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Perturbations at the ribosomal genes loci are at
the centre of cellular dysfunction and human
disease
Jeannine Diesch1,2, Ross D Hannan1,2,3,4,5,6 and Elaine Sanij1,2,7*
Abstract

Ribosomal RNA (rRNA) gene (rDNA) transcription by RNA Polymerase I (Pol I) drives cell growth and underlies
nucleolar structure and function, indirectly coordinating many fundamental cellular processes. The importance of
keeping rDNA transcription under tight control is reflected by the fact that deranged Pol I transcription is a feature
of cancer and other human disorders. In this review, we discuss multiple aspects of rDNA function including the
relationship between Pol I transcription and proliferative capacity, the role of Pol I transcription in mediating
nucleolar structure and integrity, and rDNA/nucleolar interactions with the genome and their influence on
heterochromatin and global genome stability. Furthermore, we discuss how perturbations in the structure of the
rDNA loci might contribute to human disease, in some cases independent of effects on ribosome biogenesis.
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Introduction to rDNA transcription by Pol I
In human cells 300 copies of the rRNA genes are arranged
in repeated arrays located in nucleolar organizer regions
(NORs) on the short arms of the acrocentric chromo-
somes [1-5]. Pol I transcribes rDNA to produce the 47S
rRNA, which is the precursor of the mature 28S, 5.8S, and
18S rRNAs. Together with the 5S rRNA transcribed by
Pol III in the nucleoplasm, these rRNAs form the nucleic
acid backbone of the ribosome. The other major compo-
nents of the ribosome are the ~78 ribosomal proteins
(RPs), whose genes are transcribed by Pol II, and are as-
sembled with the rRNAs to form functional ribosomes [6].
In growing mammalian cells, rRNA synthesis by Pol I ac-
counts for 35- 60% of all nuclear transcription while rRNA
represents nearly 80% of the steady-state cellular RNA
content [7,8]. Accordingly, Pol I transcription rate is
tightly coupled to cellular growth and proliferation rates,
and is modulated in response to a multitude of cellular
cues including nutrient availability, growth factor signal-
ing, cell cycle progression, differentiation, senescence, and
* Correspondence: elaine.sanij@petermac.org
1Growth Control Laboratory, Research Division, Peter MacCallum Cancer
Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia
2Sir Peter MacCallum Department of Oncology, University of Melbourne,
Parkville, Victoria 3010, Australia
Full list of author information is available at the end of the article

© 2014 Diesch et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
DNA damage [8-13]. Inhibition of Pol I transcription leads
to cell cycle arrest associated with apoptosis, senescence
or autophagy depending on the cell type [14-17]. Hence,
rDNA transcription has been proposed to directly couple
cell growth to cell cycle progression and to influence the
decision of a cell to arrest in response to various forms of
stress [18,19]. Not surprisingly, it is becoming increasingly
clear that dysregulation of Pol I transcription is linked to
the aetiology of a broad range of human diseases [20].
rDNA transcription underpins the structure of the nucle-

oli, which form around active clusters of rDNA [21]. How-
ever, the primary function of the nucleoli is not limited to
the production of the ribosomal subunits [22-25]. Bioinfor-
matic analysis of the nucleolar proteome revealed that only
30% of the nucleolar proteins are involved in ribosome
biogenesis, while included in the rest are factors associ-
ated with mRNA metabolism, chromatin structure, cell
cycle control, DNA replication and repair [21,22,26-31].
The nucleolus indirectly, through sequestration and re-
lease of these proteins, has the ability to modulate a di-
verse range of cellular functions including regulating
tumor suppressor and proto-oncogene activities, cell-cycle
control, DNA replication and repair, and stress signaling
independent of ribosome biogenesis [23,25,26,32-41]. Per-
turbation of nucleolar structure and function leads to a
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response termed “nucleolar stress”, characterized by the
accumulation of the tumour suppressor protein p53 lead-
ing to induction of apoptosis, senescence or cell cycle ar-
rest [18,23,42-50]. Therefore, the nucleolus is at the centre
of coordinating rDNA transcription, ribosome subunit
biogenesis, cell cycle progression and cellular stress re-
sponses [17,40,45,48].
Recent evidence also suggests that the epigenetic status

