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regulation: implications in the control of viral
latency and reactivation
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Abstract

Thyroid hormone (TH) is involved in many biological functions such as animal development, cell differentiation, etc.
Variation and/or disruption of plasma TH level often led to abnormalities and physiological disorders. TH exerts the
effects through its nuclear receptors (TR). Literature showed that procedures resulted in TH alteration also linked to
reactivation of several viruses including Herpes Simplex Virus Type -1 (HSV-1). Bioinformatic analyses revealed a
number of putative TH responsive elements (TRE) located in the critical regulatory regions of HSV-1 genes such as
thymidine kinase (TK), latency associated transcript (LAT), etc. Studies using neuronal cell lines have provided
evidences demonstrating that liganded TR regulated viral gene expression via chromatin modification and
controlled viral replication. The removal of TH reversed the inhibition and induced the viral replication previously
blocked by TH. These results suggest that TH may have implication to participate in the control of reactivation
during HSV-1 latency.

1. Thyroid Hormone Overview
Thyroid hormone (TH or T3) contributes to numerous
crucial physiological processes ranging from animal
development, proliferation, differentiation, apoptosis, etc
[1]. Aberration due to the lack of TH led to disorders
such as the goiter (thyroid gland enlargement) and cre-
tinism (a type of severe mental retardation) [2]. TH defi-
ciency may result from the shortage of iodine (essential
for TH biosynthesis), thyroidectomy, diseases, or inher-
ited defects, etc. In humans, developmental defects
because of TH deficiency can be treated by TH replace-
ment at appropriate time frame [3].

2. Transcriptional regulation by TR
TH is vital for the normal functions of many organs and
exert its ability through the nuclear receptor [1]. Two
TR genes (TRa and TRß) were identified in vertebrates
and both exhibit strong binding to their ligand TH
[4-7]. They are members of nuclear hormone receptor
super-family [8-10]. Although recent discovery suggested
non-genomic action, TRs primarily produce their

activity by binding to TH response element (TRE) and
regulating transcription in nucleus through the status of
TH [11]. TRE is a short DNA sequence located within
the promoter of a TH-response gene. The most com-
mon TRE sequence is a pair of direct repeats separated
by four nucleotides (DR4), indicating that the corre-
spondent receptors bound as a dimer [12]. This TRE is
also described as positive TRE since transcription acti-
vated by TH requires the interaction of liganded TRs to
the DR4-TRE within the promoter of TH-response
genes, most likely as heterodimers with RXRs (9-cis reti-
noic acid X receptors). TR/RXR heterodimers display
constitutive interaction to DR4-TRE in chromatin con-
text regardless the status of TH [13]. In the absence of
TH, they inhibit the gene expression and the inhibition
can be reversed when TH is available for binding to the
receptors [13]. TR controls gene expression by recruit-
ing cofactors to the vicinity of promoters. The corepres-
sors are preferentially recruited by unliganded TR while
the coactivators are enriched at the promoter via
liganded TR [13]. The characterization indicated that
corepressors such as SMRT, N-CoR, etc establish com-
plexes with histone deacetylases (HDACs) to facilitate
hypoacetylation. This process eliminates those acetyl
groups on histone tail, increases the positive charge of
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nucleosomes, and enhances the interaction between the
histones and DNA backbone. As a result, it promotes
the chromatin binding and condenses DNA structure,
therefore preventing transcription [14]. On the contrary,
many coactivators (e.g. SRC-1, CBP/p300) are histone
acetyltransferases (HATs) and induce transcription by
reversing the previous process [14].

3. Herpes Simplex viruses (HSV) and diseases
HSV is one of the most common causes of infectious
disease in humans [15]. This virus contains two distinct
types, HSV-1 and HSV-2. Their genomes demonstrate
approximately 50% homology. Diseases caused by HSV-
1 infection appear frequently [16]. It happens to chil-
dren about 3 to 5 years old and lasts 5 to 12 days [17].
After the initial infection, the virus may establish latency
in the trigeminal ganglia. Reactivation usually occurs
over the anterior mucosa, lips or perioral area of face
called cold sores or fever blisters [18]. About 10% of
viral encephalitis resulted from herpes virus [19]. The
factors leading to HSV encephalitis are unknown
although a study suggested that latent virus reactivation
in the trigeminal ganglia and prolonged lytic infection in
the temporal-parietal area of the brain may play a role
[20]. Other major clinical syndromes include cornea
infection (herpes keratitis) [21], infection of finger and
nail (herpetic whitlow) [22], herpes dermatitis [23], and
genital HSV infection [24].

