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Abstract 

The most common site of metastasis in breast cancer is the bone, where the balance between osteoclast-mediated 
bone resorption and osteoblast-mediated bone formation is disrupted. This imbalance causes osteolytic bone metas-
tasis in breast cancer, which leads to bone pain, pathological fractures, spinal cord compression, and other skeletal-
related events (SREs). These complications reduce patients’ quality of life significantly and have a profound impact 
on prognosis. In this review, we begin by providing a brief overview of the epidemiology of bone metastasis in breast 
cancer, including current diagnostic tools, treatment approaches, and existing challenges. Then, we will introduce 
the pathophysiology of breast cancer bone metastasis (BCBM) and the animal models involved in the study of BCBM. 
We then come to the focus of this paper: a discussion of several biomarkers that have the potential to provide 
predictive and prognostic value in the context of BCBM—some of which may be particularly compatible with more 
comprehensive liquid biopsies. Beyond that, we briefly explore the potential of new technologies such as single-
cell sequencing and organoid models, which will improve our understanding of tumor heterogeneity and aid 
in the development of improved biomarkers. The emerging biomarkers discussed hold promise for future clinical 
application, aiding in the prevention of BCBM, improving the prognosis of patients, and guiding the implementation 
of personalized medicine.

Keywords Breast cancer, Bone metastasis, Biomarkers, Microenvironment, Prediction, Prognosis, Liquid biopsy, 
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Introduction
Breast cancer has surpassed lung cancer as the most 
common cancer worldwide, with an estimated 2.3 mil-
lion new cases (11.7%) in 2020. It is also the fifth lead-
ing cause of cancer-related deaths globally, with 685,000 
deaths (6.9%) in 2020 [1]. Bone is the most common site 
of metastasis in breast cancer, with approximately 70% of 
women who die from breast cancer experiencing bone 
metastasis [2]. According to a report by Leone et  al., 
among 9143 stage IV breast cancer patients, the inci-
dence of bone metastasis at the time of initial diagnosis 
was 37.5%, while visceral metastasis and metastasis to 
other sites were 21% and 11.9%, respectively [3].

Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cell & Bioscience

†Shenkangle Wang, Wenxin Wu, Xixi Lin and Kevin Matthew Zhang 
contributed equally to this work.

*Correspondence:
Mingpeng Luo
872462051@qq.com
Jichun Zhou
Jichun-zhou@zju.edu.cn
1 Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang 
University School of Medicine, Hangzhou 310016, Zhejiang, China
2 Biomedical Research Center and Key Laboratory of Biotherapy 
of Zhejiang Province, Hangzhou, China
3 The First Affiliated Hospital of Zhejiang Chinese Medical University, 
Hangzhou 310014, China
4 Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
5 Hangzhou Ninth People’s Hospital, Hangzhou 310014, China

https://orcid.org/0000-0002-0432-4948
http://orcid.org/0000-0002-0727-4034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-023-01171-8&domain=pdf


Page 2 of 29Wang et al. Cell & Bioscience          (2023) 13:224 

Bone metastasis in breast cancer is challenging to treat 
and can lead to complications including bone pain, path-
ological fractures, hypercalcemia, and spinal cord com-
pression, which are collectively known as skeletal-related 
events (SREs). SREs significantly impact patients’ quality 
of life and reduce survival rates [4, 5]. It is worth noting 
that breast cancer metastasis can have a long dormant 
period, and some patients may experience recurrence 
and metastasis, especially bone metastasis, up to 20 years 
after the diagnosis of the primary tumor [6]. Consider-
ing the profound consequences of bone metastasis and 
the potential for late recurrence, early detection of bone 
metastasis and identification of patients at elevated risk 
of bone metastasis are of utmost importance. Improved 
screening with biomarkers creates opportunities to pro-
vide personalized strategies for early prevention, diagno-
sis, and treatment.

Here, we summarize the epidemiology of BCBM and 
the current approaches to diagnosis and treatment. We 
will also discuss the existing views on the underlying 
mechanisms of BCBM and the relevant research models. 
But our primary focus will be on summarizing the studies 
aimed at discovering potential biomarkers for BCBM.

The current diagnostic and treatment process 
for BCBM
There is a considerable body of research on the screening 
of high-risk populations for BCBM. Studies have identi-
fied certain molecular subtypes of breast cancer that are 
significant risk factors for bone metastasis. Of the main 
molecular subtypes of breast cancer, Luminal A (LUMA), 
Luminal B (LUMB1, LUMB2), HER2-positive, basal-like, 
and triple-negative breast cancer (TNBC), Luminal A 
and Luminal B subtypes have a significantly higher risk 
of bone metastasis than the other molecular subtypes [7, 
8]. Lymph node involvement and tumor size at the time 
of breast cancer diagnosis are also associated with an 
increased risk of bone metastasis [9, 10]. However, these 
risk factors remain insufficient as clinical and pathologi-
cal indicators that can effectively predict BCBM.

Diagnostic guidelines for BCBM recommend timely 
imaging evaluation and biopsy in cases of suspected bone 
metastasis based on symptoms such as bone pain, patho-
logical fractures, elevated alkaline phosphatase levels, or 
hypercalcemia [11]. Commonly used imaging modalities 
include whole-body bone scintigraphy (Emission com-
puted tomography, ECT), X-rays, computed tomography 
(CT), magnetic resonance imaging (MRI), and positron 
emission tomography-computed tomography (PET-
CT). ECT is the most commonly used method for bone 
metastasis screening despite having a lower sensitivity 
and specificity than the more suitable PET-CT [12, 13]. 
X-rays are the most basic and commonly used method 

for diagnosing BCBM, but they have lower sensitivity. CT 
has higher sensitivity and specificity than X-rays and is 
suitable for detecting metastatic lesions in complex ana-
tomical sites. MRI provides more accurate information 
about the location, extent, and soft tissue involvement of 
lesions. Histopathological examination of bone lesions in 
breast cancer patients is considered the gold standard for 
diagnosing BCBM (Table 1) [14].

Considering the specificity, sensitivity, cost-effective-
ness, and accessibility of various diagnostic methods, 
imaging evaluation for bone metastasis screening is rec-
ommended for patients with stage 3 or higher breast 
cancer (except for T3N1M0 patients) and those experi-
encing bone pain, pathological fractures, hypercalce-
mia, and spinal cord compression or other SREs. NCCN 
guidelines further recommended tumor markers in the 
guidelines include alkaline phosphatase, blood calcium, 
CA15-3, and CA27.29 (Fig.  1). That said, the guidelines 
also state that BCBM is difficult to evaluate using con-
ventional imaging and emphasize that the recommended 
tumor markers are not highly specific; abnormality of a 
single marker alone is insufficient to confirm disease pro-
gression [15]. For occult bone metastasis (or when bone 
metastasis is in a dormant state), the existing imaging 
and serum markers have limitations in sensitivity and 
are insufficient to detect metastasis effectively before it 
becomes overt bone metastasis.

Detecting bone metastasis early and preventing bone 
metastasis in high-risk populations, can improve the 
timeliness of treatment and therefore quality of life and 
prognosis of breast cancer patients. However, the clinical 
and pathological indicators, imaging, and serum evalua-
tions mentioned above are still insufficient to guide cli-
nicians in accurately screening high-risk individuals for 
bone metastasis or effectively diagnosing early-stage 
BCBM (such as clinically undetectable non-visible bone 
lesions). Therefore, there is an urgent need in the clini-
cal setting for the development of new biomarkers for 
BCBM, which would facilitate prevention and prediction 
by clinicians.

When dealing with BCBM, a condition characterized 
as an end-stage systemic malignant disease, it is impera-
tive to adopt treatment algorithms that primarily focus 
on systemic therapy. The fundamental treatment modali-
ties include endocrine therapy, chemotherapy, and anti-
HER2 therapy. In contemporary clinical practice, new 
targeted therapies and immunotherapies are also being 
integrated. It is crucial to customize these therapeutic 
approaches to cater to the unique needs of individual 
patients.

