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Chemical chaperone 4-phenylbutyrate prevents
endoplasmic reticulum stress induced by T17M

rhodopsin

Haibo Jiang, Sigi Xiong and Xiaobo Xia™

Abstract

ER stress induced by T17M rhodopsin.

Background: Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M
mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study
aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M.

Results: ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover
of WT and T17M rhodopsin was measured by cycloheximide chase analysis. The activity of ubiquitin-proteasome
system was evaluated by GFPU reporter. We found that T17M rhodopsin was misfolded, ubiqutinated and
eliminated by ER-associated degradation pathway (ERAD) in ARPE-19 cells. Accumulated T17M rhodopsin
induced unfolded protein response, but had no effect on the activity of ubiquitin proteasome system. Moreover,
chemical chaperone 4-phenylbutyrate facilitated the turnover of T17M rhodopsin and prevented apoptosis and

Conclusions: Chemical chaperone could attenuate UPR signaling and ER stress induced by T17M rhodopsin and
has potential therapeutic significance for retinitis pigmentosa.
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Background
Retinitis pigmentosa (RP) is considered the most commonly
inherited retinal dystrophy with an estimated prevalence of
approximately 1:4000 [1]. RP is caused by the progressive
loss of rod and cone photoreceptors with clinical hallmarks
including the sensitivity to dim light, abnormal visual
function and characteristic bone spicule deposits of
pigment in the retina [2]. Mutations in rhodopsin, a
photon receptor that initiates phototransduction, have
been linked to autosomal dominant retinitis pigmentosa
(ADRP), accounting for about 10% of all reported cases of
RP [3,4]. Since the identification of the P23H mutation,
more than 130 different mutations of rhodopsin have been
shown to cause RP [5].

A mouse model of ADRP was created with a threonine-
to-methionine mutation at the 17th residue of rhodopsin,
which abolishes the glycosylation site at Asnl5 and results
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in a class I RP phenotype [6,7]. Transgenic mice carrying
human T17M rhodopsin gene showed significant photo-
receptor apoptosis as early as 24 h after illumination,
while mice expressing a rhodopsin transgene with P23H
mutation were only minimally affected [8]. Further study
showed that endoplasmic reticulum (ER) stress response
is involved in retinal degeneration in T17M rhodopsin
retinas in vivo, accompanied by the up-regulation of au-
tophagy markers and the activation of mitochondrial
apoptosis via the up-regulation of pro-apoptotic Bcl2
[9]. Our previous study showed that T17M rhodopsin
accumulated in ER, increased the cytotoxicity and pre-
disposed the cells to ER stress induced cell death [10].
Misfolded proteins that do not pass ER quality control
(ERQC) are selectively recognized and cleared during a
process called ER-associated degradation (ERAD) that
involves the export of misfolded proteins from ER followed
by proteasomal degradation [11]. Up to now, the role
of ERAD in the clearance of T17M rhodopsin is un-
clear. We proposed that T17M rhodopsin may be mis-
folded and eliminated via ERAD, and chemical chaperone

© 2014 Jiang et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:xbxia21@163.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Jiang et al. Cell & Bioscience 2014, 4:75
http://www.cellandbioscience.com/content/4/1/75

4-phenylbutyrate may prevent ER stress induced by rhod-
opsin T17M.

In this study, we used a spontaneously arising retinal
pigment epithelia (RPE) ARPE-19 cell line as the ex-
perimental model to investigate the role of ERAD in
the clearance of T17M rhodopsin and the effects of
4-phenylbutyrate (4-PBA) on ER stress induced by
rhodopsin T17M.

Methods

Cell culture and plasmid constructs

WT and T17M rhodopsin-myc constructs were described
previously [10]. p97/VCP QQ-HA construct was described
previously [12]. ARPE-19 cells were obtained from ATCC
and cultured with DMEM supplemented with 10% FBS
and penicillin-streptomycin (50 pg/ml) at 37°C in 5% CO,.
4-PBA (Sigma, St. Louis, MO, USA) was dissolved in
filtered sterile water at 1 M stock concentration.