4. The genome of HSV-1 and gene expression
a. Genome
HSV-1 has a linear double-stranded DNA genome. The
genome contains approximately 80-85 genes and is
about 152 kbp long. The G+C content of HSV-1 gen-
ome is approximately 68% [25]. It includes two compo-
nents, designated as L (long) and S (short). Both L and
S contain unique sequences, designated as UL and US,
and each of them is bracketed by inverted repeats. The
L and S of HSV-1 can invert with respect to one
another, yielding four linear isomers. The isomers are
defined as P (prototype), IL (inversion of the L compo-
nent), IS (inversion of the S component), ISL (inversion
of S and L) [26].

b. Characterization of gene expression
Gene expression of HSV-1 is tightly regulated in a cas-
cade fashion. The three temporal classes of genes are
designated immediate-early (a), early (b) and late (g)
genes [27]. There are five a genes and their products
are often named Infected Cell Protein (ICP), designated
ICP0, ICP4, ICP22, ICP27, and ICP47. All of these pro-
teins have regulatory functions except ICP47, which
inhibits major histocompatibility complex class I antigen
presentation [28,29]. The a genes are defined by the

presence of the sequence 5’-TAATGARATT-3’ (the cis
element for induction of a genes by VP16) upstream of
the cap site [30]. VP16 interacts with cellular factors,
including the protein Oct-1, a homeobox protein, to
activate viral a gene transcription in trans [31]. The
expression of b genes requires the expression of a genes
[32].

5. HSV-1 latency, reactivation, and its regulation
by TH
a. Latency and reactivation
HSV-1 establishes latent infections in peripheral nerve
ganglia following primary infection in the cells of muco-
sal membranes or skin [33]. Latent infection is main-
tained lifelong in the human host. The virus may
reactivate from time to time and infectious virus enters
peripheral tissues by axonal transport causing recurrent
disease or subclinical virus shedding [34]. Latent virus
may be reactivated after local or systemic stimuli such
as injury to tissues innervated by neurons harboring
latent virus, or by emotional or physical stress [35,36].
During latency, the viral transcription is restricted to a
region within the long terminal and internal repeats and
the transcripts are designated as “LATs” (Latency Asso-
ciated Transcripts) [37]. The molecular functions of
LAT during latency and reactivation are elusive and the
specific roles in gene regulation are not exactly under-
stood. Some suggested that LATs produced anti-apopto-
tic effects [38]. In neuronal cells, LAT was shown to
reduce viral gene expression and replication during pro-
ductive infection [39]. In vivo, LAT mutant virus
enhanced gene expression in sensory neurons during
lytic and latent infection [40]. Additional report showed
that LAT augments transcriptions of several lytic genes
during the latent stage in rabbits [41]. Since they are the
only major transcripts produced in significant amounts
during latency, the LATs were suggested to play a role
in establishing, maintaining, or reactivating latency [42].
During reactivation, LAT gene decreased and was

shown to be associated with repressive histones [43].
Transcripts of ICP0, on the other hand, accumulated
and the histones around its promoter became acetylated
[43]. These results suggested the roles of LAT and ICP0
during the initial stage of reactivation. As for the viral
gene expression profile in neurons during reactivation, it
was suggested to follow the paradigm of a to b to g cas-
cade and viral DNA replication occurred after a synth-
esis, similar to the lytic cycle. However, other reports
challenge this view by suggesting different sequence. For
example, studies showed that TK-minus mutant exhib-
ited greatly reduced a and b expression during reactiva-
tion [44,45]. These observations were further supported
by the finding that TK, a b gene, was detected before a
gene expression using explants reactivation model [46].
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In addition, viral replication is required for efficient a
and b expression in neuron during reactivation [47].
Together, these studies emphasized the importance of
TK and viral DNA synthesis during reactivation. Since
TK is required to provide dNTP for viral replication in
resting cells such as neurons, it is likely that TK may
play a critical role to stimulate viral DNA synthesis and
a gene expression to promote reactivation.