The selection of the most appropriate treatment should 
take into consideration a multitude of factors, including 
but not limited to 1) Patients’ General Health: The overall 
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health and condition of the patients. 2) Intrinsic Molec-
ular Subtypes: The specific molecular characteristics 
of the tumor. 3) Prior Therapies and Their Side Effects: 
The patient’s history of previous treatments (disease-free 
interval) and any associated toxicities. 4) Menopausal 
Status: Whether the patient is premenopausal or post-
menopausal. 5) Bone Pain Control: The requirement for 
managing bone pain. 6) Socioeconomic and Psychologi-
cal Factors: The social and psychological aspects impact-
ing the patient’s well-being.

In addition to systemic treatments, the use of bone-
targeted agents such as bisphosphonates and denosumab 
can effectively control the development of skeletal-related 
events (SREs). For localized management of bone metas-
tases, surgical intervention and radiotherapy are proven 
and valuable methods. Moreover, it is imperative to pro-
vide comprehensive pain management and supportive 
care to patients. These supportive measures significantly 

enhance the patients’ quality of life (as depicted in Fig. 2). 
However, it is essential to note that these interventions 
primarily alleviate symptoms associated with skeletal-
related complications and do not offer a direct improve-
ment in patient prognosis [14, 15]. The efficacy and 
adverse effects of these drugs remain controversial [7–9]. 
The efficacy and potential adverse effects of these drugs 
have sparked ongoing debate within the medical commu-
nity [7–9]. Consequently, there is a pressing demand for 
more effective treatment strategies that extend beyond 
the conventional therapies for BCBM. Delving into the 
molecular mechanisms that underlie BCBM holds great 
promise in uncovering potential therapeutic targets. In 
this regard, biomarkers emerge as invaluable tools, offer-
ing decision support for the precise selection of treat-
ments tailored to individual patients. Research into the 
molecular underpinnings of BCBM continually enriches 
our comprehension of prospective therapeutic targets 

Fig. 1 The diagnostic process for bone metastasis in breast cancer
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and clinically significant biomarkers. These insights are 
pivotal in guiding the choice of suitable treatments for 
patients.

Pathophysiology of bone metastasis in breast 
cancer
Improvements in breast cancer detection and treatment 
are informed by a sophisticated understanding of BCBM 
pathophysiology. Bone metastasis in breast cancer is a 
complex process involving multiple steps and molecu-
lar events. Overall, it can be divided into several stages: 
changes in the pre-metastatic bone microenvironment, 
rise of osteotropic breast cancer cells, dormancy of can-
cer cells in the perivascular microenvironment, and the 
establishment of a vicious cycle [16].

Research suggests that before bone metastasis occurs, 
breast cancer cells can influence the bone microenviron-
ment by secreting factors to create favorable conditions 
for metastasis. Factors derived from breast cancer cells, 
such as IL-1β, may drive bone metastasis by remod-
eling the bone microenvironment [17]. Additionally, 
miRNA expressed by the primary breast cancer lesion 
can influence the pre-metastatic microenvironment. For 
example, miRNA-183 expressed by breast cancer cells 
inhibits heme oxygenase-1, promoting osteoclastogen-
esis [18, 19]. Exosomal miRNA-21 derived from breast 
cancer cells directly targets osteoclasts, increasing their 

differentiation and bone-resorbing ability. These factors 
play important roles in the formation of the bone micro-
environment for osteolytic bone metastasis in breast 
cancer [20]. The roles of miRNA-105 and miRNA-200 
in extracellular vesicles produced by breast cancer in the 
pre-metastatic microenvironment still require further 
investigation [21–23].

Our current understanding is that the “seeds” of cer-
tain breast cancers, which have inherent characteristics 
that favor bone metastasis, are provided “fertile soil” 
for metastasis by a shift from a normal bone microen-
vironment to a pre-metastatic microenvironment [24]. 
Cells of luminal-type breast cancer are particularly 
prone to metastasis [7, 8]. The mechanisms underly-
ing osteotropic preference in metastasis are not fully 
understood, but some studies suggest that they may 
be related to the differences in pathways and molecu-
lar expression between different types of breast can-
cer. It has been reported that gene expression signals 
activated by Src are associated with late-stage bone 
metastasis in breast cancer, and these genes are col-
lectively known as the Src-responsive signature (SRS). 
88.4% of ER+ cancer cells are SRS+, while only 23.0% 
of ER− tumors are SRS+, suggesting that luminal-type 
cancer cells may gain a survival advantage in the bone 
microenvironment [25]. Additionally, Smid et al. found 
that compared to luminal B-type tumors, basal-type 

Fig. 2 Treatment algorithms of breast cancer with bone metastases
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breast tumors exhibit more active Wnt/β-catenin sign-
aling, and the loss of Wnt/β-catenin signaling favors 
bone metastasis in luminal B-type tumors. Inhibition 
of the classical Wnt signaling pathway in osteoblasts 
using Dickkopf-1 (DKK1) has been found to promote 
BCBM [26]. N-acetyltransferase 1 (NAT1) is expressed 
at higher levels in luminal-type tumors compared to 
TNBC, and it significantly activates the NF-κB signal-
ing pathway, upregulating IL-1B and promoting osteo-
lytic metastasis [27]. A recent study demonstrated 
that the tumor-secreted factor signal peptide, cubu-
lin domain, epidermal-growth-factor-like protein 2 
(SCUBE2), regulated by the ER signaling pathway, 
mediates bone metastasis in luminal-type breast cancer 
through immune suppression [28]. These studies sug-
gest that the propensity for bone metastasis in luminal-
type breast cancer may stem from multiple molecular 
mechanisms. In addition to cancer cells themselves, 
the tumor stromal environment also plays a role in 
the selection of cancer cells. Zhang et  al. found that 
stromal stem cells in breast cancer secrete chemokine 
C-X-C motif ligand 12 (CXCL12) and type 1 insulin-
like growth factor (IGF1), selecting cancer cells with 
a tendency for bone metastasis in TNBC. These can-
cer cells express C-X-C chemokine receptor type 4 
(CXCR4), IGF1R, and have high Src activity, making 
them more likely to metastasize to bone [29]. Bone 

marrow endothelial cells express CXCL12 and medi-
ate adhesion and recruitment of breast cancer cells that 
express CXCR4 [30].

After breast cancer cells disseminate into the circula-
tory system, they may settle with the help of mobilized 
hematopoietic stem cells (HSCs) in the perivascular 
microenvironment and enter a dormant state before clin-
ically detectable overt bone metastasis occurs [31]. 
Endothelial cells expressing thrombospondin-1 (TSP-1) 
maintain the quiescent state of breast cancer cells [32]. 
Additionally, mesenchymal stem cells in the bone mar-
row produce extracellular vesicles that deliver miRNA-
222/223 to induce dormancy in breast cancer cells [33, 
34]. Clinically, the interval between the detection of pri-
mary breast cancer and the appearance of overt bone 
metastasis can be several years, suggesting that dor-
mancy in breast cancer may persist for a considerable 
period until cancer cells become active and clinically 
detectable in the bone metastasis [35]. Many studies have 
explored the process of reactivation of dormant cancer 
cells. The remodeling of the perivascular microenviron-
ment is involved in cell activation. Sprouting endothelial 
cells exhibit reduced expression of TSP-1 and produce 
periostin and TGF-β1, stimulating tumor cell prolifera-
tion [32] (Fig. 3). One hypothesis is that changes in can-
cer cell metabolism terminate dormancy, but further 
research is needed to prove this [36]. Understanding 

Fig. 3 Formation of the pre-metastatic bone microenvironment, rise of osteotropic breast cancer cells, dormancy of cancer cells in the perivascular 
microenvironment. a Breast cancer cells secrete miRNA, IL-1β, and extracellular vesicles to promote the formation of the pre-metastatic 
microenvironment. b The tumor stroma of breast cancer selects bone-metastatic prone cancer cells expressing CXCR4, IGF1R, and high Src activity 
through CXCL12 and IGF1. c The perivascular microenvironment regulates the dormancy of breast cancer cells. Endothelial cells express TSP-1 
to promote the dormancy of breast cancer cells. Mesenchymal stem cells deliver extracellular vesicles to induce dormancy in breast cancer cells. d 
Sprouting blood vessels produce periostin, TGF-β, and reduced secretion of TSP-1, stimulating the proliferation of breast cancer cells
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the mechanisms of dormancy in breast cancer cells may 
guide the design of new therapies to prevent the occur-
rence of overt bone metastasis in breast cancer patients 
by either enhancing dormancy or eliminating dormant 
cells. The development of new serological and imaging 
detection methods aims to detect dormant tumor cells 
at an earlier stage, which could change the current diag-
nostic and therapeutic approaches for BCBM, facilitating 
earlier diagnosis and treatment.

