Skip to main content

New insights into genome maintenance

Maintaining genome stability is essential for preventing various human diseases including cancer. Previous studies have elucidated multiple cellular mechanisms for genome maintenance, which can be classified into two major groups: one that deals with replication-associated abnormalities, and the other that repairs various DNA lesions. The replication fidelity maintenance mechanisms involve DNA polymerases and the DNA mismatch repair pathway. While replicative DNA polymerases and the mismatch repair system are responsible for correcting mispairs generated during DNA replication [1, 2], translesion DNA polymerases ensure uninterrupted DNA replication by bypassing template strand DNA lesions [3], which can be removed after the completion of DNA synthesis. The DNA repair pathways, which include base excision repair [4], nucleotide excision repair [5, 6], double strand break repair [7–9], and inter-strand crosslink repair [10, 11], remove essentially all kinds of DNA lesions. These discoveries have led to the current understanding of cellular response to DNA damage, and have earned the field many remarkable awards, including the 2015 Nobel Chemistry Prize to Tomas Lindahl, Paul Modrich and Aziz Sancar [12–15], and the 2015 Lasker Basic Medical Research Award to Stephen Elledge and Evelyn Witkin [16].

Building on the previous discoveries, recent investigations in the field have revealed new insights into the mechanisms of the genome maintenance systems. In this thematic series, Cell and Bioscience presents a series of reviews attempting to provide an overview of the latest breakthroughs and developments in the field. Specifically, this series focuses on (1) novel regulation of DNA damage response by ubiquitinating and deubiquitinating enzymes (He et al.); (2) the impact of bulky DNA lesions on error-prone or error-free transcription (Shin et al.); (3) the genome maintenance function of Fanconi anemia proteins (Palovcak et al.); (4) new factors and mechanisms of DNA break end joining (Wang and Xu); (5) mutagenic and tumorigenic activities of APOBEC3B (Peng et al.); and (6) nonsense RNA-mediated cellular surveillance pathway (Nickless et al.).

It is our sincere hope that this thematic series brings our readers enlightenment and offers sufficient introductory information to help them appreciate the new breakthroughs and developments in the field.

References

  1. Kolodner RD. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair. 2016;38:3–13.

    Article  CAS  PubMed  Google Scholar 

  2. Kunkel TA, Erie DA. Eukaryotic mismatch repair in relation to DNA replication. Ann Rev Genet. 2015;49:291–313.

    Article  CAS  PubMed  Google Scholar 

  3. Lange SS, Takata K, Wood RD. DNA polymerases and cancer. Nat Rev Cancer. 2011;11(2):96–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008;18(1):27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fousteri M, Mullenders LH. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 2008;18(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  6. Shuck SC, Short EA, Turchi JJ. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res. 2008;18(1):64–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pannunzio NR, Li S, Watanabe G, Lieber MR. Non-homologous end joining often uses microhomology: implications for alternative end joining. DNA Repair. 2014;17:74–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weterings E, Chen DJ. The endless tale of non-homologous end-joining. Cell Res. 2008;18(1):114–24.

    Article  CAS  PubMed  Google Scholar 

  9. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64.

    Article  CAS  PubMed  Google Scholar 

  10. Shen X, Li L. Mutagenic repair of DNA interstrand crosslinks. Environ Mol Mutagen. 2010;51(6):493–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 2011;11(7):467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li GM. Celebrating the work of Nobel Laureate Paul Modrich. Sci China Life Sci. 2016;59(1):93–6.

    Article  PubMed  Google Scholar 

  13. Mi S, Klungland A, Yang YG. Base-excision repair and beyond—a short summary attributed to scientific achievements of Tomas Lindahl, Nobel Prize Laureate in Chemistry 2015. Sci China Life Sci. 2016;59(1):89–92.

    Article  PubMed  Google Scholar 

  14. Orren DK. The nobel prize in chemistry 2015: exciting discoveries in DNA repair by Aziz Sancar. Sci China Life Sci. 2016;59(1):97–102.

    Article  PubMed  Google Scholar 

  15. Li GM. A personal tribute to 2015 nobel laureate Paul Modrich. DNA Repair. 2016;37:A14–21.

    Article  CAS  PubMed  Google Scholar 

  16. Zou L, Li L. The 2015 Albert Lasker basic medical research award: an exhilarating journey to the DNA damage checkpoint. Sci China Life Sci. 2016;59(1):103–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research in G.M. Li’s lab is supported by National Institutes of Health Grants CA115942, CA192003, and GM112702.

Competing interests

The author declares that he has no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Min Li.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GM. New insights into genome maintenance. Cell Biosci 7, 10 (2017). https://doi.org/10.1186/s13578-017-0137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13578-017-0137-7