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Abstract

differentiation of skeletal myocytes.

Pluripotent stem cells are able to differentiate into many types of cell lineages in response to differentiation cues.
However, a pure population of lineage-specific cells is desirable for any potential clinical application. Therefore,
induction of the pluripotent stem cells with lineage-specific regulatory signals, or small molecule inducers, is a
prerequisite for effectively directing lineage specification for cell-based therapeutics. In this article, we provide in-
depth analysis of recent research findings on small molecule inducers of the skeletal muscle lineage. We also
provide perspectives on how different signaling pathways and chromatin dynamics converge to direct the
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Pluripotent stem cells, regardless of their origin, can
generate skeletal myocytes. However, the frequency of
these cells to differentiate into skeletal myocytes is rela-
tively low in the absence of inducing signals. Different
types of mouse stem cells have been used as model sys-
tems to study the molecular mechanisms of myogenic
differentiation. The commitment of these stem cells into
skeletal muscle lineage recapitulates the cellular and mo-
lecular processes occurring in the early embryogenesis.
However, the central issue is how to preferentially en-
hance the specification of muscle lineage for potential
therapeutics. Therefore, understanding on a molecular
level of how different cell signaling pathways and chroma-
tin dynamics converge to regulate myogenic differenti-
ation is imperative for identifying suitable small molecule
inducers to efficiently generate skeletal myocytes. To this
end, mouse pluripotent stem cells will continue to serve
as valuable model systems because of their close resem-
blance to skeletal myogenesis in vivo, and their ease of
manipulation in experimental procedures.
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Retinoid signaling in early development

In vertebrates, the proper distribution and metabolism
of vitamin A is essential for normal embryonic develop-
ment and growth [1]. Deficiency in vitamin A during early
embryogenesis leads to congenital malformations and af-
fects patterning and the development of many organ
systems [2]. On the other hand, high concentrations of
vitamin A, or pharmacological concentrations of retinoid
acid (RA), the most potent natural form of vitamin A, have
severe teratogenic consequences. These diversified effects
of RA are mediated by multiple levels of effectors, includ-
ing the enzymes that control RA metabolism, the cytoplas-
mic RA-binding proteins, and the RA receptors [3].

The retinoic acid receptors (RAR) are ligand-inducible
transcription factors that regulate the RA-responsive
genes in a bimodal mode. The functions of RAR depend
on the retinoid X receptors (RXR). RAR binds to DNA
constitutively with RXR as a heterodimer regardless of
ligand binding. In the absence of a ligand, the DNA-
bound RAR-RXR heterodimer functions as a transcription
repressor by associating with the NCoR co-repressor com-
plex. However, upon RA induction, it acts as an activator
by recruiting the p300 coactivator complexes to activate
gene transcription (Figure 1). As a result, NCoR is present
at the RAR binding region in the absence of RA, whereas
p300 is recruited to the region following RA signaling
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- RA: NCoR association and transcription repression

Figure 1 Schematic diagrams of the bimodal function of the nuclear receptors. In the absence of RA, the DNA-bound RAR-RXR
heterodimer associates with the NCoR corepressor complex to repress gene transcription. Following RA induction, the RAR-RXR heterodimer
recruits the p300 coactivator complex to initiate gene activation through chromatin remodeling and the release of RNA Pol II.

Histone acetylation

+ RA: p300 recruitment and transcription activation

[4,5]. The RA-responsive promoters are often classified as
pre-set, or poised promoters, because the TBP and Pol II
complex associate to the TATA box constitutively [5].

In this bimodal model, the RAR-RXR dimer binds to
the consensus DNA sequences, including the DR5 or
DR2 motif, in which ligand induction is through the
RAR, whereas RXR is generally considered a silent part-
ner [6]. Nonetheless, in addition to RAR, the RXR is also
able to dimerize with itself or with many other nuclear re-
ceptors to form permissive homodimers or heterodimers,
in which the RXR is amenable to ligand activation.

