Skip to main content
Fig. 5 | Cell & Bioscience

Fig. 5

From: CRISPR Cpf1 proteins: structure, function and implications for genome editing

Fig. 5

Base editing and control of gene expression by CRISPR-ddCpf1 systems. a CRISPR activation (CRISPRa) for gene expression. ddCpf1 can be used as a transcriptional activator by coupling with for instance: four copies of the herpes simplex viral protein 16 (VP16) activation domain (VP64), p65, and the Epstein–Barr virus R transactivator (RTa). This fusion protein called VPR has the ability to augment the gene expression. b Sun Tag system is composed of a small peptide epitopes array that recruit multiple copies of single-chain variable fragment (scFv) for fusion with multiple copies of VP64 domains. c CRISPR interference (CRISPRi) for gene repression. The CRISPR–CPF1 complex can imped the assembly of RNA polymerases and the promotor in the transcriptional initiation step or perturb the elongation of RNA polymerases to interfere with gene expression. In addition, a transcriptional repressor domains such as Krüppel-associated box (KRAB) can be fused to ddCpf1 to induce gene repression. d CRISPR base editing by the complexes of ddCpf1-BE–crRNA–target DNA. This complex is composed of APOBEC1 as a cytosine nucleoside deaminase and DNA glycosylase inhibitor (UGI)

Back to article page