Breast cancer cells interact with the bone microenvi-
ronment, resulting in osteolytic lesions, promoting pro-
liferation, and preparing for metastasis to other organs. 
They regulate the bone microenvironment through mul-
tiple mechanisms. Breast cancer cells expressing E-cad-
herin form heterotypic adhesive connections by binding 
to N-cadherin on osteoblasts. These adhesive connec-
tions promote the activation of the Akt/mTOR signaling 
pathway in cancer cells, stimulating their proliferation 
and leading to the formation of overt bone metastasis 
[37]. The role of mTOR in cancer cell proliferation has 
been extensively described [38]. Additionally, breast can-
cer cells in the bone microenvironment secrete parathy-
roid hormone-related protein (PTHrP), which increases 
bone resorption caused by osteoclasts [39]. PTHrP also 
participates in the regulation of the RANKL pathway in 
osteoblasts. PTHrP activates the cAMP/PKA/CREB sign-
aling pathway, and phosphorylated CREB subsequently 
binds to the distal RANKL enhancer region to promote 
RANKL expression [40]. RANKL is an important mol-
ecule involved in the regulation of bone formation and 
resorption. Osteoblasts express RANKL, which binds to 
the receptor RANK on osteoclast precursors, promoting 
their differentiation into mature osteoclasts and facili-
tating bone resorption [41]. RANK is also expressed in 
breast cancer cells, and RANKL promotes the expression 
of bone metastasis-related genes (such as IL-11, NCF2, 
PRG-1, MMP-1) in RANK-positive tumor cells [42]. 
RANKL produced by osteoblasts can attract cancer cells 
expressing RANK and induce their migration in the bone 
microenvironment [43]. From a therapeutic perspec-
tive, molecular crosstalk between cancer cells and the 
bone microenvironment may contribute to drug resist-
ance. Chemotherapy induces osteoblasts to express Jag-
ged1, which interacts with cancer cells and activates the 
Notch signaling pathway, promoting drug resistance [44]. 
However, these interactions may also yield therapeutic 
targets. For example, cancer cells acquire calcium ions by 
connecting to the gaps between osteoblasts, and this gap 
junction makes them sensitive to arsenic trioxide treat-
ment [45]. Cancer cells secrete macrophage-stimulating 
protein (MSP), and the MSP/RON signaling promotes 
osteoclast activation but does not promote differentia-
tion [46].

The release of TGF-β, IGF, and  Ca2+ that comes as a 
result of cancer-cell promoted bone resorption serves to 
further improve the survival and proliferation of cancer 
cells [16]. TGF-β directly acts on breast cancer cells and 
promotes bone metastasis [47]. In the classical TGF-β 
signaling pathway, active TGF-β binds to its receptor, 
TGF-β receptor II (TGF-β RII), which then associates 
with and activates the TGF-β receptor I (TGF-β RI) on 
the cell membrane. TGF-β RI phosphorylates down-
stream signaling molecule Smad3, leading to the activa-
tion of PTHrP transcription [48]. Tumor-derived PTHrP 
acts on osteoblasts, altering the RANKL/Osteoprote-
gerin (OPG) ratio in the bone matrix, thereby promot-
ing osteoclast maturation and causing metastatic bone 
destruction [49, 50]. The non-classical TGF-β signaling 
pathway plays immunosuppressive roles through the 
activation of p38 MAPK as a Smad-independent path-
way [51, 52]. The TGF-β pathway can also promote breast 
cancer metastasis and invasion through other pathways 
such as EGFR [53]. TGFβ1 derived from osteoblasts stim-
ulates the AKT/NFκB axis, thereby enhancing the migra-
tion of breast cancer cells mediated by transmembrane 
adhesive receptors integrin β1 and β3 [54]. However, it 
is worth noting that although TGF-β can promote bone 
metastasis through Smads, it exhibits anti-cancer effects 
in pre-cancerous cells, and previous studies have revealed 
potential mechanisms underlying this paradoxical dual 
role [55]. In summary, the interaction between breast 
cancer cells and an altered microenvironment promotes 
both bone destruction and further proliferation, perpetu-
ating a vicious cycle (Fig.  4). Development of novel tar-
geted drugs to disrupt the interaction between the bone 
microenvironment and breast cancer cells could pose an 
effective method for breaking this vicious cycle and con-
trolling the further progression of breast cancer bone 
metastases.

The events that unfold following breast cancer bone 
metastasis are of significant concern. As reported by 
RE Coleman, a study involving 367 female patients with 
bone metastasis revealed that 228 of them subsequently 
experienced extra-osseous metastasis [56]. Notably, ani-
mal model studies have demonstrated that mice with 
bone metastasis exhibit a notably higher tumor burden 
in distant organs. This observation suggests that tumor 
cells exposed to the bone microenvironment possess 
significantly enhanced secondary metastatic capabilities 
[57]. While the specific factors and processes governing 
metastasis from bone to other organs remain to be fully 
elucidated, it is evident that the bone microenvironment 
plays a crucial role in augmenting the metastatic poten-
tial of tumor cells. Research has indicated that following 
the formation of bone metastatic lesions, EZH2 within 
the metastatic microenvironment enhances invasive 
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capabilities and stem cell-like properties through epige-
netic reprogramming. This, in turn, facilitates the further 
dissemination of cancer cells [57].

Furthermore, recent investigations suggest that 
immune regulation also plays a role in secondary metas-
tasis. Apoptotic bodies originating from osteoclasts have 
been found to suppress the function of naive  CD8+ T 
cells via Siglec15, thereby promoting multi-organ metas-
tasis in the late stages of breast cancer bone metastasis 
[58].

Animal models
Knowledge of the mechanisms of BCBM and the devel-
opment of useful biomarkers are dependent on research 
with the appropriate animal models. In  vivo models 
offer greater advantages over in  vitro work in demon-
strating the interactions between cancer cells and the 
microenvironment, as well as simulating complex meta-
static processes. The ideal animal model would provide a 

human-like environment for studying the mechanisms of 
BCBM and help uncover deeper insights into the process 
[59]. Several animal models for BCBM have been estab-
lished, each with its own characteristics. We will discuss 
the advantages and limitations of these models.

Intracardiac injection has been widely used in bone 
metastasis research [60]. Injection of cancer cells into 
the left ventricle produces a variety of bone metastases at 
sites including the tibia, femur, humerus, and spine [61]. 
This model can also be used to develop osteotropic cell 
lines [62].

Alternatively, cancer cells can be injected through the 
iliac artery, which specifically delivers cancer cells to hind 
limb bones, avoiding the spread to other organs and pre-
venting premature death and allowing the bone meta-
static lesions to develop fully [63]. This technique has 
been useful in studying further dissemination from bone 
to other organs [57]. The drawback is that procedure 
requires microscopic surgery, making it challenging to 

Fig. 4 Cell communication between breast cancer cells, osteoblasts and osteoclasts and a vicious circle. Breast cancer cells activate osteoblasts 
through direct cell–cell interactions and secretion of PTHrP. Osteoblasts, in turn, secrete RANKL to promote osteoclasts differentiation and bone 
resorption. When bone matrix is resorbed, TGF β, IGF1, and  Ca2+ are released, promoting the invasion of breast cancer cells
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apply this technique in experiments that require a large 
number of animal subjects.