Ligand-inducible nuclear receptors, including the gluco-
corticoid, thyroid, estrogen and androgen receptors, are a
class of transcription factors that are capable of initiating
dynamic chromatin changes in the promoter or enhancer
regions by recruiting chromatin remodeling or modifying
activities [7-13]. For example, the RA signaling is coupled
with a global decrease in H3K27me3 modification, but an
increase in histone acetylation, and is also coupled with
the alterations in DNase I hypersensitive sites possibly
through the dissociation of RAR-RXR dimer from SUZ12,
and the recruitment of the histone acetyltransferase
p300 [14-17].

There are three subtypes of RARs, namely RARq,
RARP and RARy, which bind to all-trans and 9-cis RA
[3]. The mice with each individual subtype of RAR
knocked out are viable, appear to be normal, and have
little developmental defects [18,19]. On the other hand,
double RAR knockout mice exhibit a wide range of
developmental abnormalities similar to vitamin A defi-
ciency syndrome [20-23]. In fact, there is a large degree
of functional redundancy between RARs which have im-
portant roles in many distinct stages of embryonic pat-
terning and organogenesis [3].

The RXRs also consist of three subtypes, RXRa, RXRf
and RXRy, which are activated by 9-cis RA [3]. The RXR
knockout mice are well characterized as well. The RXRp
and RXRy null mice are viable and seem to be normal

[24,25]. However, RXRa null mutants die in utero and
have myocardial and ocular malformations [24]. Most
interestingly, the RXRa null mutants also exhibit devel-
opmental defects similar to fetal vitamin A deficiency
syndrome [26,27]. Thus, RXRa is the main subtype in-
volved in embryonic development.

Most interestingly, the compound RXR and RAR
knockout mice recapitulate most of the developmental
defects observed in the RAR double mutants [24,28],
and RXRa-RAR is the major functional unit to mediate
RA signaling during embryonic development [29]. None-
theless, RXRs are also involved in many other signaling
cascades and have the capacity to integrate multiple
regulatory pathways as a ligand-bound receptor [30,31].

Gene regulation and myogenic differentiation
Gene transcription is regulated by an integrated action
of many cis-regulatory elements including the long-range
enhancers, proximal regulatory elements, and promoters.
Complex interactions among this assemblage of regulatory
elements are vital to the control of target gene transcrip-
tion [32]. In eukaryotic cells, genomic DNA, including
these cis-regulatory elements, is organized with histones
and further packaged into a higher order chromatin struc-
ture [33]. This chromatin organization establishes hier-
archical platforms on both local and global levels for
regulatory-protein interactions during epigenetic inherit-
ance, cell fate determinations, and ultimately, the control
of gene expression programs [34].

To decree the complex interaction of these cis-
regulatory elements, the transcriptional coactivators or
the HATS, recruited by sequence specific transcription
factors play commanding roles in activating gene spe-
cific enhancers, and consequently, target gene transcrip-
tion. For instance, active promoters are often associated
with multiple histone modifications, whereas enhancers
are associated with the HATs occupancy and histone
acetylation [35-37]. Therefore, epigenetic and chromatin
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signatures have emerged as valuable marks to identify
novel regulatory elements, in addition to DNA sequence
motifs bound by potential transcription factors [38,39].

Skeletal myogenesis is a highly ordered process coordi-
nated by multiple myogenic regulatory factors, such as
Myf5, MyoD, myogenin, and Mrf4 [40]. While Myf5 and
MyoD activate muscle-specific gene expression and
commit the progenitor cells into skeletal muscle lineage,
myogenin and Mrf4 largely regulate the late stage of
myogenic differentiation, such as the fusion of myoblasts
into myotubes [41]. Upstream of Myf5, the Wnt signal-
ing and Shh from the dorsal neural tube and notochord
act , respectively, as the positive regulators of Myf5 gene
expression, whereas MyoD gene expression depends on
Pax3 and Myf5 [42]. Additionally, genetic evidence in
the mouse and ES cell model systems has established
that the expression of Myf5 and MyoD genes depends
exclusively on the HAT activity of p300 [43].

