches can be employed for the develop-
ment of FA specific inhibitors. Among the 22 FA genes, 
13 have partially resolved structural data (alone, or com-
plexed with other complementation groups, summarized 
in Table  1) that could facilitate rational design of small 
molecular compound leads. For instance, structural 
perturbation surrounding ERCC1 Phe293 is sufficient 
for its disruption of its interaction with XPF according 
to mutagenesis data [129, 130] and available structures 
(Table 1). Moreover, complex and functional unit forma-
tion in vitro and in vivo can be utilized for screening of 
interaction-disrupting compounds given proper design 
of compatible high throughput assays, such as fluores-
cence activation or FRET. In addition, a few FA proteins 
possess particular biochemical activities including strand 

https://depmap.org/portal/
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annealing and strand exchange activity of FANCA, ubiq-
uitin conjugation or ligation of FANCL, FANCT and 
FANCW, helicase activity of FANCJ, and even DNA 
binding activity of multiple FA proteins (summarized in 

Table 1) whose proper reconstitution in vitro can expe-
dite drug discovery eminently. For instance, in  vitro 
reconstitution of E1, E2/FANCT, E3/FANCL cascades 
has been successful in finding two hits that reduce 

-A -B -C -E -F -G -L -M -T -D2 -I -P -D1 -J -N -O -R -S -U -V -W -Q

-A 3.04 0.81 0.85 0.80 1.25 1.25 1.17 0.74 0.63 0.75 0.98 -0.28 -0.57 0.19 -0.59 -1.17 -1.66 -0.27 -0.68 -1.00 -0.33 -0.04

-B 0.68 3.04 0.81 0.66 0.99 1.32 1.35 0.14 1.14 0.80 1.12 -0.13 -0.89 0.68 -0.83 -0.91 -1.04 -0.78 -0.06 -0.76 -0.76 0.21

-C 0.61 0.68 3.04 0.64 1.16 1.08 1.18 0.61 0.34 0.45 0.65 -0.57 -0.51 0.10 -0.39 -0.86 -1.41 -0.44 -0.32 -0.64 -0.51 -0.09

-E 0.49 0.52 0.39 3.04 0.86 1.22 1.07 0.76 0.50 0.39 0.71 -0.57 -0.85 -0.01 -0.61 -0.94 -1.42 -0.39 -0.56 -0.73 -0.25 -0.31

-F 1.03 1.05 0.87 0.58 3.04 1.63 1.64 1.26 0.85 0.70 1.00 -0.19 -0.45 -0.04 -0.37 -0.88 -0.88 -0.18 -0.53 -0.72 -0.28 0.06

-G 1.00 1.25 0.79 0.94 1.38 3.04 1.78 1.15 1.02 0.80 1.32 -0.22 -0.38 0.47 -0.31 -0.67 -1.37 -0.23 -0.05 -0.67 -0.11 0.01

-L 1.05 1.26 0.94 0.90 1.51 1.58 3.04 0.86 1.35 0.92 1.64 -0.08 -0.28 0.60 -0.30 -0.42 -0.90 -0.44 0.00 -0.70 0.03 0.27

-M 0.42 0.11 0.39 0.48 0.96 0.79 0.64 3.04 0.20 -0.04 0.24 -0.53 -0.44 -0.74 -0.21 -1.55 -1.92 0.04 -1.18 -0.80 -0.78 -0.69

-T 0.62 1.00 0.24 0.27 0.74 0.87 1.26 -0.08 3.04 0.93 1.70 0.32 -1.09 0.75 -1.13 -0.61 -0.77 -1.01 -0.28 -1.19 0.48 0.38

-D
2 0.65 0.89 0.35 0.27 0.70 0.73 0.95 -0.14 1.07 3.04 1.27 0.15 -0.84 0.29 -1.11 -0.78 -0.90 -0.89 -0.22 -1.12 0.14 0.37