Researchers have recently developed a caudal artery 
injection protocol that selectively delivers a large num-
ber of cancer cells to the bone marrow of the hind limbs. 
Compared to iliac artery injection, this method is easier 
to implement and causes less trauma to the animal [64, 
65]. This model has been applied in the study of bone 
metastasis in breast cancer and prostate cancer [66, 67]. 
Femoral artery injection is another viable option for 
delivering cancer cells into hind limb without causing 
metastases in other sites [68].

Intraosseous injection is the most direct method of 
confining cancer cells to the bone and reducing the pos-
sibility of metastasis to other organs [27, 69]. However, 
the invasive procedure causes bone injury, and the meta-
bolic changes during the bone repair process may cause 
unwanted confounding effects [70]. Additionally, this 
type of model is only capable of demonstrating the last 
step in the process of metastasis.

The above-mentioned circulation injection models 
offer unique advantages, but they bypass the earliest 
stages of metastasis. They cannot be used to study the 
interaction between tumor cells with bone tropism and 
the extracellular matrix at the primary site. The ortho-
topic injection is a more suitable model, in which breast 
cancer cells are injected into the mammary fat pad of 
mice, where they develop into primary tumors and sub-
sequently generate bone metastases. This model allows 
for the complete process of metastasis to occur. The 
cell lines used in this spontaneous metastasis model 
are 4T1.2 and 4T1.13, which are sublines of the 4T cell 
lines and have been shown to have a high propensity to 

metastasize to lymph nodes, lungs, and bones [71, 72]. 
Compared to xenograft models that require immuno-
deficient hosts for cancer cell growth, this model uses 
immunocompetent mice, allowing for the study of the 
interaction between cancer cells and the host immune 
system during bone metastasis [73].

Though the aforementioned models have signifi-
cantly advanced knowledge of BCBM, researchers aim 
to establish models that better reflect the conditions in 
human body. Humanized models provide tumor cells 
with microenvironments more similar to the human 
body, allowing for a closer approximation of tumor pro-
gression in patients. Some humanized models are rele-
vant to the study of the interaction between cancer cells 
and the human bone microenvironment. A recently 
invented model involves implanting tissue from the 
femoral heads of patients undergoing hip replacement 
surgery under the skin of immunodeficient mice with 
subsequent orthotopic injection of cancer cells. The 
graft exhibits metabolic activity, bone remodeling and 
can undergo bone metastasis. This model demonstrates 
spontaneous metastasis of injected breast cancer to 
the transplanted bone and may be used for studying 
the driving factors of metastasis and the bone micro-
environment of metastasis research [74] (Table  2 and 
Fig. 5).

In summary, the continuous development of BCBM 
models provides the tools needed to further elucidate 
the mechanisms of BCBM while moving the world of 
bench research ever closer to the goal of clinical utility. 
It aids in the exploration of new predictive and prog-
nostic biomarkers and provides a reliable platform for 
the development of potential therapeutic targets.

Table 2 Animal models of BCBM

Type of model Cell lines Animal Methodology
(Cell injection site)

Ref

Intracardiac/intraarterial injection model MDA-MB-231 BALB/c nu/nu mice Left ventricle [61]

MCF7, 4T1, 4T07, MDA-MB-361, 
MDA-MB-231, MDA-MB-436

4–6 weeks old mice Iliac artery [63]

MDAMB-231, MCF7, 4T1, E0771 NOD-SCID, SCID, 
BALB/c, C57B/ 6 
albino

Caudal artery [64]

AT-3 C57BL/6J mice Femoral artery [68]

Intraosseous injection model T47D BALB/c mice Tibia bones [27]

MDA-MB-231 BALB/c nu/nu mice Femur bones [69]

Orthotopic injection model 4T1 BALB/c mice Mammary fat pad [71]

Humanized model MDA-MB-231, MCF7, T47D, 
Patient-derived xenograft 
(PDX) tumor cell

NOD/SCID
NOD/SCIDγ mice

Implantation femoral head tissues derived 
from patients undergoing hip replacement sur-
gery into the left and right sides of the mouse 
body, followed by intracardiac or orthotopic 
injection of tumor cells

[74]
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Biomarkers for BCBM
Using appropriate models and research techniques, 
researchers have explored potential biomarkers for 
BCBM, including various proteins, genes, and circulat-
ing cells. These biomarkers can be broadly classified 
into two categories: prognostic biomarkers and predic-
tive biomarkers. Prognostic biomarkers provide infor-
mation about recurrence and may be associated with 
progression-free survival (PFS) in metastatic disease 
patients. Predictive biomarkers can predict a patient’s 
response to treatment or be used for monitoring dur-
ing treatment to determine if the patient is benefiting 
from the therapy [75].

Prognostic biomarkers
Prognostic biomarkers provide information about 
recurrence and may be associated with progression-
free survival in metastatic disease patients [75].

Proteins
Several studies have investigated the value of pro-
tein molecules in predicting the occurrence of bone 
metastasis.

Nuclear p21-activated kinase 4 (nPAK4) can promote 
BCBM by inhibiting leukemia inhibitory factor receptor 
(LIFR). LIFR plays an important role in BCBM. It acti-
vates STAT3 to promote the dormancy of breast cancer 
cells and triggers the Hippo kinase cascade, leading to the 
functional inactivation of yes-associated protein (YAP), 
thus inhibiting bone metastasis [76, 77]. PAK4 directly 
regulates LIFR in a 17β-estradiol (E2)-dependent man-
ner. Under E2 stimulation, PAK4 forms a complex with 
ERα, which is recruited to the target gene LIFR of ERα, 
downregulating LIFR expression and promoting the 
metastasis and invasion of breast cancer cells. PAK4 can 
also inhibit E-cadherin and promote epithelial-mesen-
chymal transition (EMT) [78]. Li et al. found that nPAK4 
expression significantly leads to inhibition of LIFR and 

Fig. 5 Animal models of BCBM. a, b Intracardiac/intraarterial injection models: left ventricle injection, iliac artery injection, caudal artery injection, 
femoral artery injection. c Intraosseous injection models: tibia bones injection, femur bones injection. d Orthotopic injection model: mammary fat 
pad injectione. e Humanized model: implantation of human bone chips into mice
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is associated with ERα+ BCBM. The prognostic value of 
nPAK4 was confirmed in clinical samples. In 187 cases of 
non-bone metastatic breast cancer (NMBC) and 95 cases 
of bone metastatic breast cancer (BMBC) specimens, the 
nPAK4 score in the BMBC group was significantly higher 
than that in the NMBC group. Moreover, in ERα+ BCBM 
patients, the level of nPAK4 was associated with shorter 
bone metastasis-free survival [78].

Macrophage-capping protein (CAPG) and PDZ 
domain–containing protein GIPC1 (GIPC1) are also 
involved in BCBM. CAPG, an actin-binding protein, may 
enhance tumor invasion by altering cytoskeletal dynam-
ics [79]. It has been shown to interact with protein argi-
nase methyltransferase 5 (PRMT5), leading to enhanced 
transcription of stanniocalcin-l (STC-1), a factor that 
can activate PI3K/AKT pathway and thereby promote 
breast cancer cell invasion [80, 81]. GIPC1 silencing can 
result in cell cycle arrest in breast cancer cells and regu-
late cell adhesion and motility through interaction with 
syndecan-4 (SDC4) via the PI3K signaling pathway [82]. 
Using quantitative proteomics, Westbrook et  al. discov-
ered that the expression of CAPG and GIPC1 in the bone 
metastatic variant of human breast cancer cell line MDA-
MB-231 was higher than in the parental non-bone meta-
static cells. After preliminary biomarker screening, they 
validated the findings using immunohistochemical stain-
ing on tumor tissue microarrays of AZURE trial patients. 
They further explored the relationship between protein 
expression, clinical variables, and distant metastasis 
using COX regression analysis. The study included 427 
patients in the training set and 297 patients in the inde-
pendent validation set. The results revealed that patients 
with high expression of both CAPG and GIPC1 in the 
primary tumor were more likely to experience first dis-
tant recurrence is skeletal and had a higher probability of 
death. One advantage of CAPG and GIPC1 as prognostic 
biomarkers is their specificity, as the researchers did not 
find any association between the composite biomarkers 
and non-bone metastasis development [83].