Immunoblotting
Cells were lysed with RIPA sample buffer, the supernatant
was collected and protein concentration was determined
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using a Pierce protein assay kit (Thermo Scientific). 30 pg
proteins were separated on SDS-PAGE gel and transferred
to PVDF membrane (Millipore). The membrane was incu-
bated for 1 h in a blocking solution (5% dry milk in 0.1%
triton X-100/PBS buffer) followed by incubation with ap-
propriate primary antibodies in a blocking solution. After
being washed in 0.1% triton X-100/PBS buffer, the mem-
brane was incubated in appropriate secondary antibodies
for 1 h and visualized via an enhanced chemiluminescence
kit (GE Health) according to the manufacturer’s instruc-
tion. Antibodies were as follows: actin, HA antibodies
(Abcam), Myc, Erasin, GRP78, GRP94, CHOP, pelF-2q,
elF-2a, and active ATF-6a antibodies (Cell Signaling),
GFP antibody (Invitrogen).

Analysis of protein turnover

ARPE-19 cells were transfected with erasin SMARTpool
siRNAs (Dharmacon) using Dharmafect 1 reagent (Thermo
Fisher Scientific) according to the manufacturer’s instruc-
tions. 48 h later, cells were transfected with Myc-tagged
rhpdopsin using lipofection 2000 (Invitrogen). After 24 h,
cells were treated with 50 pg/ml cycloheximide (Sigma)

Figure 1 Ubiquitination of myc-tagged rhodopsin T17M. (a). Upper: ARPE-19 cells were transfected with myc-tagged rhodopsin T17M or WT

immunoblotting. Lower: Immunoprecipitation of transfected myc-tagged rhodopsin T17M or WT from ARPE-19 cells after MG132 treatment. The
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and collected at the indicated time points. For turnover
experiments with p97/VCP QQ-HA, DNA construct was
co-transfected with Myc-tagged rhpdopsin plasmid DNA
followed by the inhibition of protein synthesis with cyclo-
heximide. Equal amounts of protein in lysates from the
different time points were separated by SDS—PAGE and
immunoblotted.

RNA extraction, RT-PCR and XBP1 splicing assay

Total RNA was extracted from cells with TRIzol (Invitro-
gen) and ¢cDNA was synthesized with a High Capacity
c¢DNA Reverse Transcription kit (Applied Biosystems).
Primers encompassing the spliced sequences in XBP1
mRNA (5'-ACACGCTTGGGAATGGACAC-3" and 5'-
CCATGGGAAGATGTTCTGGG-3") and loading con-
trol Actin (5-GCGAGAAGATGACCCAGATC-3; and
5-CCAGTGGTACGGCCAGAGG-3’) were used for PCR,
and products were separated by electrophoresis through a
2.5% agarose gel and visualized by ethidium bromide
staining.
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Apoptosis detection

ARPE-19 cells were transfected with myc-tagged wild-type
or T17M mutant constructs. Twenty hours after transfec-
tion, apoptosis was detected by Annexin V-FITC Apop-
tosis Detection Kit (Sigma). Briefly, cells were collected
and washed twice with PBS. Then cells were resuspended
in 500 pL Binding Buffer, and incubated with the addition
of 5 uL. Annex V-FITC and 10 pL propidium iodide at
37°C for 15 min in the dark. Next the stained samples
were subjected to flow cytometry analysis to detect the
apoptosis rate.

Determination of cellular 26S proteasome activity

A stable cell line overexpressing GFPY in ARPE-19 cells
was established as a cellular model to test 26S proteasome
activity after G418 selection. The reporter gene consisted
of a short tag CL1 fused to the C-terminus of GFP. CL1,
encoding a fragment of amino acids (ACKNWFSSLSHE-
VIHL), was shown to be a degradation substrate for
ubiquitin-proteasome system [13]. The expression level of
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Figure 2 Knockdown of erasin and overexpression of p97/VCP-QQ inhibit rhodopsin turnover. ARPE-19 cells were transfected with
myc-tagged rhodopsin T17M (a) or WT (b) expression constructs 48 h after transfection with erasin siRNAs. At 72 h post-knockdown, cells
were treated with cycloheximide for the indicated time points and the proteins were detected by immunoblotting. ARPE-19 cells were
cotransfected with HA-tagged p97/VCP-QQ and rhodopsin T17M (c). 36 h after co-transfection, cells were treated with cycloheximide for
the indicated time points and the proteins were detected by immunoblotting. Quantification of relative level of remained WT or T17M
rhodopsin was shown in right panels. Data were presented as mean + S.D. **p < 0.01 compared to Control.
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GFPY after the transfection of rhodopsin T17M or WT
was determined by immunoblotting.