of the rDNA repeats and the integrity of the nucleolus can
modulate cellular homeostasis beyond ribosome biogen-
esis and nucleolar stress. Spatial organization of the gen-
ome around the nucleoli and the interactions of specific
chromatin domains with the nucleoli are both suggested
to affect the various functions of the nucleoli and vice
versa [51,52]. Furthermore, the repetitive nature and high
transcription rates of the rRNA genes render the rDNA
some of the most fragile sites in the genome [53]. Some-
what surprisingly, only a fraction of the rRNA genes is
transcriptionally active at any given time. In yeast, the si-
lent rDNA copies appear to play an essential role in main-
taining the genetic stability of the rDNA repeats [54].
Epigenetic silencing of rDNA has also been proposed to
mediate nucleolar integrity, genomic stability, and the glo-
bal regulation of gene expression [52,55], with these hav-
ing downstream effects on cellular processes such as
senescence and aging [11,56-58].
This review provides an overview of the mechanisms that

regulate rDNA transcription. We will discuss the spatial
organization of the nucleoli around actively transcribed
rDNA and their potential functional interactions with the
rest of the genome, and the notion of rDNA instability pro-
moting genome-wide instability and influencing cellular
functions such as, maintainance of heterochromatin, DNA
damage response and aging. Further, we present our
current knowledge of human diseases specifically associated
with deregulated Pol I transcription.

Regulation of Pol I transcription
In addition to RNA Polymerase I, optimal rRNA gene
transcription requires a number of accessory factors that
facilitate Pol I recruitment, initiation, promoter escape,
elongation, termination and re-initiation [12,59,60]. Pol I
transcription begins with the formation of the preinitia-
tion complex (PIC) by the upstream binding factor (UBF)
and the TBP-containing complex selectively factor (SL-1,
also called TIF-1B) at the rDNA promoter. SL-1 confers
promoter sequence specificity by recognizing the core
promoter element and it promotes a stable interaction be-
tween UBF and the rDNA promoter [61-64]. In turn, UBF
binds the upstream and core promoter elements (UCE
and CORE) as a dimer, possibly looping the intervening
DNA into a nucleosome like structure termed the enhan-
cesome, which brings the activating UCE sequence into
close proximity with the core promoter element [65-67].
UBF binding also promotes stabilization of SL-1 inter-
action with the rDNA promoter [68]. The resultant UBF/
SL-1 complex then facilitates recruitment of an initiation-
competent subpopulation of Pol I, defined by the presence
of the basal regulatory factor RRN3 (also called TIF-1A),
to form a productive PIC at the rDNA promoters
[8,68-72]. Furthermore, UBF interacts with the entire
transcribed region [73-75], not just promoter elements,
and can regulate promoter escape [76] and Pol I elong-
ation in response to growth stimuli [77].
Despite the high demand for rRNA synthesis, only a

subset of rRNA genes is transcribed at any given time. In
mammalian cells, rDNA chromatin can exist in at least
four distinct states [78,79]. The first two states are defined
as open/accessible chromatin structures. They are bound
by UBF, which is essential in determining and maintaining
the active rDNA state [80], and are characterized by being
transcriptionally active and transcriptionally poised states.
RNA interference-mediated depletion of UBF silences ac-
tive rRNA genes by promoting histone H1-induced as-
sembly of closed transcriptionally inactive chromatin [80].
The two states of inactive rDNA chromatin represent si-
lenced rDNA that is devoid of UBF and Pol I and are dis-
tinguished by the presence or absence of methylated CpG
dinucleotides in the rDNA promoter. The silenced non-
methylated fraction is thought to carry activating histone
marks that can presumably transit to the open chromatin
state if rDNA becomes bound by UBF. In contrast, the
methylated rDNA population is believed to carry repres-
sive histone marks and is established and stably main-
tained by the nucleolar repressive complex NoRC, a
member of the ATP-dependent chromatin remodeling
complexes [81-83]. Studies in yeast suggest that these si-
lenced rRNA genes are required for efficient DNA recom-
bination repair and thus play an important role in
maintaining rDNA stability [56].