Using similar approach, Westbrook et  al. discovered 
that the expression level of dedicator of cytokinesis 
protein 4 (DOCK4) was higher in the bone metastatic 
variant of human breast cancer cell line MDA-MB-231 
compared to the parental non-bone metastatic cells. 
They further validated this finding through western blot-
ting, confirming the potential of DOCK4 as a biomarker. 
In clinical validation, the correlation between high 
DOCK4 expression and invasive tumors was confirmed 
in a tissue microarray containing 345 samples. Subse-
quent research using samples from 689 patients in the 
AZURE trial found that adjusted Cox regression analysis 
showed that high DOCK4 expression was associated with 
a higher risk of bone metastasis occurrence [84]. DOCK4 

mediates the migration and invasion of MDA-MB-231 
cells. DOCK4 forms a complex with engulfment and cell 
motility (ELMO), and under the activation of RhoG, the 
ELMO-DOCK4 complex translocates from the cyto-
plasm to the plasma membrane, activating Rac to pro-
mote lamellipodia formation and cell migration [85].

RANKL is a factor regulating bone remodeling [86]. It 
also enhances the invasive ability of breast cancer, induc-
ing spontaneous formation and early metastasis [87]. 
Studies have found that high serum levels of RANKL 
have been associated with an increased risk of bone 
metastasis in breast cancer patients. In a retrospective 
analysis, Rachner et al. studied the relationship between 
serum RANKL levels and bone metastasis and survival in 
a cohort of 509 patients with primary breast cancer. Dur-
ing the follow-up period, out of 413 patients available for 
evaluating distant metastasis, 23 developed bone metas-
tasis. According to serum RANKL levels, patients were 
divided into high and low groups based on the median. 
The high RANKL group had an 87.5% increased risk of 
bone metastasis compared to the low group. Patients 
with the highest quartile of serum RANKL concentration 
had a fivefold increased risk of bone metastasis compared 
to those with the lowest quartile. Additionally, patients 
who experienced bone metastasis showed significantly 
elevated levels of RANKL/OPG [88].

Another bone remodeling regulator is prolactin (PRL). 
It promotes the secretion of osteoclastogenic factor sonic 
hedgehog (SHH) by breast cancer cells, thereby activat-
ing the Hedgehog pathway in osteoclasts and promot-
ing bone resorption [89]. The HH pathway upregulates 
PTHrP and regulates the RANKL pathway, both of which 
are involved in the process of BCBM [90]. Another study 
has found that PRL can also activate Nek3 to regulate 
Rac1, increasing the invasiveness of breast cancer cells 
[91]. In a study conducted by Ashley Sutherland, the 
researchers investigated the levels of prolactin recep-
tor (PRLR) using quantitative immunohistochemistry in 
134 primary breast cancer samples and matched sam-
ples of 17 primary breast cancer and bone metastasis. 
They aimed to explore the relationship between PRLR 
expression in primary breast tumors and the time of bone 
metastasis occurrence. The Cox proportional hazards 
regression model demonstrated that high expression of 
PRLR was associated with an earlier occurrence of bone 
metastasis [89].

IL-1B also plays an important role in bone metasta-
sis. It promotes EMT in breast cancer cells and regu-
lates osteolysis, promoting cancer cell proliferation [92, 
93]. IL-1B also contributes to reorganization of the actin 
cytoskeleton of MCF-7 cells through the PI3K/Rac axis, 
enhancing cancer cell invasion [94]. Using immunohis-
tochemical staining, Nutter et  al. discovered that the 
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expression level of IL-1B protein was increased in bone 
metastatic cells compared to the primary breast cancer 
cells. Subsequently, in a tissue microarray containing 150 
cases of stage II and III primary breast tumors, IL-1B 
was measured using immunohistochemistry. The median 
follow-up period was 84 months. The study found a sig-
nificant correlation between IL-1B expression and bone 
metastasis [62].

A recent study found that the specific expression of 
SCUBE2 in luminal-type breast cancer is associated with 
shortened bone metastasis-free survival. By analyzing 
the expression of secreted SCUBE2 protein in the serum 
of patients from the Qilu cohort, Wu et al. observed an 
upregulation of SCUBE2 expression in bone metastasis 
patients (n = 13) compared to patients without distant 
recurrence (n = 23), confirming the prognostic value of 
SCUBE2 in luminal-type breast cancer patients. Mechan-
ically, regulated by ER signaling in luminal-type breast 
cancer, SCUBE2 acts in an autocrine manner on cancer 
cells, leading to Hedgehog signal activation, osteoblast 
differentiation, and immune suppression-mediated bone 
metastasis [28].

Bone turnover markers also provide prognostic infor-
mation about bone metastasis. They can be divided into 
bone formation markers and bone resorption markers. 
Bone metastasis disrupts the balance between bone for-
mation and bone resorption, leading to changes in the 
levels of these markers [95]. Procollagen type I N-ter-
minal propeptide (P1NP) is a marker of bone forma-
tion, while C-telopeptide of type-1 collagen (CTX) and 

cross-linked carboxyterminal telopeptide of type I col-
lagen (1-CTP) are markers of bone resorption. Brown 
et  al. measured the levels of P1NP, CTX, and 1-CTP in 
the blood of 872 patients participating in the large ran-
domized AZURE trial to investigate their prognostic 
and predictive relationship with metastatic events. They 
found that elevated serum levels of P1NP, CTX, or 1-CTP 
were associated with an increased risk of bone metas-
tasis, with P1NP being the most sensitive marker [96]. 
The prognostic value of P1NP was further confirmed in 
another study conducted by Colomb et  al. They meas-
ured the serum levels of P1NP, CTX, IL-6, and osteoc-
alcin in the blood of 164 pre-treatment stage I-III breast 
cancer patients to explore the relationship between these 
markers and bone metastasis and overall survival. They 
found that in stage I–III breast cancer patients, a serum 
P1NP level ≥ 75  ng/mL indicated a higher risk of bone 
metastasis and shorter overall survival [97] (Table 3).

Most, if not all biomarkers that have been published are 
statistically significant. The confidence of each study also 
varies greatly. The protein biomarkers mentioned above 
are presented in a forest plot (Fig. 6). More research and 
careful analysis in the future will tell us which of these are 
clinically significant.

RNAs and genes
RNAs and genes play a crucial role in BCBM. The 
advancement of genomics has facilitated a better under-
standing of the mechanisms underlying BCBM. Several 
studies have utilized microarray data analysis, qRT-PCR, 

Table 3 Prognostic protein biomarkers for BCBM

Biomarker Increased 
or 
decreased

Clinical samples Potential molecular mechanism Refs.

PAK4 Increased 187 NMBC patients
95 BMBC patients

nPAK4 inhibits LIFR and promotes osteolytic bone 
destruction in ERα-positive breast cancer

[78]

CAPG, GIPC1 Increased 724 breast cancer patients from AZURE trial CAPG promotes cell migration and invasion
GIPC1 regulates cell cycle, cell adhesion, and motil-
ity

[79, 82, 83]

DOCK4 Increased 689 breast cancer patients from AZURE trial DOCK4 regulates breast cancer cell migration 
and metastasis

[84, 85]

RANKL Increased 413 breast cancer patients RANKL enhances invasion and metastasis of breast 
cancer and regulates bone microenvironment

[87, 88]

PRLR Increased 134 breast cancer patients PRL promotes the secretion of SHH by breast cancer 
cells, facilitating osteolysis and increasing invasive-
ness

[89, 91]

IL-1B Increased 150 stage II/III primary breast cancer patients IL-1B promotes EMT in breast cancer cells, enhanc-
ing their invasive capacity

[62, 92–94]

SCUBE2 Increased Blood samples from 23 breast cancer patients 
without distant recurrence, 13 cases with bone 
metastasis

SCUBE2 regulates the immunosuppressive osteo-
genic microenvironment

[28]

CTX, ICTP, P1NP Increased 872 breast cancer patients from AZURE trial
164 pre-treatment stage I-III breast cancer patients

CTX, ICTP and P1NP are associated with bone 
remodeling

[96, 97]
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FISH assay or other approaches to identify RNAs and 
genes with prognostic implications.