Stem cells
Stem cells are excellent model systems for the studies of
molecular mechanisms of cellular differentiation because
of their abilities to differentiate into virtually all cell
types in vitro. There are embryonic stem (ES) cells, adult
stem (AS) cells, and induced pluripotent stem (iPS) cells,
based on their derivative origins. The first evidence for
the pluripotent nature of embryonic cells was obtained
from studies of mouse embryonal carcinoma (EC) cells.
These EC cells, subcloned from teratocarcinomas, can
be stably maintained as adherent cells and proliferate in-
definitely in the tissue-culture dishes [44]. When cultured
in the Petri dishes, they readily form cell aggregates which
contain stem cells at the central part surrounded by epi-
thelial cells. These cell aggregates, known as embryoid
bodies (EBs), can develop extensive cavities and various
cell types when subsequently grown as adhesive cultures
[45]. For several decades, these EC cells have served as
valuable model systems for the studies of early develop-
ment and cellular differentiation, and paved the way for
the isolation and establishment of mouse ES cells. Al-
though, the pluripotent EC cells are much less used now-
adays, they remain a useful model for the identification of
small molecule inducers for myogenic differentiation [46].

RA signaling and myogenic differentiation

One valuable model system for mechanistic studies of
early development is the pluripotent P19 cell line. Iso-
lated from an experimental teratocarcinoma, it exhibits
a typical EC morphology and normal karyotype [47].
Like other EC cell lines, these P19 cells can grow in
tissue-culture dishes as undifferentiated cells indefinitely,
and differentiate into cell lineages of all three germ layers.
More importantly, they are amenable for genetic manipu-
lation to incorporate and express ectopic genes, and for
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selecting subclones and transfected stable clones which
retain their ability to differentiate.

When grown in Petri dishes, the P19 cells readily form
EBs. Mesoderm specification occurs at the early stage of EB
formation, coinciding with an up-regulation of Brachyury
T, a member of the T-box family of transcription factors
[48]. However, EB formation per se does not lead to myo-
genic differentiation of the P19 stem cells, which requires
additional inducing signals. When induced with small mol-
ecules, such as dimethyl sulfoxide (DMSO) or all-trans ret-
inoic acid (RA), during EB formation, the P19 cells commit
into the skeletal muscle lineage at a low frequency [49,50].
However, using combination of inducers, such as treating
the EBs with both DMSO and RA, significantly increases
the myogenic conversion of P19 stem cells [51].

The efficacies of P19 myogenic differentiation are
influenced by the concentration of RA and the time line
of treatments. Cells exposed to high RA concentrations
(>107 M) develop into neurons and astrocytes, whereas
EBs formed at the low concentrations (<107 M) differ-
entiate into striated muscle [52]. The working concen-
tration of RA for myogenic differentiation is typically
around 5-30 nM, [46,53]. Nevertheless, the ability of
P19 cells to generate skeletal myocytes is also influenced
by other factors in the serum, and EB formation is a pre-
requisite for myogenic differentiation in these pluripo-
tent cells [54].

Another valuable model system for mechanistic studies
of myogenic differentiation is the mouse ES cells. They
were first isolated in the early 1980s, from blastocysts
grown on feeder-layer of division-incompetent mouse fi-
broblasts cells [55,56]. These ES cells express all markers
of the EC cells, and can differentiate extensively in vivo
and in vitro. The conditions for ES cell to differentiate
in vitro are, in essence, the same as for the EC cells, de-
pending on the process of EB formation [57]. However,
the ES cells need to be maintained in inhibitory conditions
to retain the undifferentiated state, because they are prone
to spontaneous differentiation [58,59]. When grown in
suspension culture without inhibitors, ES cells readily
form EBs and consequently differentiate.