Organization of the nucleoli
The nucleolus is the subnuclear site of ribosome biogen-
esis and its formation around active NORs requires on-
going rDNA transcription. The structure of nucleoli is
highly dynamic and is tightly coordinated with cell cycle
progression. Nucleoli disassemble at the onset of mitosis
coinciding with inactivation of Pol I transcription and
reassemble during telophase as rDNA transcription is
reinitiated. The rate of rRNA gene transcription reaches
a maximum in S- and G2 phases, is halted at the onset
of mitosis and slowly reactivated as cell enter G1 [84].
Cell cycle mediated regulation of rDNA transcription is
facilitated by post-translational modifications of compo-
nents of the Pol I transcription machinery and its associ-
ated transcription factors such as phosphorylation of
UBF and SL-1 [85-87]. Interestingly, few components of
the Pol I machinery, including Pol I as well as UBF and
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SL-1 remain associated with active NORs throughout
mitosis, presumably to allow reactivation of Pol I tran-
scription upon entry into the G1 phase [88-91]. Forma-
tion of nucleoli requires association of UBF with the
rDNA, which acts as a scaffold to initiate and maintain
nucleolar competency even in absence of rDNA tran-
scription [91-93].
Once established, the nucleolus comprises three major

structural and functional subcompartments defined by
their texture and contrast using electron microscopy, the
fibrillar centre (FC), the dense fibrillar component (DFC)
and the granular component (GC) [21,24,94,95]. The FCs,
in which the NORs can be found, are clear areas sur-
rounded by highly contrasted DFCs. Depending on the
rate of ribosome biogenesis one nucleolus can consist of
several FCs whilst exponentially growing cells can exhibit
several large nucleoli [96]. The majority of the 47S precur-
sor rRNA is thought to be synthesized at the boundary be-
tween the FC and the DFC [97]. DFCs harbour the small
nucleolar ribonucleoproteins (RNPs) necessary for the first
steps of rRNA processing, whereas the late steps of rRNA
processing and assembly of the small (40S) and large (60S)
ribosome subunits take place in the GCs [21,24].
The organization, size and protein composition of the

nucleoli change dramatically during the cell cycle and
under different cellular conditions, including stress and
viral infections [39,40,48,98-102]. Over 4500 proteins
reside within human nucleoli and through the control of
their sequestration and release, nucleoli modulate a di-
verse range of cellular functions such as control of the
cell-cycle apparatus, ageing, cellular stress responses,
mRNA export and modification, protein degradation, as-
sembly and export of RNPs [21-28,31,33,45,48,103-105].
One such sequestration function involves non-coding
RNA produced from the intergenic spacer (IGS), which
separates the rDNA repeats. This noncoding RNA is
produced in response to various stimuli including acid-
osis, heat shock and transcriptional stress and is capable
of capturing and immobilizing key cellular proteins that
encode a discrete peptidic code referred to as the nucle-
olar detention sequence (NoDS) [32]. Disruption of the
NoDS/intergenic RNA interaction enables proteins to
escape nucleolar sequestration and retain their nucleo-
plasmic function [32,106]. NoDS-carrying proteins are
involved in diverse functions including ubiquitination,
proteasomal degradation, protein folding, DNA replica-
tion and methylation [107]. Nucleolar retention of pro-
teins away from their normal sites of action is a further
example of the multifunctional nature of the nucleoli
[33,45,48,108].