Statistical analysis

All experiments were repeated at least three times. Results
were presented as means + standard deviation (SD). Statis-
tical significance of differences was evaluated with one
way ANOVA followed by the Tukey test and Dunnett’s
test. p<0.05 was considered as statistical significance.
GraphPad Prism 5 software was used for the analysis.

Results

Rhodopsin T17M mutant protein is ubiquitinated

Proteins that are terminally misfolded in the ER may be
degraded by the proteasome via ERAD. Typically, such
proteins are unstable and show a reduced half-life. Be-
cause ERAD substrates are typically ubiquitinated [14], we
examined whether rhodopsin T17M protein is modified
by ubiquitination. We immunoprecipitated Myc-tagged
wild-type and T17M mutant rhodopsin proteins from
ARPE-19 cells using myc antibody and probed the im-
munoprecipitates. As shown in Figure 1, considerably
more rhodopsin T17M protein was observed in cell
treated with MG132 than in untreated cells, confirming that
proteasome inhibition leads to the stabilization of rhodopsin
T17M. After immunoprecipitation and normalization, we
observed a smear on the upper portions of the gels by
using ubiquitin antibody, especially after MG312 treat-
ment, indicating that rhodopsin T17M protein is modified
by ubiquitination.

Rhodopsin T17M mutant protein is degraded via ERAD
pathway
To examine whether rhodopsin T17M mutant protein is
eliminated by ERAD pathway, we disrupted two compo-
nents involved in ERAD pathway to see how this would
affect the turnover of rhodopsin T17M protein. The first
protein we targeted was erasin. Erasin promoted ERAD.
Overexpression of erasin enhanced the degradation of
ERAD substrates, whereas siRNA-mediated reduction of
erasin expression almost completely blocked ERAD [15].
We transfected ARPE-19 cells with myc-tagged WT or
rhodopsin T17M after siRNA-mediated knockdown of
erasin, and assessed protein turnover by cycloheximide
chase analysis. The results showed that rhodopsin T17M
was readily degraded with a half-life of around 4 h,
whereas it was stable over the 6 h chase period in erasin
knockdown cells. Disruption of erasin also induced in-
creased rhodopsin T17M at 0 h cycloheximide treatment
(Figure 2a). In contrast, knockdown of erasin had no sig-
nificant effect on the turnover of rhodopsin WT protein
(Figure 2b).

We next examined p97/VCP, which is essential for the
dislocation of proteins from ER during ERAD [16]. We
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utilized a dominant-negative ATPase deficient p97/VCP-
QQ mutant, which has been shown to slow the degradation
of ERAD substrates. Accordingly, we cotransfected ARPE-
19 cells with HA-tagged p97/VCP-QQ and myc-tagged
WT or rhodopsin T17M, and assessed protein turnover
by cycloheximide chase analysis. The results showed that
the amounts of rhodopsin T17M was much higher in
p97/VCP-QQ overexpressing cells than in control cells,
indicating that p97/VCP-QQ inhibited the turnover of
rhodopsin T17M (Figure 2c). Taken together, these results
strongly indicate that rhodopsin T17M mutant protein is
degraded via ERAD pathway.

Rhodopsin T17M mutant protein has no effect on
ubiquitin-proteasome system

Ubiquitin-proteasome system (UPS) dysfunction is an im-
portant pathogenic factor in neurodegeneration diseases.
The most common rhodopsin mutation P23H forms
aggregates in ER and impairs UPS [17]. To investigate
the effect of rhodopsin T17M on proteasome, ARPE-19
cells with stable expression of a GFP-conjugated prote-
asome degradation signal GFPY was used [13]. The GFPY
reporter consists of a short degron, CL1, fused to the C-
terminus of GFP. The product of GFPY was continuously
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Figure 3 Effect of rhodopsin T17M on ubiquitin-proteasome
system activity. (a) ARPE-19 cells stably expressing GFPY were
incubated with or without MG132 for 2 h to block the proteasome.
(b) ARPE-19 cells stably expressing GFPY were transiently transfected
with rhodopsin T17M or WT. Lysates were immunoblotted with the
antibody to GFP or myc. (c) Quantification of relative GFP level
shown in (b). Data were presented as mean + S.D.
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degraded and kept at a very low level under normal
conditions. A decline of GFPY level reflects ubiquitin-
proteasome system activity, whereas an increase of
level indicates that UPS activity is reduced or impaired.
We have established a GFPV stable expression ARPE-19
cell line using G418 selection. The GFPV protein was sig-
nificantly increased when proteasome was blocked by
MG132, a proteasome inhibitor (Figure 3a). Then, ARPE-
19 cells were transiently transfected with WT or rhodop-
sin T17M, and GFPY level was detected. The results
showed that there were no significant differences in GFPU
level between WT and rhpdopsin T17M (Figure 3), indi-
cating that Rhodopsin T17M mutant protein has no effect
on UPS activity.

