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Two classes of nucleic acid translocation motors:
rotation and revolution without rotation
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Abstract

Biomotors are extensively involved in biological processes including cell mitosis, bacterial binary fission, DNA
replication, DNA repair, homologous recombination, Holliday junction resolution, RNA transcription, and viral
genome packaging. Traditionally, they were classified into two categories including linear and rotation motors. In
2013, a third class of motor by revolution mechanism without rotation was discovered. In this issue of “Structure
and mechanisms of nanomotors in the cells”, four comprehensive reviews are published to address the latest
advancements of the structure and motion mechanism of a variety of biomotors in archaea, animal viruses,
bacteria, and bacteriophages.
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Main text
Nucleic acid translocation is ubiquitous in living sys-
tems. The motion required for these events is accom-
plished by biomotors hydrolyzing nucleotide (mainly
ATP). Biomotors were once classified into two cate-
gories: linear and rotation motors. Accordingly, linear
motors such as kinesin and myosin, seen in human and
animal muscle coordination, move linearly, while rota-
tion motors such as DNA helicases, F1/F0 ATPase, and
bacterial flagella induce motion through a nut and bolt
rotation mechanism. This concept of rotation for DNA
translocation has been well-accepted in the field of bio-
motors due to the helical nature of the DNA with a 360°
turn per pitch. The hypothesis that DNA packaging in
dsDNA viruses was accomplished by such a five-fold/
six-fold rotation motor survived for three decades. Nu-
merous papers have been published in many high profile
journals claiming the observation of five-fold viral mo-
tors with a rotation mechanism. However, attempts to
evaluate this popular rotation mechanism has led to a
wealth of contradictory experimental results. Gearing of
the phi29 motor by a pRNA hexameric ring was revealed
independently by both group of Peixuan Guo [1] and
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Dwight Anderson in 1998 [2], and highlighted in a mini-
review in Cell by the open-minded and visionary scien-
tist Roger Hendrix [3], who even was the originator of
the five-fold/six-fold rotation concept. In addition, bio-
technological and single-molecule experiments revealed
that neither the nut (motor channel/the viral connector)
nor the bolt (dsDNA genome) rotate during packaging,
thus, the rotation mechanism became an enigma.
In 2013, a third class of motor employing a revolution

mechanism without rotation was reported (see anima-
tions: http://nanobio.uky.edu/movie.html) [4-6] (Figure 1).
While rotation involves spinning of an object around its
own axis, revolution is the circular movement of an object
around a secondary center-object. By analogy, rotation re-
sembles the Earth’s motion about its axis once every
24 hours, whereas revolution resembles the Earth ‘circling’
around the Sun once every 365 days (Figure 1). More re-
cently, the revolving biomotor was found to be widespread
among many biological systems, including dsDNA viruses,
dsDNA bacteriophages, and bacteria [7,8]. The rotation
and revolution mechanisms can be distinguished by size
and chirality of the motor channels [7,8] (Figure 2). In
most, if not all, rotation motors, only one strand of the
DNA passes through the channel, however, both strands
are translocated within the channel of revolution motors
[4-8]. Rotation motors, such as helicases CMG, DnaB and
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Figure 1 Illustration of revolution versus rotation motion. Spooling of the genome inside the procapsid supports the revolution mechanism.
A. Rotation resembles the Earth’s motion about its axis once every 24 hours, while revolution resembles the Earth ‘circling’ around the Sun once
every 365 days (see animations: http://nanobio.uky.edu/movie.html). B. (a) Cyro-EM images of phi29 particles in a cut-away surface showing the
formation of a empty DNA toroidal ring. Due to the persistence length of dsDNA, which is around 150 bp, it is impossible for dsDNA to form a
ring with a radius of only 0.9-2.9 nanometers without wrapping around protein. Since Cryo-EM picture is the average of many images, the toroid
formation could be resulted from a collective image of many dsDNA revolving steps. (b) Cyro-EM images showing the spooling motion of phi29
genome during packaging as a result of the revolution motion. (Figure 1A: Adapted from [8] with permission of BioMed Central; Figure 1B:
a. Adapted from [8] with permission of BioMed Central and from [9] with permission of Elsevier; b. Adapted from [10] with permission of Elsevier).
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E1, operate with a right-handed channel to drive the right-
handed dsDNA. Parallel threads of channel and DNA
allow sliding of the nut (channel) over the bolt (DNA)
during the translocation process. Revolution motors, such
as FtsK and the dsDNA packaging motors of phi29, P22,
T4, HK97 and T3, use a left-handed channel to drive the
right-handed DNA in an anti-chiral arrangement [7,8].
Anti-parallel threads of channel and dsDNA facilitate
step-wise advancement of the DNA by revolving during
translocation through subsequent contacts between chan-
nel subunits and one strand of the dsDNA. The explicit
difference between these packaging motors is further sub-
stantiated by the observation that rotation motors exhibit
channel sizes equal to or smaller than 2 nm in diameter
compared to channels larger than 3 nm in revolution mo-
tors (Figure 2) [7,8]. Considering the diameter of the
dsDNA helix of 2 nm, this structural feature agrees well
with the distinction of the two mechanisms. In revolution
motors, both strands of DNA pass through the channel,
hence the diameter needs to be larger than 2 nm to ensure
sufficient space for the dsDNA to revolve. In rotation mo-
tors, only one strand passes through the channel to ensure
close contact between channel and ssDNA. Thus, the
channel needs to be smaller than 2 nm, the diameter of
the dsDNA helix.
Although use of the revolution mechanism without ro-