Nucleolar coordination of cellular stress response
Nucleolar integrity is tightly linked to rRNA gene tran-
scription and ribosome biogenesis. Downregulation of
Pol I transcription seems to be a major strategy to main-
tain cellular homeostasis under adverse growth condi-
tions or metabolic deficits [83,87,109-113]. Furthermore,
a variety of abnormal metabolic conditions, cytotoxic
agents, and physical insults induce alterations in nucle-
olar structure and function, and ribosome biogenesis
[48,110,114]. The rate of ribosome biogenesis is now
thought to function as a highly sensitive cellular sensor
of stress.
Virtually any major cellular perturbation that uncouples

the processes driving ribosome synthesis and assembly re-
sults in the activation of a regulated series of events that
are controlled through the nucleoli, which activate cell
cycle checkpoints leading to cell cycle arrest or cell death
[18,44,46-48,115-117]. This process has been termed nu-
cleolar stress or ribosome surveillance. One of most
prominent events downstream of nucleolar stress is acti-
vation of the p53 tumour suppressor protein, a key regula-
tor of stress-induced apoptosis, DNA repair, cell cycle
arrest, and senescence [18,22,42-44,46,48,50,118,119]. In
this pathway p53 is activated by the essential 60S riboso-
mal proteins RPL11 and RPL5 that function in a MDM2
inhibitory complex with 5S rRNA, which binds MDM2
and blocks its function to degrade p53 [120-129]. Thus, a
dynamic equilibrium exists in the cell, which couples on-
going ribosome biogenesis to p53 protein stability, such
that the RPL5/RPL11/5S rRNA complex is either incorpo-
rated into nascent ribosomes or is bound to MDM2.
Therefore, this is a key pathway that enables the coordin-
ation of ribosome production with cell proliferation [120].
We and others have also identified p53 independent
checkpoints that are activated in response to inactivation
of Pol I transcription, although the mechanism controlling
this process is not understood (Quin J. and Sanij E. un-
published data), [130,131]. Taken together, the direct
coupling of Pol I transcription and the ribosome biogen-
esis rate through the nucleolar stress pathway ensures a
coordinated response to a variety of proliferative and
stress stimuli.

Genome organization around the nucleoli
The structure of the genome is highly dynamic and is
closely coupled with gene regulation. It is now well ac-
cepted that the nucleus is organized into chromosome ter-
ritories and transcription factories in which functionally
related genes cluster together allowing their concerted
regulation [132]. Furthermore, the spatial organization
and location of chromosomes and their interactions
with other nuclear substructures ensures that transcrip-
tion is correctly regulated and maintains genome stability
[133,134]. The discovery of structural and functional links
between the nucleolus and the rest of the genome have
led to the proposal that the nucleolus plays a key role in
mediating nuclear architecture [135].
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The periphery of the nucleolus contains satellite DNA
repeats, which are thought to be involved in the formation
of perinucleolar heterochromatic domains surrounding
the nucleolus as a dense shell [136]. CpG-methylated si-
lent rDNA assembles in proximity to the perinucleolar
heterochromatin, suggesting a specific relationship be-
tween these heterochromatic regions and silent rDNA
copies [137]. Indeed, NoRC mediated silencing of rDNA is
important for the formation of the perinucleolar domains
[57]. Regions found in the perinucleolar region, termed
nucleolar-associated domains (NADs), include centro-
meres of chromosome 1 and 9 and chromosome Y hetero-
chromatin [138]. Recent high-resolution genome-wide
mapping of NADs revealed the association of nucleoli
with various satellite repeats (mainly alpha-, beta- and
(GAATG)n/(CATTC)n-types) and genes belonging to the
zinc finger, olfactory receptor and immunoglobulin gene
families [139]. In addition, the region flanking the rDNA
on the telomeric side contains a large tract of a satellite
repeat family that is specific to the acrocentric chromo-
somes [140]. Similar to lamina-associated domains (LADs),
which are localized at the nuclear envelope, a strong correl-
ation of NADs with AT-rich sequences and regions with
low gene density has also been observed [141].
Genes enriched in the NADs are characterized by re-