Rhodopsin T17M mutant protein induces unfolded
protein response

The accumulation of misfolded proteins in ER can activate
unfolded protein response (UPR). To determine whether
misfolding of rhodopsin T17M would activate UPR,
ARPE-19 cells were transiently transfected with WT or
rhodopsin T17M expression vector, and the levels of ER
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chaperone and UPR-associated proteins such as GRP78,
GRP94, CHOP, pelF-2a, elF-2a, active ATF-6a were
assessed by immunoblotting. Compared to control, rhod-
opsin T17M mutant increased the levels of these proteins
(Figure 4).

4-phenylbutyrate prevents UPR induced by rhodopsin
T17M

4-phenylbutyrate (4-PBA) is a small chemical chaperone
that could reduce ER stress both in vivo and in vitro.
Thus we used PBA to treat ARPE-19 cells overexpress-
ing rhodopsin T17M. Western blot analysis showed that
the levels of GRP78, GRP94, CHOP, pelF-2a, elF-2q,
and active ATF-6a were reduced after 4-PBA treatment
(Figure 4a, b). We also detected the splicing of XBP-1 in
ARPE-19 cells overexpressing rhodopsin T17M. The
small size form of XBP-1(XBP-1 s) was observed in rhod-
opsin T17M overexpressing cells. As expected, 4-PBA re-
duces the splicing of XPB-1 induced by rhodopsin T17M
(Figure 4c, d). Taken together, these data suggested that
4-PBA attenuates UPR signaling and ER stress induced
by rhodopsin T17M in ARPE-19 cells.
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Figure 4 4-PBA alleviates UPR and ER stress induced by rhodopsin T17M mutant. ARPE-19 cells were transfected with myc-tagged rhodopsin T17M
or WT expression constructs and treated with 5 mM 4-PBA. After 24 h, the indicated proteins (a) and splicing of XBP-1(c) were detected by
immunoblotting and RT-PCR, respectively. Quantification of the data in (a) and (b) were shown in (c) and (d), respectively. Data were
presented as mean + S.D. *:T17M vs. Control; #: T17M + 4-PBA vs. T17M; **p < 0.01,; *p < 0.05; # p < 0.05.
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Phenylbutyric acid facilitates rhodopsin T17M degradation
and inhibits apoptosis induced by rhodopsin T17M

To investigate whether 4-PBA has an effect on the turn-
over of rhodopsin T17M protein, we performed cyclohexi-
mide chase analysis. Upon 4-PBA treatment rhodopsin
T17M had a short half-life of ~3 h, compared to ~4 h
half-life in absence of 4-PBA (Figure 5a, b). However, we
found that 4-PBA had no significant effect on intracellular
localization of rhodopsin T17M in ARPE-19 cells (data
not shown). Rhodopsin T17M protein is known to accu-
mulate in ER and induce ER stress. Thus we wondered
whether 4-PBA had protective effect on apoptosis induced
by rhodopsin T17M. The results showed that the apop-
tosis rate was significantly higher in cells transfected with
rhodopsin T17M expression vector than in cells trans-
fected with empty vector. However, 4-PBA partially inhib-
ited apoptosis induced by the overexpression of rhodopsin
T17M (Figure 5c¢, d).

Discussion

In this study, we found that rhodopsin T17M protein
was ubiquitinated and the ubiquitination was increased
following proteasome inhibitor treatment. Moreover,
interference of ERAD either by overexpression of a
dominant negative p97/VCP-QQ protein or by knock-
down of erasin slowed the degradation of rhodopsin
T17M mutant protein.
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RPE is a monolayer of hexagonal cells separating the
neural retina from the underlying choroidal vascular bed.
RPE cells are essential for the development, survival, and
physiological activity of photoreceptor cells [18]. Muta-
tions in genes that are expressed in the RPE can lead to
photoreceptor degeneration. On the other hand, muta-
tions in genes expressed in photoreceptor cells can lead to
degenerations of the RPE. Thus RPE and photoreceptors
cells are closely linked [19]. It is found that rhodopsin is
expressed in RPE cells [20]. The human retinal pigment
epithelial cell line (ARPE-19), a transformed human
retinal pigment epithelial cell line, was employed to in-
vestigate the effect of rhodopsin mutant on RPE degener-
ation. In addition, some mammalian cell lines, such as
293 s [21], HeLa [22] and COS [23] were used to investi-
gate biological functions of rhodopsin involved in RP
mechanism.