It has been found that many non-coding RNAs associ-
ated with bone metastasis have prognostic value. A study 
reported that breast cancer cells deliver extracellular 
vesicles containing miRNA-19a to preosteoclast cells, 
inhibiting PTEN expression. PTEN reduction induces 
the activation of NFκB and AKT signaling pathways, 
promoting osteoclast differentiation and bone resorp-
tion activity. Uptake of extracellular vesicles contain-
ing miRNA-19a by preosteoclast cells is enhanced in 
a concentration-dependent manner. Integrin binding 
sialoprotein (IBSP) secreted by ER+ breast cancer cells 
can recruit preosteoclast cells, creating a microenviron-
ment enriched with preosteoclast cells, which facilitates 
miRNA-19a regulation of bone resorption [98]. Wu et al. 
investigated expression of protein secretion and miRNAs 
contained in EVs in MCF7 bone metastatic cell variants. 
Although 157 miRNAs were significantly increased in 
the variant cells, only three miRNAs showed significant 
elevation in the blood of breast cancer patients (n = 23) 
compared to healthy individuals (n = 22). By compar-
ing the protein secretion differences between bone 
metastatic cell variants and their parental cells, and sub-
sequently detecting these proteins in the biopsies from 
BCBM patients, the researchers identified IBSP as a 
potential biomarker. To further elucidate the relationship 
between these potential biomarkers and bone metastasis 
in ER+ breast cancer, a Kaplan–Meier analysis was per-
formed on 278 breast cancer patients. Survival analysis 
indicated that extracellular vesicle miRNA-19a and IBSP 
only had suggestive roles in predicting bone metastasis 
risk in ER+ patients. Among 41 cases of ER+ breast can-
cer patients with metastasis, patients with elevated levels 

of both IBSP and miRNA-19a showed earlier metastasis 
within 1000 days [98].

A study conducted by Adam Artigues reported the dys-
regulation of miRNA-30b-5p in breast cancer metastasis 
patients. This is another biomarker that can be detected 
in blood. The researchers first measured the levels of 
miRNA-30b-5p in tissue samples and then confirmed its 
potential as a biomarker in liquid biopsy using peripheral 
blood samples. They found that miRNA-30b-5p was a 
valuable non-invasive diagnostic biomarker. The expres-
sion level of miRNA-30b-5p in bone metastases was 
significantly higher than in other metastatic sites. How-
ever, it should be noted that although miRNA-30b-5p 
was found to have predictive value for distant metastasis, 
with 63 bone metastasis patients included in the cohort, 
30 of them had metastasis in other sites. Therefore, fur-
ther research is needed to determine whether miRNA-
30b-5p can specifically predict bone metastasis [99].

miRNA-16 and miRNA-378 have the potential to be 
used in liquid biopsy as well. Mechanically, miRNA-16 
may enhance osteoclast function and bone destruc-
tion caused by BCBM by increasing the expression of 
NFATc1, RANKL, IL-1β, PTHrP, and other factors. The 
specific mechanism of miRNA-16’s action requires fur-
ther investigation [100]. miR-378 can directly target 
BMP-2, inhibit its expression, and induce osteoclas-
togenesis [101]. Their prognostic value was discovered 
by Ell et  al. who detected four significantly upregulated 
miRNAs (miR-16, miR-211, miR-378, and Let-7a) dur-
ing osteoclast formation. Subsequent animal experiments 
showed that only miR-378 and miR-16 were elevated in 
mice with high bone metastatic tumor burden. Using 
real-time fluorescent quantitative RT-PCR to test the 
serum of 21 healthy women and 38 BCBM patients, they 

Fig. 6 Forest plot of protein biomarker hazard ratios for bone metastasis-free survival
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found that miRNA-16 and miRNA-378 were elevated in 
the bone metastasis group [102].

miRNA-124 has been found to inhibit BCBM by regu-
lating the bone microenvironment. In vitro experiments 
have shown that miRNA-124 downregulates cytokines 
that stimulate osteoclastogenesis, inhibits the survival 
and differentiation of osteoclast precursors, and thus 
suppresses bone resorption [103]. Furthermore, a previ-
ous study has found that miRNA-124 inhibits NFATc1 
and regulates the RANKL pathway [104]. Li confirmed 
its potential for diagnosing breast cancer [105]. Subse-
quently, the predictive value of miRNA-124 for bone 
metastasis was discovered by Wei-Luo Cai. They reported 
that miRNA-124 is downregulated in breast cancer tissue 
compared to normal tissue and further reduced in bone 
metastatic tissue. Downregulation of miRNA-124 is asso-
ciated with invasiveness and shorter bone metastasis-free 
survival [103].

miRNA-429, an RNA whose high expression is also 
associated with a good prognosis, plays a role in BCBM 
microenvironment regulation. In vitro experiments have 
shown that miRNA-429 downregulates CrkL and MMP-
9, two important molecules that promote bone metas-
tasis, and promotes osteoblast differentiation. In animal 
models, miRNA-429 regulates BCBM microenvironment 
through similar mechanism [105]. Using ISH and qRT-
PCR, Zhang et  al. found significantly decreased expres-
sion of miRNA-429 in BCBM compared to breast cancer 
tissue. Moreover, higher levels of miRNA-429 are asso-
ciated with longer bone metastasis-free survival. Breast 
cancer patients with low expression of miRNA-429 have 
a heavier disease burden, manifested by more severe 
preoperative bone pain and more bone metastatic sites 
[106].

LncRNA FGF14-AS2 is another RNA that can inhibit 
breast cancer metastasis [107]. In the context of bone 
metastasis, FGF14-AS2 inhibits the translation of 
RUNX2, thereby reducing the transcription of RANKL. 
Using qRT-PCR, researchers found that FGF14-AS2 is 
significantly downregulated in breast cancer tissue, and 
breast cancer patients with low levels of LncRNA FGF14-
AS2 have a worse prognosis in terms of distant metasta-
sis-free survival [108] (Table 4).

It has been reported that a panel of non-coding RNAs 
may have prognostic potential. eRNAs are short non-
coding RNAs transcribed from enhancer sites [109]. 
Li analyzed RNA-seq data obtained from 1211 primary 
breast cancer cases and 17 bone metastasis tissues from 
TCGA (The Cancer Genome Atlas) using Cox regres-
sion and LASSO (Least Absolute Shrinkage and Selection 
Operator) regression. The study explored the relation-
ship between eRNAs and clinical features, immune cell 
infiltration, and prognosis, and identified seven eRNAs 

with independent prognostic significance for BRCA bone 
metastasis: SLIT2, CLEC3B, LBPL1, FRY, RASGEF1B, 
DST, and ITIH5 [110].

Research of BCBM has identified several genes and 
mRNAs as biomarkers. Copy number alterations of MAF 
gene at 16q23 mediate bone metastasis in breast cancer. 
The transcription factor MAF acts on the PTHrP P1 pro-
moter, thereby promoting bone metastasis. Using immu-
nohistochemistry to detect MAF protein levels and FISH 
to detect 16q23 gains, Pavlovic et al. found that patients 
with this copy number variation in 334 primary breast 
cancers had a significant risk of bone metastasis, while 
no correlation was found with metastasis in other sites 
[111].

High expression of zinc-finger protein 217 (ZNF217) 
in MDA-MB-231 breast cancer cells is associated with 
EMT and certain gene dysregulation [112]. These genes 
are associated with bone remodeling and osteolytic bone 
metastasis [113, 114]. In addition, ZNF217 can activate 
the BMP/Smad signaling pathway upstream, promoting 
bone metastasis [112, 115]. The role of BMP in cancer 
metastasis is complex, as it can both repress and promote 
tumors depending on the context [116]. If drugs target-
ing ZNF217 are developed, the impact of this dual effect 
on treatment efficacy should be taken into consideration. 
Bellanger et al. used RT-qPCR to detect ZNF217 mRNA 
expression in 113 breast cancer samples and found that 
high expression of ZNF217 is associated with a higher 
risk of isolated bone metastasis in ER+ patients, but the 
level of ZNF217 cannot predict metastasis in other sub-
types of breast cancer [112].