pressive histone marks and a lack of gene expression. In-
deed, the NADs have been proposed to serve as a
distinct nuclear space with a primary function in main-
taining repressive chromatin states [51,141]. For ex-
ample, the inactive X-chromosome visits the nucleoli
during S-phase to maintain its repressive state [142]. A
repressive, inhibitory effect of the nucleoli on gene ex-
pression has also been demonstrated by inducing nucle-
olar association in response to random multicopy
insertion of ectopic 5S rDNA sequences in ES cell lines,
which resulted in transcriptional repression of genes ad-
jacent to the insertion site [143]. Indeed, RNA genes
transcribed by RNA polymerase III, such as 5S rRNA,
tRNA and U6 snRNA are also localized within NADs
and are thought to recruit adjacent protein coding genes
to the nucleoli [144,145]. As Pol III-transcribed genes
and derived sequences make up a large proportion of
the genome, it has been proposed that these can signifi-
cantly contribute to nucleolar association of neighboring
genes for the purpose of mediating gene silencing [143].
However, there is no enrichment of these elements in
the regions immediately flanking the rDNA arrays even
though they show perinucleolar localization [140]. Apart
from Pol III-transcribed genes, several other factors have
been suggested to tether chromatin regions to the nucle-
oli. One example is the CCCTC-binding factor (CTCF),
which regulates various cellular processes and has re-
cently been shown to affect nuclear structure by binding
to insulator sequences, preventing crosstalk between
neighboring sequences, and facilitating chromatin loops
between CTCF binding elements [146]. CTCF has been
shown to localize to the nucleoli where it interacts with
nucleolar proteins such as nucleophosmin [147] and UBF
[148]. A third class of potential nucleolus-tethering factors
is long noncoding RNAs (lncRNAs). For instance, the
lncRNAs Kcnq10t1 promotes the lineage-specific inhib-
ition of genes in the Kcnq1 domain by inducing their re-
location to the nucleoli [149,150]. A similar mechanism
has been shown to be involved in the perinucleolar target-
ing of the inactive X chromosome mediated by the Xist
RNA [142]. Further, unique lncRNAs are produced from
the rDNA arrays flanking regions, although their function
has not been determined [140].
Taken together, the observed enrichment of hetero-

chromatic regions and transcriptionally repressed genes
in perinucleolar domain suggests that the NADs repre-
sent a novel mechanism of gene silencing. However,
more experiments need to be performed to completely
rule out the possibility of nucleolar localization being a
mere consequence of inactive gene expression. Addition-
ally, the composition of NADs in disease and their bio-
logical relevance are not well understood.

rDNA stability maintains genome integrity
The repetitive nature of the rDNA leaves them vulner-
able to loss or gain of rDNA copies through a high rate
of recombination [151,152], although this remains
poorly studied in humans [2]. Changes in the number of
rDNA copies can create an imbalance in the ratio of si-
lent to active repeats that affects global heterochromatin
content [57]. This in turn can lead to deregulated gene
expression, promoting genome instability [153]. Indeed,
rDNA instability has been observed in Bloom syndrome
patients, which harbour a mutation in the DNA helicase
BLM gene leading to dysregulated homologous recom-
bination (HR) [154]. rDNA instability can also be de-
tected in cells deficient for ataxia-telangiectasia (ATM),
the primary sensor of DNA double stranded breaks. In
Bloom syndrome and ataxia-telangiectasia patients,
rDNA instability correlates with increased cancer predis-
position [154]. The rDNA is a recombinational hotspot
in cancer, suggesting that rDNA instability may be a
mechanism of global genomic instability and could drive
the etiology and progression of cancer [53,155]. Neuro-
degeneration also appears to be associated with instabil-
ity of rDNA [156], including Alzheimer’s disease [157].
The importance of rDNA copy number and rDNA in-

tegrity is implied by the existence of a well-regulated
maintenance system in yeast which keeps rDNA copy
number at a uniform level, as well as the tight regulation
of rDNA recombination [152]. During yeast HR, which
is the major cause of rDNA copy variation [158-160],
rDNA repeats that are being repaired are transported
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out of the nucleolus into nuclear repair foci, presumably
to prevent rDNA hyper-recombination. This nucleolar
exclusion is mediated by the Smc5-Smc6 complex and
the sumoylation of the central HR protein Rad52 [161].
In addition, anti-recombinatoric regulators such as Srs2
are found in close proximity to the rDNA [161].
Several studies in yeast suggest a strong correlation