b. Role of TH on HSV-1 reactivation
The impacts of TH on virus-mediated pathophysiology
was discussed but not extensively studied. Low serum
thyroxine and other hormone imbalance due to
hypothalamic-hypopituitarism were associated with viral
meningo-encephalitis and related complication [48].
Effects of TH on AIDS (Acquired Immuno-Deficiency
Syndrome) and ARC (AIDS-Related Complex) were
investigated and the results suggest that TH may affect
disease development and progression [49]. At present,
the molecular basis of the HSV-1 latency/reactivation is
not extensively understood. In particular, it is not
known why virtually the entire HSV genome is tran-
scriptionally silent, with the exception of the LAT
region. It is not entirely clear how the latent virus initi-
ates gene expression/replication upon reactivation.
Recent studies suggested that TH and TRs played roles
on HSV gene silencing/activation and DNA replication
during latency/reactivation [50,51]. There are reasons to
hypothesize that the status of TH and its interaction
with TRs modulate chromatin and exert functions in
HSV-1 latency and reactivation. 1. TR is present in
ganglia neurons [52,53]. 2. TH can affect different biolo-
gical processes involved in the survival, differentiation,
maturation of neurons [54]. 3. TH and nerve growth
factor enhanced neurite outgrowth, and regulate the
expression of dynein, a protein that is involved in axonal
transport (important for virus movement), in ganlia neu-
rons [55]. There is no direct, controlled clinical study
regarding the effect of TH on HSV-1 reactivation
although alteration of corticosteroid has been linked to
HSV-1 reactivation [56,57]. A case study showed that a
patient with myxedema coma under corticosteroid treat-
ment developed herpes simplex encephalitis with

extremely low thyroxine level less than 5.2 nmol/L (nor-
mal range 12-30 nmol/L) [58]. In addition, literature
indicated that many factors, such as stress, febrile dis-
eases, trauma, surgery, radiotherapy, etc, triggering
HSV-1 reactivation also altered thyroid hormone level
(Table 1).
This table is intended to provide connection between

variation of TH level and HSV-1 reactivation. For exam-
ple, whole body hyperthermia was reported to reduce
the level of serum TH by 50%, probably due to the sup-
pression of thyroid stimulating hormone release, mono-
deiodination alteration of T4 from TH to reverse T3,
and enhanced TH clearance [76]. Importantly,
hyperthermia is regularly used by laboratories to trigger
HSV-1 reactivation in the mouse latency model [72]. In
addition, brain injury and trauma were reported to
reduce TH levels [86] and also trigger viral reactivation
(see Table 1). Therefore, TH is likely to participate in
the regulation and maintenance of viral latency and
reactivation. TH acts on almost every cell in the body
including neurons. It is likely that TH contribute, at
least in part, to the regulation of HSV-1 latency/
reactivation.

c. Characterization of HSV-1 TKTRE
Early report revealed a pair of TRE located in the HSV-
1 TK promoter and produced positive regulation [99].
Additional analyses indicated that these TK TREs are
positioned between TATA box and the transcription
initiation site arranged as “palindromes” with six nucleo-
tides spacing each other (Figure 1). TREs in this format
were also found in the promoters of TSHa and TSHb,
both exhibit negative regulations by TH in hypothala-
mic-pituitary-thyroid (HPT) axis [100]. It has been sug-
gested that this TK TREs exhibited negative regulation
by TH and TR in neuronal environment [51,99].
i. TR negatively regulated HSV-1 TK transcription in
neuronal cells
Analyses using mouse neuroblastoma cell lines N2a and
N2aTRb showed that HSV-1 TK promoter activity was
repressed by liganded TR and activated in the presence
of TR without TH using transient transfection assays
[51]. It appears that TR exerted negative regulation on

Table 1 Comparison between triggering factors of HSV-1 reactivation and thyroid hormone alteration

HSV-1 Reactivation Change in Thyroid hormone levels

Stress [59-63] [64-68]

Fever [69-72] [73-76]

Local injury to face lips or eyes [77-79] [80]

Trauma [81-83] [84-86]

Surgery [81,82,87-91] [80,92,93]