Enhancer of zeste homolog 2 (EZH2), as a transcrip-
tional co-repressor of RNA Pol II, increases the expres-
sion of integrin β1, leading to focal adhesion kinase 
(FAK) activation and activation of the TGFβ/Smad2 
pathway, promoting bone metastasis [117]. EZH2 has 
also been found to enhance the stemness and metastatic 
ability of breast cancer, facilitating metastasis from bone 
to distant organs [57]. Zhang et al. validated the associa-
tion between EZH2 expression and bone metastasis-free 
survival in breast cancer patients using patient informa-
tion from the GSE dataset. The study found a negative 
correlation (r = − 0.2394, P = 0.03) between EZH2 expres-
sion and bone metastasis, indicating a higher risk of bone 
metastasis in patients with high EZH2 expression in pri-
mary breast cancer [117].

Savci-Heijink et  al. identified 15 genes (APOPEC3B, 
ATL2, BBS1, C6orf61, C6orf167, MMS22L, KCNS1, 
MFAP3L, NIP7, NUP155, PALM2, PH-4, PGD5, 
SFT2D2, and STEAP3) associated with the develop-
ment of bone metastasis in 157 cases of primary breast 
cancer. This gene signature showed good predictive 
value for both ER-positive and ER-negative tumors. In 
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a training set and a validation set containing 376 breast 
tumors, they identified bone metastasis in over 80% of 
cases. Among these 15 genes, three upregulated genes 
(NAT1, BBS1, and PH-4) were associated with EMT in 
tumors, while the other 12 genes were downregulated 
in bone metastasis [118]. Additionally, PH-4 promotes 
breast cancer development by altering the extracellular 
matrix [119]. Recent studies have also shown that NAT1 
promotes bone metastasis in luminal-type breast cancer 
by regulating the bone microenvironment through the 
NF-κB/IL-1B signaling pathway [27].

Another combination of five genes (HSP90AA1, SPP1, 
IL3, VEGFA, and PTK2) has been reported to have prog-
nostic significance. ROC analysis demonstrated that this 
gene signature had a predictive accuracy of over 90% 
for bone metastasis in breast and lung cancer patients 
and could be detected using liquid biopsy. Mechanically, 
HSP90, PTK2, and VEGF regulate cancer cell invasion, 
proliferation, and metastasis, while IL3 and SPP1 regu-
late osteogenesis [120].

A study conducted by Cosphiadi et  al. included 92 
patients with advanced breast cancer, of which 46 
patients had bone metastasis. Comparing the 17 patients 
who only had bone metastasis with non-bone metastasis 
patients, the researchers identified 17 significantly altered 
genes. They further confirmed the genes associated with 
an increased risk of bone metastasis, namely ESR1, PGR, 
BCL2, REPS2, NAT1, GATA3, ANXA9, C9orf116. The 
combination of these eight genes had an AUC of 0.928, 
demonstrating better predictive ability than individual 
genes [121].

IL-6 gene signature was identified by Mp1nichal Rajski 
et al. Researchers first investigated the impact of cell–cell 
interactions on overall gene expression in a co-culture 
experiment using breast cancer cells and osteoblasts. Co-
culturing significantly increased the expression of IL-6. 
Subsequently, these results were applied to 295 early 
breast cancer specimens from the Netherlands Cancer 
Institute to evaluate the clinical relevance of the in vitro 
experiment. The researchers confirmed an IL-6 gene sig-
nature composed of 72 genes, which was associated with 
shorter time to bone metastasis in patients with high 
expression of this gene signature [122].

A study analyzed the expression of TFF1 and verified 
its positive correlation with tumor relapse to bone using 
SAM analysis and quantitative RT-PCR. They used PAM 
analysis to identify a 31-gene signature predicting bone 
metastasis with 100% sensitivity and 50% specificity 
[123].

By comparing gene expression between different sub-
lines of human breast cancer cell line MDA-MB-122, 
researchers identified four highly overexpressed genes 
in the bone metastasis group: IL11, CTGF, CXCR4, and 

MMP-1. They further demonstrated that the expression 
of these factors was further enhanced by the pro-meta-
static cytokine TGFβ, providing evidence for these genes 
as potential diagnostic markers and therapeutic targets 
[114].

Woelfle et  al. reported significant differences in gene 
expression between bone metastasis-positive and -nega-
tive patients’ primary tumors based on cDNA micro-
array expression analysis. The differentially expressed 
genes were involved in extracellular matrix remodeling, 
adhesion, and cytoskeletal plasticity. They then identi-
fied a 73-gene signature capable of identifying lymph 
node-negative patients with or without bone marrow 
micrometastases. Immunohistochemical analysis of a test 
set containing 83 primary breast tumor samples, from 
patients with or without tumor cells in the bone marrow, 
confirmed that patients with decreased expression of 
CK8, CK18, or CK19 had an increased incidence of bone 
marrow micrometastases [124].

Ray investigated the prognostic value of FOXC1 gene 
signature in basal-like breast cancer metastasis. They 
found that ectopic overexpression of FOXC1 increased 
breast cancer cell proliferation, migration, and invasion. 
They constructed a FOXC1 gene signature composed 
of 30 genes that could predict overall survival and brain 
metastasis occurrence in patients. Subsequent analysis of 
a dataset containing 286 samples explored the relation-
ship between FOXC1 mRNA expression and metastasis. 
Higher FOXC1 expression was positively correlated with 
brain metastasis (P = 0.02) but negatively correlated with 
bone metastasis (P = 0.0002) [125].

The tumor suppressor gene Raf kinase inhibitory 
protein (RKIP) inhibits downstream genes involved in 
BCBM (MMP1, OPN, CXCR4) through miRNA let-7. 
Using an independent dataset of breast cancer patients, 
researchers found that patients with high expression of 
downstream RKIP pathway metastasis genes and low 
expression of RKIP had a significantly increased risk of 
metastasis [126].

The function of BMP has been discussed previously. 
It is also found to compose a prognostic gene signature 
along with other genes. Research based on the construc-
tion of a weighted co-expression network of differentially 
expressed genes (DEGs) related to EMT in metastatic 
breast cancer identified hub genes such as FERMT2, 
ITGA5, ITGB1, MCAM, CEMIP, HGF, TGFBR1, and 
F2RL. Differential expression of BMP2, BMPR2, and 
GREM1 was found in two datasets of BCBM. Based on 
the results of bioinformatics analysis from this study, it 
is speculated that BMP-2 may regulate immune infiltra-
tion processes in breast cancer tissue through the PI3K/
Akt signaling pathway, thereby affecting cancer prognosis 
[127].
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As has been discussed earlier, breast cancer cells 
secrete MSP, which acts on the RON receptor and pro-
motes osteoclast activation [46]. Welm et al. team used 
a mouse model of breast cancer to demonstrate that 
high expression of MSP promotes osteolytic metastasis 
of cancer cells from the primary tumor site to the bone. 
Subsequently, using microarray gene expression data, 
they found that tumors with high expression of MSP/
MT-SP1/MST1R had a significantly increased inci-
dence of bone metastasis, and demonstrated that the 
overexpression of MSP pathway genes has independent 
prognostic value for breast cancer patients in terms of 
metastasis and death [128].

Using microarray datasets from GSE2034, GSE2603, 
GSE12276, and NKI295, Li constructed a Gene 
Dependency Network and selected 51 genes associated 
with breast cancer metastasis. Survival analysis using 
training and testing sets showed that the identified gene 
signature was associated with shorter bone metastasis-
free survival in high-risk cancer patients, confirming 
the prognostic value of this gene panel [129].

Fan used GSE124647 as the training set and 
GSE16446, GSE45255, GSE14020 as the validation 
sets to explore the differential expression levels of key 
genes between breast cancer non-bone metastasis and 
bone metastasis groups. Potential prognostic-related 
genes were analyzed, validated, and a columnar line 
graph (GESBN) model based on gene expression fea-
tures was constructed to predict the likelihood of bone 
metastasis in breast cancer patients. Patients were 
sorted based on risk scores from the training set and 
divided into high-risk and low-risk groups for bone 
metastasis. The GESBN model constructed using GAJ1, 
SLC24A3, ITGBL1, and SLC44A1 indicated a poorer 
overall survival (OS) for high-risk individuals. The 
GESBN model constructed using GJA1, IGFBP6, MDFI, 
TGFBI, ANXA2, and SLC24A3 indicated a poorer PFS 
for high-risk individuals. Two hub genes, SLC44A1 and 
MDFIBC, were also selected and may serve as thera-
peutic targets for BCBM [130].