The early events of embryonic myogenesis are also
closely recapitulated by EB differentiation of the ES cells
into skeletal muscle lineage [60]. RA is also able to enhance
the myogenic differentiation of ES cells. Specifically, RA af-
fects the differentiation of ES cells into skeletal myocytes
in a time- and concentration-dependent manner. Similar
to the pluripotent P19 EC cells, high concentrations of RA
(>107 M) induce neuronal differentiation of the ES cells,
but suppress myogenic differentiation. Treatments of the
EBs with low concentrations of RA (<107 M) at the stage
of EB formation, enhance skeletal myogenesis, but in-
hibit cardiomyogenesis [61]. On the other hand, when
low concentrations of RA are administered at the late
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stage of differentiation, skeletal myogenesis is inhibited,
but cardiomyogenesis is enhanced [61].

Genetic manipulation has also been employed as an
approach to induce myogenic differentiation of the ES
cells. The premyogenic factor Pax3 plays an important
role in embryonic muscle formation, acting upstream of
muscle-specific gene program [41,62]. On the other hand,
Pax7 is important for the maintenance of the muscle satel-
lite cells [63-65]. Ectopic expression of Pax3 during EB dif-
ferentiation enhances mesoderm formation and increases
the myogenic potential of Pax3-induced ES cells [66].
Similarly, over-expression of Pax7 promotes the expansion
of myogenic progenitors which possess muscle regener-
ation potentials [67]. Nonetheless, activating the myogenic
signaling pathway with small molecular inducers, which
can be easily administered into, or withdrawn from differ-
entiation media, to direct myogenic specification remains
a practical and appealing approach in view of potential
cell-based therapies.

Bexarotene as an efficient inducer of myogenic
differentiation

RXR is critical for the early stages of embryonic develop-
ment [24,26,27]. A recent study has identified bexarotene,
a RXR-selective ligand, to be an effective inducer for en-
hancing myogenic differentiation in the pluripotent stem
cells [46]. Interestingly, the RXR selective ligand enhances
myogenic differentiation in a concentration-dependent
manner. The range of bexarotene working concentration
is wide, 10-1000 nM, which reflects the kinetics of ligand
affinity for the receptor [46]. More importantly, high con-
centrations of bexarotene do not inhibit the differentiation
of pluripotent stem cells into skeletal muscle lineage [46].
This is in stark contrast to the narrow concentration range
of RA on myogenic differentiation in vitro [46].

During P19 myogenic differentiation, RA increases the
expression of mesoderm factors Meox1 and Pax3 [53].
Although both Meox1 and Pax3 are important for myo-
genesis, over-expression of Meox1 per se is not sufficient
to induce P19 myogenic differentiation [68,69]. Interest-
ingly, bexarotene increases the transcript levels of Meox1
with a greater efficacy than RA, whereas RA has a larger
impact on Pax3 gene expression than bexarotene [46].
Nonetheless, the temporal expression of muscle-specific
gene program in bexarotene-enhanced P19 myogenic dif-
ferentiation is similar to myogenesis in vivo, and the RXR
ligand acts as an effective inducer for the specification of
skeletal muscle lineage [46]. It is worth noting that
bexarotene has efficacies comparable to RA at converting
the P19 stem cells into muscle lineage [46]. While RA
may enhance skeletal myogenesis by expanding the pro-
genitor population [53], bexarotene appears to affect germ
layer fate determinations, and more specifically, promote
mesoderm differentiation [46].
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ES cells respond to RA poorly with respect to myo-
genic differentiation, i.e, RA has a very low efficacy at
converting the ES cells into skeletal muscle lineage [46].
DMSO is not suitable for ES cell differentiation due to
its toxicity to the cells. However, bexarotene alone is able
to specify the ES cells into muscle lineage at a relatively
high efficacy [46]. Thus, bexarotene is a much more ef-
fective inducer than RA to enhance the differentiation of
ES cells into skeletal muscle lineage [46]. In addition,
bexarotene is much more effective at inducing the tran-
scripts of mesoderm factor Meox1l than RA in the ES
cells, but is less efficient at the augmentation of Pax3 tran-
scripts [46].

