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Abstract 

As a key enzyme for gene expression, RNA polymerase II (pol II) reads along the DNA template and catalyzes accurate 
mRNA synthesis during transcription. On the other hand, genomic DNA is under constant attack by endogenous 
and environmental stresses. These attack cause many DNA lesions. Pol II functions as a specific sensor that is able 
to recognize changes in DNA sequences and structures and induces different outcomes. A critical question in the 
field is how Pol II recognizes and senses these DNA modifications or lesions. Recent studies provided new insights 
into understanding this critical question. In this mini-review, we would like to focus on three classes of DNA lesions/
modifications: (1) Bulky, DNA-distorting lesions that block pol II transcription, (2) small DNA lesions that promote pol II 
pausing and error-prone transcriptional bypass, and (3) endogenous enzyme-catalyzed DNA modifications that lead 
to pol II pausing and error-free transcriptional bypass.
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Background
RNA polymerase II (pol II) is the enzyme responsible for 
the transcription and synthesis of pre-messenger RNA 
and noncoding RNA transcripts [1]. During the process 
of transcription, pol II reads along the template strand 
of genomic DNA and incorporates the matched nucleo-
tide substrate with high fidelity to ensure accurate genetic 
transfer and minimize transcriptional errors. Transcrip-
tional fidelity during elongation is maintained via at least 
three fidelity checkpoint steps: the nucleotide insertion 
step, RNA transcript extension step, and proofreading 
step [1]. Unavoidably, pol II may encounter various DNA 
modifications or lesions during its long transcriptional 
‘journey’ moving along the DNA template. In such situ-
ations, pol II utilizes several important motifs to ‘sense’ 
these DNA modifications. The distinct interactions 
between pol II conserved motifs and these DNA modi-
fications also induce appropriate transcription-coupled 

responses, which may lead to transcriptional mutagenesis, 
transcription-coupled repair pathway, or apoptosis [2–4].

Main text
There are several important conserved structural compo-
nents of pol II involved in DNA template base recogni-
tion and fidelity control, including the trigger loop and 
bridge helix of the Rbp1 subunit (Fig. 1). The trigger loop 
(TL) is a highly conserved domain in various multisubu-
nit RNA polymerases that is responsible for the rapid 
catalysis of phosphodiester bond formation and main-
taining substrate specificity [1, 5, 6]. In the presence of 
a matched NTP substrate, complementary to the DNA 
template in the active site, the TL undergoes a confor-
mational change from open, inactive states to a closed, 
active state and positions the substrate for catalysis. The 
bridge helix is a long alpha helix domain that bridges over 
the two halves of pol II and separates the pol II catalytic 
site from the downstream main channel and the second-
ary channel [5, 7, 8]. All of these components are impor-
tant for pol II enzymatic activity, but they also contribute 
to the ability of pol II to sense DNA modifications and 
damage during transcription elongation.
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Genomic DNA is under constant attack, including 
endogenous reactive oxygen species and free radicals, 
and external factors like UV irradiation. As a result, these 
attacks cause many DNA lesions, including base modi-
fications, strand breaks, crosslinks, and bulky, DNA-
distorting lesions. Pol II may encounter these lesions or 
modifications during RNA transcript synthesis (Fig. 2). A 
critical question in the field is how Pol II recognizes and 
senses these DNA modifications or lesions. Recent stud-
ies provided new insights into understanding this critical 
question. In this mini-review, we would like to focus on 
three classes of DNA lesions/modifications: (1) Bulky, 
DNA-distorting lesions that block pol II transcription, 
(2) small DNA lesions that promote pol II pausing and 
error-prone transcriptional bypass, and (3) endogenous 
enzyme-catalyzed DNA modifications that lead to pol II 
pausing and error-free transcriptional bypass.