-I 0.83 0.96 0.49 0.58 0.85 1.09 1.41 -0.03 1.57 1.27 3.04 0.50 -0.96 0.93 -1.05 -0.42 -0.61 -1.15 0.21 -0.96 0.38 0.52

-P -0.27 -0.25 -0.54 -0.59 -0.23 -0.12 -0.18 -0.57 0.31 0.17 0.46 3.04 -1.18 -0.01 -0.82 -0.66 -1.04 -0.70 -0.75 -1.15 -0.05 0.39

-D
1 -0.61 -0.71 -0.48 -0.82 -0.42 -0.28 -0.17 -0.34 -1.00 -0.79 -0.91 -1.13 3.04 -0.44 1.24 -0.64 -1.04 0.17 -0.38 -0.81 -1.22 -0.28

-J 0.08 0.51 0.06 -0.07 0.04 0.44 0.54 -0.77 0.79 0.31 0.76 -0.01 -0.44 3.04 -0.66 -0.20 -0.59 -0.75 0.14 -1.09 0.22 0.42

-N -0.58 -0.76 -0.36 -0.71 -0.34 -0.29 -0.29 -0.15 -1.06 -1.16 -1.04 -0.83 1.19 -0.70 3.04 -1.09 -0.97 0.52 -0.58 -0.62 -1.13 -0.84

-O -1.15 -0.86 -0.81 -0.92 -0.95 -0.64 -0.52 -1.57 -0.64 -0.81 -0.42 -0.65 -0.69 -0.24 -1.14 3.04 0.57 -1.14 0.91 -0.20 -0.44 -0.29

-R -1.41 -1.05 -1.42 -1.36 -0.95 -1.36 -0.85 -1.82 -0.78 -0.85 -0.62 -1.09 -0.90 -0.60 -0.99 0.51 3.04 -1.32 0.41 -0.72 -0.37 -0.89

-S -0.27 -0.67 -0.38 -0.34 -0.05 -0.21 -0.37 0.17 -0.94 -0.88 -1.04 -0.71 0.00 -0.71 0.45 -1.18 -1.32 3.04 -0.72 -1.12 -1.10 -0.84

-U -0.69 -0.07 -0.28 -0.46 -0.42 -0.07 -0.01 -1.09 -0.24 -0.29 0.13 -0.69 -0.28 0.06 -0.51 0.93 0.31 -0.74 3.04 0.04 -0.29 -0.12

-V -1.08 -0.96 -0.76 -0.78 -0.83 -0.74 -0.74 -0.84 -1.25 -1.20 -1.06 -1.19 -0.67 -1.19 -0.59 -0.23 -0.67 -1.10 0.05 3.04 -0.96 -0.98

-W -0.31 -0.96 -0.49 -0.29 -0.24 -0.06 0.11 -0.73 0.55 0.07 0.36 0.01 -1.22 0.14 -1.14 -0.40 -0.35 -1.14 -0.29 -1.05 3.04 0.09

-Q -0.11 0.24 -0.07 -0.28 0.30 0.08 0.30 -0.54 0.40 0.43 0.47 0.47 -0.47 0.33 -0.91 -0.30 -0.84 -0.94 -0.08 -0.99 0.16 3.04
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Fig. 3  Clustering dependency analysis of FA core complex and ID2 complex components in multiple cancer lines by CRISPR knockout. Coefficient 
of paired dependency scores is evaluated systematically within 22 FA complementation groups. Wihle high coefficient suggests functional equality, 
low coefficient implies functional divergence. a FANCL and FANCI dependencies across over 600 cancer lines are strongly correlated. b FANCT and 
FANCD1 dependencies are poorly correlated. c Z scores of paired correlation efficiency scores (either Pearson or Spearman) are plotted in a diagonal 
table with color highlight. A clustering of FA core and ID2 complex components suggests similar cellular consequence when either individual gene 
is inhibited
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FANCD2 foci formation and synergize with carboplatin 
for cancer cell killing [131].