The finding of bexarotene to be a more efficient in-
ducer than RA for myogenesis in the ES cell system is
novel and significant [46]. In the ES cells, bexarotene
alone is able to induce the expression of early differenti-
ation marker Meox1, whereas RA depends on additional
inducers to activate Meox1 expression (Figure 2). Thus,
bexarotene may enhance the commitment of skeletal
muscle lineage by fine-tuning the premyogenic tran-
scriptional networks which favor the activation of the
downstream myogenic program. Comprehensive system-
atic studies, such as RNA-seq analyses, will uncover
additional early gene networks activated by RXR-specific
signaling during mesoderm differentiation, identify novel
early regulators of myogenic differentiation, and deter-
mine the molecular mechanisms by which the RXR
agonist acts as an effective inducer of myogenic differen-
tiation in the ES cells.

Histone acetylation and myogenic enhancers

A long-range RAR binding site has been identified at the
Pax3 locus [53]. Both RAR and RXR bind to this locus dur-
ing the early stage of myogenic differentiation regardless of
RA signaling, as determined by a real-time PCR based
chromatin immunoprecipitation (ChIP) assay [46]. More
importantly, the association of transcriptional coactivator
p300 with this RXR-RAR binding site increased markedly
following RA induction [46]. In addition, p300 is detected
at a Myf5 early enhancer at the early stage of myogenic
differentiation by ChIP assay [70]. Thus, the Myf5 early en-
hancer is also directly regulated by p300.

The association of p300 to the Pax3 locus depends on
the ligand-bound RAR in an on-and-off mode, increased
about 15-fold after RA induction [46]. In contrast, the
occupancy of p300 at the Myf5 early enhancer, which
does not harbor a RAR binding site, increased only
about 2-fold following RA signaling [70]. Interestingly,
RA also increased the occupancy of P-catenin at the
Myf5 enhancer by about 20-fold [70]. Nevertheless, his-
tone acetylation increases at both the Pax3 locus and the
Myf5 enhancer after RA induction (Figure 2). Therefore,
RA regulates myogenic differentiation through p300-
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Figure 2 Schematic presentation of the molecular mechanisms of myogenic differentiation. RA directs myogenic differentiation through
the regulation of Pax3 and Myf5 gene expression, whereas bexarotene (BEX) enhances the commitment of skeletal muscle lineage through the
Meox1 and Pax3 pathways. The histone acetyltransferase p300 is directly involved in the regulation of myogenic differentiation through histone
acetylation at the Pax3, Myf5, and MyoD gene loci. Solid arrows indicate identified regulatory pathways, whereas a dashed arrow suggests a

potential regulatory pathway.

instigated histone acetylation in either DNA-bound RAR
dependent or independent fashion.

In the differentiating myoblasts, the association of
p300 to the MyoD enhancer is stepwise enriched at
different regulatory regions, which positively correlates
with increased histone acetylation in a discrete pattern
[71]. Thus p300 is also directly involved in the early regu-
lation of MyoD gene expression through specific histone
acetylation (Figure 2). Nevertheless, the epigenetic marks
for bexarotene-activated transcriptional networks or what
transmit RXR specific signaling in myogenic differenti-
ation remain to be determined. A comprehensive and
systematic analysis by ChIP-seq will identify additional
p300-dependent myogenic enhancers and uncover novel
epigenetic marks to delineate the roles of p300 and his-
tone acetylation in nuclear receptor-regulated stem cell
differentiation.