tation in the bacteriophage phi29 DNA packaging motor
has been clearly documented by several recent publica-
tions [4-8], the deeply rooted rotation concept has led to
continued publications on the five-fold rotation mechan-
ism [12-14] (Figure 3). A very recent paper claimed that
the phi29 DNA packaging motor is a rotation motor
with the observation of a 1.5° rotation per bp (that is
15.75° per helical turn of 10.5 bp) during DNA pack-
aging [12] (Figure 3). This report is contradictory to the
fact that packaging of one complete turn of dsDNA with
a 10.5 bp pitch by a rotatory motor would require a ro-
tation of 34° per bp instead of the reported 1.5°. Hence
the mechanism is clearly not that of a classical rotary
motor that follows the helical backbone, since packaging
of a 360° helical turn could not have induced only a
15.75° twist. How nature resolves such a huge mismatch
between 15.75° and 360° in a spatial configuration raises
another big puzzle to the scientific community. This re-
port further stands in contrast to a recent study examin-
ing the energy requirement of untwisting and twisting
during motor rotation, which concludes that larger than
four times the energy available from one ATP hydrolysis
would be required [6,15]. Actually, the small angular
twist per nucleotide can be associated with channel con-
formational changes based on experimental data from
cryo-EM [9]. At the early stages of packaging, the chan-
nel exhibits a left-handed conformation allowing the
DNA genome to enter the viral procapsid. This left-
handed conformation may need to be converted to right-
handed at the completion of packaging to prepare for
dsDNA ejection into the host cell [8]. As the dsDNA is
aligned with the wall of the connector, it exhibits a clock-
wise twist associated with the channel conformational re-
arrangements [8]. It has also been proposed that in order
to keep the dsDNA substrate in register with the motor
during revolution, a small amount of twist of protein or
DNA may be necessary [16,17]. This might account for
the 1.5° twist reported by Liu et al. [12].
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Figure 3 Information showing the deeply rooted concept of the seemingly five-fold rotation in viral DNA packaging motors proposed
several decades ago. This concept is still found in recent publications proposing a five-fold rotational phi29 DNA packaging motor (both
Figure 3A and B) [12-14]. The phi29 DNA packaging motor used in this figure is the same as constructed by Guo in 1986 [17,18], who also
discovered in 2013 the revolution mechanism of the phi29 motor [4-8] (see Figure 1, which is completely different from the five-fold rotational
model). In Figure 3A, it was reported that the motor rotates in four steps [18,19], contradictory to the traditional five-fold concept and thus
requiring the supposition that one of the five subunits is inactive, resulting in a motor with only four steps of rotation [13,14]. Interestingly, to
maintain the rotation motor concept, the authors reported 1.5° rotation per bp, which corresponds to just 15.75° per complete helical turn of
10.5 bp translocated (Figure 3B) [12], while incompatible to the reality that 10.5-bp of DNA is a 360° helical pitch. (A: Adapted from [13] in Nature
with permission of Nature Publishing Group; B: Adapted from [12] in Cell with permission of Elsevier).

