Skip to main content
Fig. 2 | Cell & Bioscience

Fig. 2

From: Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health

Fig. 2

Molecular mechanisms of the two-phase adipogenesis process. A common two-phase adipogenesis process is described: early determination and terminal differentiation phases, involving an intricate integration of cytoarchitecture, transcription factors and co-regulators, and signaling pathways. In the first commitment step, mesenchymal progenitors commit their fate to certain preadipocytes exclusively under the restriction control of bone morphogenetic protein (BMP) signaling. Subsequently, during the second adipogenic differentiation step in both white and brown adipocytes, the master regulator of adipogenesis-peroxisome proliferator-activated receptor-γ (PPARγ) is stimulated and synergizes with CCAAT/enhancer-binding protein α (C/EBPα) to fully activate a transcriptional cascade contributing to and maintaining stable maturation of functional adipocytes and to further engage in adipose biology modulation. Significantly, the zinc-finger transcriptional co-regulator PR domain-containing 16 (PRDM16), cooperating with PPARγ and C/EBPs, and PPARG coactivator 1α (PGC-1α) are of fundamental importance to induce mitochondrial biogenesis and BAT-specific genes expression in the brown adipocyte terminal differentiation and white adipocytes browning process. MYF5 myogenic factor 5, BMP2,4,7 bone morphogenetic protein 2,4,7, EBF2 early B-cell factor 2, ZFP423 zinc finger protein 423, TCF7L1 T cell-specific transcription factor 7-like 1, CREB cAMP-response element-binding protein, KLFs Krüppel-like factors

Back to article page