Cell-based therapeutics

Many diseases and conditions, including muscular dys-
trophy, aging, cancer, inflammation, starvation, AIDS,
congestive heart failure and chronic obstructive pulmon-
ary diseases, can cause muscle wasting disorders, which
can be extremely debilitating and lead to serious physical
disabilities. It would be difficult to use differentiated
skeletal myocytes for tissue transplantation and muscle

regeneration, due to the unique architecture of skeletal
muscle tissue. Thus, muscle repair or regeneration may
be best achieved through the enrichment or transplant-
ation of the progenitor cells which are already commit-
ted to the muscle lineage but not yet fully differentiated
into skeletal myocytes. However, many challenges re-
main regarding the efficacy of myogenic specification. Is-
sues to note are what type of stem cell is the best source
to generate the progenitor cells and what is the best
strategy to enrich the desired progenitor cells for poten-
tial clinical application.

More importantly, the transplanted progenitors must
supplement to both the muscle fibers and the muscle
stem cell pool in a successful long term therapy for skel-
etal muscle regeneration or repair. Muscle satellite cells
appear to be an idea cell source for muscle regeneration,
because following transplantation, they not only generate
muscle efficiently, but also replenish the satellite cell pool
[72,73]. However, their therapeutic potential is restricted
by their relatively low abundance in muscle. In addition,
the in vivo regeneration capacity of these satellite cells is
greatly reduced following in vitro expansion [74]. Finally,
in the severe cases of muscular dystrophy, the regenerative
source of satellite cells is often exhausted [75].

On the other hand, the ES cells can be unlimitedly ex-
panded in tissue culture, while maintaining their potential
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for pluripotent differentiation. Moreover, ES-derived myo-
genic progenitors can be seeded in the muscle stem cell
compartment [66,67]. Thus, ES cell-based muscle regener-
ation has some unique advantages. However, use of ES
cells in muscle wasting disorders is curtailed by the low
frequency of myogenic specification in the cultures and
the difficulty of identifying and isolating the progenitor
cells. The low frequency of ES cells to commit into skel-
etal muscle lineage is mostly due to the low efficiency of
mesoderm formation during EB-differentiation in the ab-
sence of inducing signals.

To harness the potential of ES cells in muscle regener-
ation, we need to identify small molecule inducers that
are capable of efficiently committing the ES cells into
the skeletal muscle lineage. Attempts at using RA in ES
cell cultures have yielded poor results, while the RXR
ligand appears to be a better inducer for myogenic dif-
ferentiation. However, the mechanisms involved have
not yet been fully determined. A comprehensive know-
ledge of the differentiation cues in ES cultures and a
better insight into the regulation of myogenic pathway
in vivo will help us identify additional small molecule in-
ducers and develop the optimal protocols to generate
sufficient amount of myogenic progenitors for muscle
regeneration or repair.

Small molecule inducers have been used to reprogram
somatic cells, to maintain induced pluripotent states,
and to directly control lineage specification. They also
have the potential to control the endogenous cell popu-
lations for regeneration purposes. The advance of regen-
erative medicine will benefit tremendously from a deep
understanding of chemical biology, and a better compre-
hension of the signaling pathways and the molecular
mechanisms involved in cell fate determinations.

Conclusions

Pluripotent stem cells possess a tremendous potential
for the treatment of muscle-related diseases, because of
their capacities to differentiate into the skeletal muscle
lineage. However, small molecule inducers are required
to direct the myogenic differentiation in vitro with an ef-
ficacy appropriate for viable cell-based therapies. Recent
studies have uncovered the power of RXR-selective
ligand to commit the ES cells into skeletal muscle
lineage. Concerted systematic studies using stem cell dif-
ferentiation as a model system will uncover novel early
regulators and epigenetic marks important for myogenic
differentiation. Pharmacological, or small molecule ap-
proaches to alter chromatin landscape for high efficiency
of differentiation can then be identified. We will be able
to develop non-toxic protocols with the optimal combin-
ation of inducers and conditions to commit the muscle
lineage in view of generating muscle progenitors for
clinical applications.
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