Figure 2 Motor channel size and chirality as two distinguishing features of revolution and rotation motors. A. Rotation motors have a
channel size smaller than 2 nm to allow full contact between channel wall and the single-stranded nucleic acid inside the channel. Revolution
motors have channel sizes larger than 3 nm to provide enough space for the revolution motion. B. Rotation motors use a right-handed channel
to drive the right-handed DNA through parallel threads, while revolution motors use a left-handed channel in an anti-chiral arrangement with
the right-handed dsDNA during translocation. (Adapted from [8] with permission of BioMed Central, and adapted from [11] with permission from
Elsevier). (PDB IDs: RepA, 1G8Y; TrwB: 1E9R; ssoMCM, 2VL6; SV40-LTag, 1SVL; Rho, 3ICE; E1, 2GXA; T7-gp4D, 1E0J; FtsK, 2IUU; SPP1-gp6, 2JES;
phi29-gp10, 1H5W; P22-gp1, 3LJ5; T4-gp17, 3EZK; DnaB, 4ESV; HK97 family-portal protein, 3KDR. EM IDs: T7-gp8, EMD-1231; MCM, EMD-1834).
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As mentioned above, biomotors are ubiquitous in
living systems and share many commonalities. In this
special issue of Cell & Bioscience, the molecular mecha-
nisms as well as biochemical and structural properties of
a wide range of biomotors involved in archaeal DNA re-
pair, dsDNA virus replication, viral and cellular SOS re-
sponse, and double Holliday junction dissolution are
comprehensively reviewed [20-23]. She et al. illustrate
the structural analyses of archaeal nucleic acid biomotors
in DNA damage repair and the molecular mechanisms of
ATP hydrolysis promoting conformational change as the
driving force of mechanical motion. Butcher et al. discuss
a wide range of ATPases in the lifecycle of thermophilic
archaeal dsDNA viruses from a bioinformatical, bioche-
mical and structural point of view. This review in particu-
lar illustrates, how Sf2 helicases translocate along DNA in
the classic fashion of rotation; while pointing out that in
the phage phi29 packaging motor, the genome packaging
ATPase of thermophilic viruses (e.g. B204), and FtsK cel-
lular nanobiomotors, the revolution mechanism is ap-
plied. Weitao et al. review the structural and functional
characteristics of viral and cellular SOS-regulated motor
proteins with a focus on the relationship of transloca-
tion mechanism to motor function, while Costa et al.
discuss the dissolvasome machinery in double Holliday
junction dissolution and its molecular mechanism based
on the structural interplay between its components.
This review illustrates how the molecular mechanisms
of Holliday junction related biomotors further diffe-
rentiates rotation motors (RuvAB, BLM helicases) from
revolution motors.
Revolution leads to a thermodynamic edge over rota-

tion, especially in the translocation of lengthy dsDNAs
and chromosomes. Due to the length of chromosomes,
supercoiling of DNA by biomotors would be a major
issue resulting in unnecessary energy consumption.
Nature has elegantly evolved a revolution mechanism
[4-8] devoid of rotation, torque, and coiling, thus min-
imizing work terms from molecular friction. The in-
volvement of multiple enzymes in the Holliday
junction resolution leads to a complicated motion
mechanism. At present, it is controversial whether the
Holliday junction dissolvasome motor uses the rotation
or revolution mechanism, how many ATP molecules
are used, and whether topoisomerases are involved in
the DNA translocation process or only at the end of
junction resolution [20]. Tackling these questions is
challenging due to the many motor components in the
dissolvasome.
DNA translocation technology has tremendous po-

tential in a range of biomedical applications, such as
the diagnosis and treatment of cancers and viral dis-
eases, as well as high-throughput human genome se-
quencing. Hopefully, the publication of this issue will
be inspiring for the bio- and nanobiotechnology com-
munity and will facilitate the application of biomotors.
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