Skip to main content
Fig. 3 | Cell & Bioscience

Fig. 3

From: Dapagliflozin attenuates hypoxia/reoxygenation-caused cardiac dysfunction and oxidative damage through modulation of AMPK

Fig. 3

Dapagliflozin (DAPA) prevents hypoxia/reoxygenation-induced PGC-1α downregulation and dysfunction of mitochondrial biogenesis.

Representative Western blot images (a) and relative densitometric bar graphs (b) of PGC-1α/β-actin in H9c2 cells exposed to hypoxia for 1 h and reoxygenation for 4 hr (H1R4) were shown. In some cases, cells were transfected with AMPK siRNA 48 hr or pretreated with DPI before exposure to hypoxia/reoxygenation. Representative Western blot images (c) and protein expression levels of PGC-1α and β-actin in ventricular tissue from sham control, ischemia/reperfusion (I/R), and I/R plus DAPA treatment animals (d), eight animals in each group, were shown. Percentage of cells expressing JC-1 monomers (green fluorescence; FL1) (e) and JC-1 aggregates (red fluorescence; FL2) (f) were assessed using flow cytometry. Mitochondrial DNA copy numbers were examined after stimulation of hypoxia/reoxygenation in H9c2 cells (g) and primary cardiomyocytes (h). Mitochondrial DNA copy numbers in ventricular tissue from sham control, ischemia/reperfusion (I/R), and I/R plus DAPA treatment animals, eight animals in each gruop, were measured (i). For in vitro experiments, the data were presented as the mean ± SD of three biological replicates at three separate times. (* indicating p < 0.05 compared with the control group; # indicating p < 0.05 compared to H1R4 condition or I/R without DAPA treatment; & indicating p < 0.05 compared with the DAPA-treated cells in H1R4 condition)

Back to article page