Radiotherapy [94,95] [96-98]
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HSV-1 TK promoter in a neuronal cell line since the
regulation was not observed in other cell lines such as
293HEK and Vero (data not shown). The binding of TR
to negative TREs and the outcome of histone modifica-
tion in neuronal cells were not well characterized. Chro-
matin immunoprecipitation (ChIP) assays showed that
liganded TR exhibited strong interaction to the TK pro-
moter via TREs. The binding was significantly reduced
in the absence of TH [51]. Hypoacetylation was observa-
tion at the TK promoter by TH and TR using anti-
acetyl H4 Ab [51]. These results indicated that liganded
TR was recruited to the TK promoter and reduced the
acetylation of histone tails at the TRE region.
ii. TK was repressed by TH and TR during viral infection
Based on the results of transfection assays, infections of
cells with viruses were performed to investigate the TR/
TH mediated regulation in neuronal cells. RT-PCR
assays showed that TK transcription was inhibited by
liganded TR at high moi while the viral protein synth-
esis was inhibited (unpublished data). It is noted that
the TK promoter activity was efficiently repressed by
TR/TH at low moi [51]. These results demonstrated
that liganded TR repressed TK promoter activity in neu-
ronal cells through chromatin modification via interac-
tion with TK TREs.
iii. Liganded TR mediated TK inhibition can be reversed by
TH removal
It was hypothesized that increasing TK expression may
enhance HSV-1 replication/gene expression thus pro-
moting viral DNA replication and a expression during
reactivation [47]. Results from N2aTRb cell culture

model indicated that the removal of TH de-repressed
the TK inhibition [51]. In addition, the same condition
of TH washout can reactivate the expression of ICP0
[50], another important HSV-1 a gene for reactivation.
Together these results further support the hypothesis
that TH may have implication in the HSV-1 reactivation
from latency through the induction of TK and ICP0.

6. In vitro TH-mediated HSV-1 latency cell culture
model
A cell culture model was established to investigate the
roles of TH/TR in the regulation of HSV-1 latency/reac-
tivation [50,51] (depicted in Figure 2). This system is
based on the fact that over-expression of TR isoform b
triggers N2a cells to differentiate in the presence of TH
[101], mimicking the state of neurons where HSV-1
established latency. The plaque assays indicated that
release of infectious virus was significantly decreased in
the presence of TH with TR. Furthermore, TH washout
de-repressed the virus replication and release [51].
These observations demonstrated the previous findings
that TH availability played roles in the regulation of
HSV-1 reactivation/latency.

7. Conclusion and future direction
A number of studies suggested the possibilities that
hormone imbalance may cause virus reactivation
including HSV-1. The mouse neuroblastoma cell line
N2a and N2aTRb provided an efficient platform to
investigate the molecular functions of TR and TH in
the regulation of HSV-1 latency and reactivation.

Figure 1 Characterization of HSV-1 TK TREs. Comparison of HSV-1 TK TREs to other palindrome TREs. These TREs were organized as inverted
repeats with different numbers of nucleotides spacing in between them (see Consensus TREs). They are located after the TATA box and in front
of the transcription initiation site (see TSHa TREs and TK TREs).
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Figure 2 Establishment of a TH-regulated HSV-1 latency/reactivation cell culture model. Scheme of cell culture based HSV-1 latency/
reactivation model.

Figure 3 Model of TR/TH-mediated HSV-1 latency and reactivation. The working hypothesis is that liganded TR repressed the transcription
of TK in neurons, leading to inhibition of viral replication and a expression thus promoted the condition for latency. Transient or chronic
hypothyroidism reduced the TH level and the shortage of hormone decreased the repression of TK and ICP0, therefore increased the viral
replication, gene expression, and release of infectious viruses. All of these led to viral reactivation.
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Current progress suggested that TR/TH inhibits the
HSV-1 key gene expression, leading to blockade of
viral replication and a expression therefore favors
maintenance of latency in neurons. Transient or
chronic hypothyroidism decreases the TH level and the
lack of hormone relieves the inhibition of TK and
ICP0 (likely to be indirect effect through TK activation
[51] and insulator effects from the LAT regulatory
region [50]), results in viral replication, gene expres-
sion, release of infectious viruses, and viral reactivation
(Figure 3). Additional studies showed that this TR/TH-
mediated regulation was due to, at least in part, by his-
tone modification [50,51]. In the future, the hypotheses
should be tested in the animal models using TH and
TR-selective thyromimetic agents. This will assist in
explaining the roles of TH on the maintenance of viral
latency, probably by blocking the a activation in
latently-infected mice upon reactivation. Conversely,
treatment with TH antagonists can be tested to see if
they have effects on the expression of HSV-1 ICP0 and
TK, viral replication, and viral reactivation. Standard
established protocols such as hyperthermia will be
used for reactivation and eye swabs will be taken at
the appropriate times for analysis of reactivated infec-
tious HSV-1. Trigeminal ganglia neurons from the
treated infected mice will be removed for analyses of
gene expression, chromatin remodeling, and measure-
ment of HSV-1 copy number. In addition, removal of
TH production by thyroidectomy can be used to con-
firm the regulatory effects during reactivation.
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