between rDNA copy number and genome integrity
[152,162]. In 2008, Kobayashi T. (National Institute of
Genetics, Japan) introduced the “rDNA theory” of aging,
in which rDNA instability-dependent aging is proposed to
induce senescence and prevent global genome instability
[162,163]. In Drosophila, general heterochromatin content
appears to be directly influenced by the number of rDNA
copies suggesting that rDNA instability may affect hetero-
chromatin maintenance [58]. Consistent with this, in-
duced rDNA deletions altered the expression of hundreds
to thousands of euchromatic genes throughout the gen-
ome [55]. The relationship between rDNA and genome
stability has also been demonstrated in mouse cells, where
loss of rDNA silencing results in destabilization of the
perinucleolar heterochromatin, which is crucial for ensur-
ing genome stability [57,83].
In addition to the role of rDNA in regulating hetero-

chromatin, silent rDNA repeats are required for DNA
damage repair, an essential pathway for preventing gen-
ome instability. The influence of rDNA on DNA damage
has been shown utilizing yeast strains that have reduced
rDNA copy numbers, in which most or all copies are ac-
tively transcribed [56,164]. These low-copy strains have
impaired DNA damage repair during S-phase and conse-
quently higher sensitivity to DNA damaging agents such
as ultraviolet radiation and methyl methanesulfonate
[56]. The sensitivity to DNA damage is due to the inabil-
ity of condensin, which is required for sister-chromatid
cohesion and facilitates DNA repair, to bind the active
rDNA repeats [56]. A relationship between condensin
and rDNA has been demonstrated in several other stud-
ies further supporting the idea that silent rDNA repeats
are required for rDNA repair [165-168]. Moreover, stud-
ies in yeast led to the proposition that silent copies of
rDNA can sequester mediators of the DNA damage re-
pair pathway and that the rDNA acts as a stress centre
for DNA damage [56,158]. Hence, variations in rDNA
copy number may influence cellular responses to DNA
damage (Figure 1).
In summary, rDNA repeats are crucial players in the

maintenance of genome stability. Perturbations at the
rDNA loci resulting in either a decrease or increase in
rDNA copies have a great impact on cellular processes,
including heterochromatin structure and function, global
gene expression and DNA damage response. These pro-
cesses can then, in turn, promote aging, cancer and dis-
ease (Figure 1).
Deregulation of rDNA transcription in disease
Upregulation of Pol I activity is common in diseases as-
sociated with profound changes in cellular growth, such
as cardiac disease [169] and cancer [15-17,116,170,171].
Indeed, enlarged nucleoli indicative of increased Pol I
transcriptional activity and ribosome biogenesis are asso-
ciated with cardiac pathophysiology [169]. Similarly, the
nucleoli of cancer cells are enlarged and increased in
number, and thus the morphology of nucleoli is com-
monly used as a diagnostic marker for transformed cells
clinically corresponding to adverse prognosis [172,173].
These data suggest it is incorrect to consider rDNA
transcription as simply a “house keeping” process that
reflects the metabolic state of somatic cells. Indeed, re-
cent findings demonstrate that deregulation of Pol I
transcription is necessary for malignant transformation
in certain systems [174].
Pol I activity is frequently deregulated in cancers by

oncogene activation and/or tumor suppressor inactiva-
tion [17,18,20] and this has been previously explained in
terms of an increased demand for ribosomes in highly
proliferative cells. Certain tumour cells however appear
to be very susceptible to inhibition of Pol I transcription
leading to induction of cancer cell death [14,174,175].
This therapeutic benefit is due to tumour-specific induc-
tion of the nucleolar stress pathway leading to activation
of p53 and cell death by apoptosis. Activation of the
p53 pathway following inhibition of Pol I transcription in
tumour cells is not a consequence of ribosome insuffi-
ciency, suggesting that the cells are responding directly to
perturbations in rDNA transcription [174]. The thera-
peutic efficacy of targeting deregulated Pol I activity in
cancer is currently being investigated using a selective
small molecule inhibitor of Pol I transcription, CX-5461
[14,174], that is in phase 1 clinical trials (Peter MacCallum
Cancer Centre, Melbourne, Australia) as a mechanism to
selectively and non genotoxically activate the p53 pathway
in cancer cells.
Further, deregulation of rDNA transcription contrib-