Bulky DNA-distorting lesions serve as a strong road 
block for pol II elongation [9]. UV-induced cyclobutane 
pyrimidine dimer (CPD) lesions form 1,2-intrastrand 
cross-links that significantly distort the DNA template 
structure. These lesions strongly inhibit pol II transcrip-
tion by reducing the rate and fidelity of substrate incorpo-
ration and extension [10, 11]. Intriguingly, a structurally 
unrelated bulky DNA lesion, cyclopurines (CydA), which 
arise form oxidative damage, also strongly inhibit pol II 
transcription elongation in the similar manner [12, 13]. 
In both cases of transcriptional stalling, pol II utilizes the 
A rule, a phenomenon in which nucleotide incorporated 
in a slow, error-prone, and non-template dependent 

manner (AMP is preferentially incorporated regardless 
the template), opposite a damaged DNA base [11, 13], 
indicating that pol II may recognize these structurally 
different DNA lesions in a similar manner. Intriguingly, 
further structural analysis indeed revealed that both 
lesions are accommodated above the bridge helix (Fig. 3) 
and arrested in a similar position in which the damaged 
base is stuck at the half-way position of template trans-
location between the i+1 and the i+2 position [11, 13]. 
Interestingly, such DNA damage induced translocation-
arrested states were very similar to the transient translo-
cation intermediate states of normal pol II translocation 
of a non-damaged DNA template observed by molecular 
dynamic simulation [14]. These translocation intermedi-
ate states were proposed to be rate-limiting steps during 
normal translocation, as they require significant confor-
mational changes for the DNA template base to crossover 
the bridge helix to progress through the active site [14]. 
Therefore, the presence of bulky DNA lesions introduces 
a great steric barrier to the crossover of the bridge helix 
and causes pol II arrest at this ‘half-way’ translocation 
state. These common lesion arrest mechanisms indicate 
that the rate-limiting bridge helix crossover step acts as 
a critical checkpoint for pol II to examine the DNA tem-
plate and recognize bulky DNA lesions that greatly com-
promise DNA backbone flexibility and integrity.

Some small DNA lesions do not affect the DNA back-
bone significantly and therefore do not block transcrip-
tion elongation. Rather, some of these DNA lesions cause 
error-prone transcriptional lesion bypass. For example, 
8-Oxo-2′-deoxyguanosine (8-oxo-dG), a common endog-
enous oxidative damage, is one such mutagenic DNA 
lesion [15]. Pol II can either insert a matched cytosine 
or a mismatched adenine when it encounters 8-oxo-
dG during transcription [16, 17]. However, the pres-
ence of the 8-carbonyl group of 8-oxo-dG destabilizes 
the canonical anti conformation of template base, mak-
ing ATP misinsertion and extension much more energy 
favorable [17]. Consequently, the presence of 8-oxoG at 
the DNA template causes a specific C→A mutation in 
the RNA transcript, termed transcriptional mutagen-
esis [18]. Emerging evidence suggests that transcriptional 
mutagenesis could contribute to cancer, aging, and a vari-
ety of neurodegenerative diseases.

The third class of DNA modifications are generated 
by endogenous enzymes. For example, the methylation 
of cytosine to 5-methylcytosine (5mC) by DNA methyl-
transferases (DNMTs) is the most common epigenetic 
DNA modification, often enriched at enhancer and pro-
moter regions. 5mC functions as an epigenetic mark 
and plays an important role in regulating gene tran-
scription and chromatin structure [19]. On the other 
hand, 5mC can also undergo active demethylation, 

Fig. 1  Structure of RNA polymerase II elongation complex. The 
incoming NTP enters the pol II active site through the secondary 
channel of pol II (dashed circle). The bridge helix (BH) is shown in 
green, while the RNA, template DNA (TS), and non-template DNA 
(NTS) are shown in red, blue, and cyan, respectively
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a process catalyzed by ten eleven translocation (Tet) 
proteins to generate the oxidized mC (oxi-mC) inter-
mediates, 5-hydroxymethylcytosine (5hmC), 5-formyl-
cytosine (5fC), and 5-carboxylcytosine (5caC), before 

being removed by thymine DNA glycosylase (TDG) to 
regenerate the unmodified cytosine [20]. Recent evidence 
suggests that 5fC and 5caC are not merely reaction inter-
mediates, but also play novel functional roles in gene 

Fig. 2  a Elongation of RNA polymerase II may encounter different types of DNA modifications. b These include bulky, DNA-distorting lesions (e.g. 
UV-induced cis-syn CPD, oxidative damage CydA), small but mutagenic DNA damage (e.g. 8-oxo-guanine), and enzyme-catalyzed endogenous 
DNA modifications (e.g. 5caC)