Conclusion
Cancer predisposition is a common genetic vulnerability 
beyond anemia and bone marrow failure in FA patients 
with inherent biallelic alterations in FA genes. Observa-
tion and association of loss of function of FA genes by 
means of genetic alteration and repressed transcription 
in many somatic cancers implies that FA inactivation 
may represent a more pervasive avenue for combat-
ing the onset of cancer development. Many preclinical 
studies demonstrated that treatment of this subtype of 
cancer is more effective through the approach of syn-
thetic lethality. On the other hand, elevated FA function 
through gene copy increase or transcriptional regulation 
is a prevalent phenotype of a large cancer population 
and is widely associated with intrinsic or acquired resist-
ance to ICL-inducing chemotherapy. For effective and 
novel treatments of cancers with FA alteration, incorpo-
ration of FA gene mutation status into tumor mutation 

screening and development of FA specific inhibitors are 
in demand.

Abbreviations
FA: Fanconi anemia; BER: Base excision repair; NER: Nucleotide excision repair; 
CIN: Chromosomal instability; ICL: Interstrand crosslink; NHEJ: Non-homolo-
gous end joining; MMEJ: Microhomology mediated end joining; DDR: DNA 
damage response; SSA: Single-stranded annealing.

Acknowledgements
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
This work was supported by a National Institutes of Health Grant [HL131013], 
a DOD BCRP Breakthrough Grant [BC180657], and a University of Miami Syl-
vester Comprehensive Cancer Center Bridge Fund (to Y.Z.). Funding for open 
access charge: National Institutes of Health.

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article.

Ethics approval and consent to participate
Not applicable.

Table 1  A summary of reported FA proteininhibitors and available structures or biochemical activities to facilitate drug 
development

FA genes Protein structures Molecular activities Inhibitors References

FANCA 6LHS DNA binding, strand 
annealing and exchange

HSP90i including withaferin A [66, 81, 128, 132]

FANCF 2IQC Natural compounds from Wrigh-
tia religiosa

[133, 134]

FANCL 3ZQS, 4CCG​ E3 ligase CU1, CU2 [34, 131, 135]

FANCM 4BXO, 4DAY, 4DRB, 4E45, 4M6W DNA binding MM2 peptide [136–141]

FANCT/UBE2T 1YH2, 4CCG, 5NGZ, 5OJJ E2 A few leads by fragment screen-
ing

[34, 142–144]

FANCD2 3S4W DNA binding [145]

FANCI 3S51 DNA binding Undisclosed [146, 147]

FANCP/SLX4 4M7C, 4UYI, 4ZOU DNA binding [148]

FANCD1/BRCA2 1N0W, 3EU7 DNA binding Antisense oligonucleotide (ASO) [149–151]

FANCJ/BRIP1 1T15, 1T29, 3AL3 Helicase [152–154]

FANCN/PALB2 2W18, 3EU7 DNA binding [150]

FANCO/RAD51C DNA binding

FANCR/RAD51 1B22, 1N0W, 5H1B, 5H1C, 5JZC, 
5NP7, 5NWL

Strand exchange RI-1, RI-2, B02, CYT01A [149, 155–161]

FANCS/BRCA1 1JM7, 1JNX, 1N5O, 1OQA, 1T15, 
1T29, 1T2U, 1T2V, 1Y98, 2ING, 
3COJ, 3K0H, 3K0K, 3K15, 3K16, 
3PXA, 3PXB, 3PXC, 3PXD, 3PXE, 
4IFI, 4IGK, 4JLU, 4OFB, 4U4A, 4Y18, 
4Y2G, 6G2I

DNA binding [152, 153, 162–174]

FANCV/REV7 3ABD, 3ABE, 3VU7, 4EXT, 4GK0, 
4GK5, 5XPT, 5XPU, 6BC8, 6BCD, 
6BI7

DNA binding REV7 specific compounds [175–180]

FANCW/RFWD3 6CVZ E3

FANCQ/XPF 1Z00, 2A1J, 2AQ0, 2KN7, 2MUT DNA incision [181–185]
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