utes to the pathology of several rare human genetic dis-
orders (reviewed in [20]). These conditions are caused
by loss of function mutations in factors directly associ-
ated with Pol I transcription, modulators that impact
on Pol I transcription, or mutations that affect rRNA
processing or rRNA modifications. These diseases, as
well as those associated with loss of function mutations
in the molecular constituents of the ribosome, are
termed ribosomopathies (reviewed in [20,176]). To date
at least six human syndromes (Treacher Collins syn-
drome, Blooms and Werner syndrome, Cockayne Syn-
drome, Siderius X-linked mental retardation, and a
group of Filamin A associated diseases) are associated
with mutations in genes whose products interact directly
with rDNA or the Pol I transcriptional complex. Generally,



Figure 1 Proposed model of genome-wide consequences of rDNA instability. Under normal conditions rDNA copy number is maintained at
uniform levels due to tight control of homologous recombination (HR) at rDNA loci. Induced HR in response to DNA damaging stimuli can lead
to an increase or decrease in rDNA copy number resulting in an imbalance in the ratio of active to silent rDNA. This, in turn, will affect ribosome
biogenesis independent functions of rDNA, which include regulation of heterochromatin content and DNA damage response leading to global
genome instability and promoting aging or disease.
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these mutations are associated with reduced rRNA synthe-
sis and nucleolar malfunction [20].
Cohesinopathies are another group of human congenital

disorders associated with deregulated Pol I transcription.
Cornelia de Lange and Roberts Syndrome are associated
with mutations in genes encoding either regulators or
structural components of the cohesin complex, which is
critical for sister chromatid cohesion, chromosome segre-
gation during S phase, chromosome condensation, DNA
damage repair and gene regulation including Pol I tran-
scription of the rRNA [18,177,178]. Although the cohesin
complex has been reported to interact with rDNA [178],
the molecular mechanisms that lead to deregulation of
Pol I transcription in these diseases have not been estab-
lished. While ribosomopathies and cohesinopathies are
unique, collectively they exhibit overlapping symptoms in-
cluding craniofacial abnormalities and growth retardation.
Downregulation of rDNA transcription has been proposed
to determine cell fate and to act as a trigger for cellular
differentiation [179,180]. Thus, it is plausible that deregu-
lation of Pol I transcription is the underlying cause of
these common features [20].
Downregulation of rRNA synthesis and nucleolar size

has also been observed during aging [181,182]. Altered
rRNA gene transcription and disruption of nucleolar in-
tegrity and function are associated with the pathogenesis
of age-related neurological disorders such as Alzheimer’s
disease [157], Huntington’s diseases [183,184], Parkinson
disease [185] and spinocerebellar ataxias [186]. More re-
cently, elevated rDNA copy number was detected in pa-
tients with dementia with Lewy bodies, which involves
neurodegeneration of the cerebral cortex [156]. More-
over, increased genomic content of the 18S rDNA region
and an increase in rDNA silencing, distinguished by
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rDNA promoter methylation has been detected in the
parietal cortex of Alzheimer’s disease patients [157].
The evolving paradigm of the nucleolus being a key

regulator of cellular homeostasis implicates nucleolar
stress resulting from deregulation of rDNA transcription
in the development of these diseases. Unquestionably, fur-
ther mechanistic investigations are required in order to
examine how perturbations of rDNA stability and func-
tion, independent of ribosome biogenesis and nucleolar
stress, are involved in the aetiology of these diseases.
Conclusions
Taken together, this review advocates a role for the nu-
cleoli in genome organization and the regulation of gene
expression beyond its classic role in ribosome biogenesis
and nucleolar stress response. Variation in rDNA copy
number alters the ratio of active to silent rDNA repeats,
which in turn can alter heterochromatin content. As
such, changes at rDNA loci could affect gene expression
and alter global genomic stability driving an imbalance
in cellular homeostasis leading to disease. Analysis of
rDNA/nucleolus interactions with chromatin domains
concomitant with genome-wide gene expression analyses
under various cellular conditions are the next steps ne-
cessary to understand rDNA/nucleolar functions at
genome-wide as well as system levels.
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