Fig. 3  Structural overlay of RNA pol II elongation complexes that accommodates cis-syn CPD or CydA lesion at the “above-bridge-helix” conforma-
tion (dashed circle) and causes transcriptional arrest. The bridge helix is shown in green, and RNA and DNA are shown in red and blue, respectively
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regulation, as they are able to recruit various transcrip-
tion factors and DNA repair protein complexes, as well 
as to induce transient pausing of pol II in vitro [21, 22]. 
Recently, structural studies revealed that pol II interacts 
with 5caC via specific interactions between pol II and 
the 5caC. These specific interactions drag the majority of 
5caC to be accommodated above the bridge helix (Fig. 4). 
Further structural analysis revealed that a conserved ‘epi-
DNA recognition loop’, located in the fork region of the 
Rpb2 subunit of pol II, is responsible for the recognition 
of 5caC in the major groove of the template strand (Fig. 4) 
[23]. Notably, the presence of 5caC can still support Wat-
son–Crick base pair with incoming GTP substrate. How-
ever, the specific hydrogen bonds between the epi-DNA 
recognition loop and 5caC disrupts proper alignment of 
the substrate and 3′-RNA terminus, and results in a par-
tially open conformation of the trigger loop [23]. Without 
full closure of the trigger loop, GTP addition efficiency is 
significantly reduced. The Q531A mutant abolishes the 
ability of epi-DNA recognition loop to form the hydrogen 
bond with 5caC and consequently gained a significant 
increase in GTP incorporation specificity. Conclusively, 
the evidence showed that the specific hydrogen bonding 
between Q531 of pol II and the carboxyl group of 5caC 
causes a positional shift of the incoming GTP and com-
promises nucleotide addition, resulting in the significant 
reduction of pol II elongation.

Taken together, the different mechanisms of pol 
II arrest or bypass of a variety of lesions or modifica-
tions support the idea that pol II is a specific sensor 
that detects DNA modifications during transcription. 

The specific interactions between DNA lesions/modi-
fications and pol II govern the specific transcriptional 
outcomes: transcriptional arrest, pausing, and error-
prone or error-free transcriptional lesion bypass. For 
bulky, DNA-distorting lesions such as cis-syn CPD and 
CydA lesions, the presence of DNA lesions compro-
mises DNA backbone flexibility and greatly slows down 
the bridge helix crossover step during translocation, 
thus forming a strong road block for pol II transcrip-
tion elongation [1]. This DNA-lesion induced pol II 
arrest initiates transcription-coupled nucleotide exci-
sion repair [2]. For the 8-oxo-dG lesion, the interaction 
between the 8-oxo-dG and the active site of pol II pro-
motes the mis-incorporation of an adenine base oppo-
site the lesion and leads to error-prone transcriptional 
bypass. 8-oxo-dG is a common type of oxidative DNA 
damage and can be effectively repaired by the base 
excision repair pathway. Whether 8-oxo-dG is subject 
to transcription-coupled repair has been an interest-
ing debatable topic for decades, but emerging new evi-
dence suggests that 8-oxoG is preferentially repaired in 
the transcribed strand in vivo, yet the detailed molecu-
lar mechanism remains to be established [24]. With 
regards to the enzyme-catalyzed 5caC modifications, 
RNA pol II can directly sense the 5caC modification 
via the specific interaction between pol II and 5caC 
[23]. This 5caC-induced transcriptional pausing may 
suggest another layer of functional interplay between 
epigenetic DNA modifications and pol II transcription 
machinery in the fine-tuning of transcriptional dynam-
ics and gene expression [25, 26].

Fig. 4  The structure of RNA pol II elongation complex with 5caC, in which 5caC adopts the similar “above-bridge-helix” conformation. 5caC can 
form a specific hydrogen bond with key residue Q531 of the Rpb2 subunit. The bridge helix is shown in green, and RNA and DNA are shown in red 
and blue, respectively
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Conclusion
Conclusively, RNA polymerase II can sense a variety of 
different DNA structures/lesions during transcription 
and induce specific transcription-coupled responses 
including transcriptional lesion bypass, transcriptional 
pausing and arrest, which may consequently trigger DNA 
repair or cell death. As RNA pol II scans along significant 
portions of the genomic DNA during transcription, the 
sensory function of pol II possibly may have developed 
as an evolutionary mechanism for the cell to maintain 
genomic integrity, to respond a variety of environmental 
cues or stress, and to determine how and when the cell’s 
energy and resources should be optimally utilized.
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