T17M is a type II mutant rhodopsin that traffics abnor-
mally and forms pigment inefficiently [24]. Proper protein
folding and processing is necessary to maintain cellular
homeostasis. Protein misfolding could potentially not only
affect function but also lead to protein aggregation and
induce toxicity. Not surprisingly, cells have developed
elaborate and complex systems to eliminate unwanted
and potentially toxic proteins. One of the first quality
control checkpoints is in the ER, where misfolded pro-
teins are recognized and eliminated by ERAD. Although
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Figure 5 4-PBA facilitates rhodopsin T17M degradation and inhibits apoptosis induced by rhodopsin T17M. (a) ARPE-19 cells were transfected
with myc-tagged rhodopsin T17M and untreated by 4-PBA (control) or treated by 5 mM 4-PBA. After 36 h, cells were treated with cycloheximide for

the indicated time points and the proteins were detected by immunoblotting. (b) Quantification of the proteins shown in (a). Data were presented as
mean + S.D. *p < 0.05. (c) ARPE-19 cells were stained with annexin V and PI. The apoptotic cells were annexin V-positive. (d) Quantification of apoptotic

cells. Data were presented as mean + S.D. *p < 0.05, compared with control.
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many mutations involved in human disease are thought
to cause proteins to misfold, relatively few of them have
been shown to be eliminated by ERAD. Here, we pre-
sented evidence that mutant rhodopsin protein linked
to RP is degraded by ERAD.

Misfolded rhodopsin R32H is a substrate of the ERAD
effector VCP, an ATP-dependent chaperone that extracts
misfolded proteins from the ER and escorts them for
proteasomal degradation [25]. Inactivation of VCP/
ter94 suppresses retinal pathology caused by mis-
folded rhodopsin in Drosophila [26]. Co-expression
of certain ERAD factors was sufficient to reduce Rh-1
protein levels and suppress ER stress reporter activa-
tion, indicating that ERAD acts as a protective mech-
anism against retinal degeneration in the Drosophila
model for ADRP. These results suggest that manipula-
tion of ERAD may serve as a powerful therapeutic
strategy against a number of diseases associated with
ER stress [27].

ER is responsible for the folding of secreted and mem-
brane proteins in eukaryotic cells. Disruption of protein
folding leads to ER stress. Chronic ER stress can cause
cell death and is implicated in the pathogenesis of many
human diseases. ER stress response is involved in retinal
degeneration in T17M Rho mice and S334ter Rho rats
[28]. Ablation of CHOP, selective activation of ATF6 or
PERK, disruption of CDK5 and MEKK1 pathway, or the
stimulation of ERAD may serve as a powerful therapeutic
strategy against rhodopsin mutants induced RP and re-
verse severe retinal degeneration [29-32]. Chemical chap-
erones reduce ER stress and are proposed as therapeutic
target for various diseases [33]. 4-PBA is a low molecular
weight terminal aromatic substituted fatty acid approved
for clinical use as an ammonia scavenger in children with
urea cycle disorders [34]. Recent reports showed that
4-PBA has protective effects against ER stress-induced
neuronal cell death [35,36]. In this study our results
showed that 4-PBA reduced ER stress induced by
T17M rhodopsin. Thus 4-PBA is a promising agent to
treat RP because it could prevent RP induced by T17M
rhodopsin mutant. Although 4-PBA facilitates the
degradation of T17M mutant and attenuates apop-
tosis induced by ER stress, it does not affect the loca-
tion of T17M mutant. Further studies are necessary
to investigate whether intracellular trafficking of imma-
ture or misfolded rhodopsin is a potential target for RP
therapy.

Conclusions

T17M rhodopsin is misfolded, ubiquitinated and elimi-
nated by ER-associated degradation pathway. Chemical
chaperone could attenuate UPR signaling and ER stress
induced by T17M rhodopsin and has potential therapeutic
significance for retinitis pigmentosa.
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