Although these gene signatures cover many genes, the 
overlap between them is relatively small. Possible rea-
sons for this phenomenon include different sample types 
(breast cancer cell lines or tissues), choice of experi-
mental methods, and selection of patient types [131]. 
However, this phenomenon may also be related to the 
heterogeneity of breast cancer. On the one hand, different 
spatial locations within the same tumor may contain sub-
populations of breast cancer cells with different molecu-
lar characteristics [132, 133]. On the other hand, BCBM 
involves multiple stages of development, with corre-
sponding genes involved at different stages [134]. There-
fore, more precise study of the spatiotemporal evolution 

of breast cancer in bone metastasis may help address this 
issue.

Circulating cells
Circulating tumor cells (CTCs) are tumor cells that 
detach from the tumor and circulate in the bloodstream. 
Circulating tumor cells can be collected and used for liq-
uid biopsy assays [135]. In patients’ blood samples, CTCs 
are identified by using immunomagnetic-based assays to 
isolate cells that lack CD45 and are positive for cytoker-
atin and epithelial cell adhesion molecule (EpCAM). 
Patients who test positive for CTCs at both pre-chemo-
therapy and post-chemotherapy time points have a higher 
proportion of bone metastasis compared to patients who 
are CTC negative at both time points (21.0% vs. 37.5%) 
[136]. Similar methods have shown a significant increase 
in CTC numbers in patients with bone metastasis, which 
is independent of bone metastasis occurrence [137]. 
Elnagdy et al. examined the RNA expression of CTCs in 
breast cancer patients and found a correlation between 
high expression of TFF1 mRNA and bone metastasis. 
Thus, the specific gene expression of CTCs can be used 
in bone metastasis prediction [138]. Furthermore, it has 
been reported that CTCs from breast cancer patients 
with bone metastasis exhibit active androgen receptor 
(AR) signaling pathway. Therefore, isolating CTCs from 
peripheral blood of breast cancer patients and detecting 
AR expression may be used to predict the occurrence 
of bone metastasis [139]. These studies suggest that the 
information carried by CTCs may indicate the bone tro-
pism of tumors or the risk of bone metastasis in patients.

Osteocalcin is a marker of late osteoblast differen-
tiation. Circulating osteocalcin-positive cells (cOC) are 
small mononuclear cells expressing osteocalcin in periph-
eral blood mononuclear cells. Researchers have identified 
the optimal cutoff value for cOC as 0.069% based on the 
ROC curve. Patients with high cOC levels have signifi-
cantly shorter bone metastasis-free survival compared to 
those with low cOC levels, indicating that cOC can pre-
dict early bone metastasis. However, cOC levels do not 
increase in advanced bone metastasis patients. Animal 
models have also shown a significant increase in cOC 
during early bone metastasis, which gradually decreases 
with tumor progression. Researchers have also found 
that benign fractures do not affect the elevation of cOC 
related to metastasis, which is an advantage of using cOC 
as a predictor of bone metastasis [140].

In addition to the mentioned biomarkers, there are 
other factors that may have prognostic significance. Tava-
zoie et  al. compared primary tumors resected from 11 
patients with lung, bone, or brain metastases to tumors 
resected from 9 patients without metastatic recur-
rence. They found that patients with low expression of 
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miRNA-335 and miRNA-126 in the primary tumor were 
more likely to develop metastasis [141]. Additionally, low 
expression of miRNA-30a, miRNA-30d, and miRNA-30e 
was associated with poor recurrence-free survival [142]. 
Therefore, miRNA-335, miRNA-126, and members of 
the miRNA-30 families could also serve as markers for 
BCBM. In a study using bioinformatics methods, key 
genes and long non-coding RNAs related to BCBM were 
identified. They constructed a differentially expressed 
lncRNA–mRNA interaction network and analyzed node 
degrees to identify core driver genes. They suggested 
that RP11-317-J19.1, PTP4A1, and BNIP3 may play key 
roles in suppressing cancer invasiveness and serve as 
strong predictors of BCBM [143]. It has been reported 
that osterix (Osx) upregulation is associated with lymph 
node metastasis and negatively correlates with overall 
survival. Knocking down Osx suppresses breast cancer 
invasion and osteolytic metastasis by downregulating 
MMP9, MMP13, VEGF, IL-8, and PTHrP, indicating the 
involvement of Osx in breast cancer invasion, angiogen-
esis, and bone resorption. This study demonstrates the 
potential value of Osx in predicting lymph node metas-
tasis in breast cancer [144]. Considering its role in bone 
metastasis, Osx may be worth investigating as a predic-
tor of BCBM in clinical samples. Retinoic acid-induced 2 
(RAI2) is a protein involved in maintaining the differen-
tiation state of ERα-positive breast cancer cells, and Wer-
ner et al. found that downregulation of RAI2 is associated 
with early bone metastasis in ERα-positive breast tumors, 
suggesting its potential role in inhibiting early hematog-
enous dissemination of tumor cells to the bone marrow 
[145]. Subsequent studies have also demonstrated the 
prognostic value of RAI2 in breast cancer [146]. Whether 
RAI2 can predict bone metastasis in breast cancer 
requires further validation in clinical samples.

Predictive biomarkers
Predictive biomarkers can predict a patient’s response to 
treatment or be used for monitoring during treatment to 
determine if the patient is benefiting from the therapy 
[75].

Proteins
CAPG and GIPC1 have been confirmed to have prog-
nostic significance by Westbrook et al. In the same study, 
they also demonstrated the predictive role of these two 
molecules. Patients with high expression of CAPG and 
GIPC1 treated with zoledronic acid showed a tenfold 
reduction in the risk of bone metastasis compared to the 
control group (P = 0.008). Therefore, detecting CAPG 
and GIPC1 can help identify patients who would benefit 
from zoledronic acid treatment [83].

In a previously mentioned AZURE clinical trial, high 
levels of DOCK4 were found to be associated with bone 
metastasis in the control group but not statistically cor-
related in the group treated with zoledronic acid. This 
indicates that the use of zoledronic acid can effectively 
reduce the risk of bone metastasis in patients with high 
expression of DOCK4 [84].

Urinary N-terminal telopeptide (uNTX) is a marker 
reflecting bone resorption [95]. A retrospective analy-
sis conducted by Allan Lipton used ELISA to detect 
NTX in the urine of 1705 breast cancer patients. The 
results suggested that patients with uNTX levels above 
the median after 3 months of denosumab or zoledronic 
acid treatment had a higher risk of reduced overall sur-
vival and increased risk of disease progression [147]. 
Another prospective cohort study further elucidated the 
predictive value of uNTX. NTX in the urine of patients 
(71 breast cancer patients with bone metastasis, includ-
ing 39 with extraskeletal metastasis) was detected using 
a similar method. After 3  months of zoledronic acid 
treatment, high levels of NTX (NTX > 100  nmol BCE/
mmol creatinine) in patients with bone metastasis only 
indicated poor prognosis, consistent with Allan Lipton’s 
conclusion. The researchers also found a strong correla-
tion between NTX levels at 1 month and 3 months after 
zoledronic acid treatment and long-term NTX levels at 
12  months. Therefore, the prognosis of these patients 
can be identified early after initiating zoledronic acid 
treatment. However, the predictive ability of NTX can 
be affected by metastases in other sites, as patients with 
extraskeletal metastasis show unstable NTX levels that 
are not associated with survival [148].

Genes
The prognostic value of MAF has been discussed earlier. 
Subsequent studies have found that MAF may be used to 
guide treatment for BCBM. Using FISH to detect MAF 
in primary tumor samples, Robert Coleman defined copy 
number >  = 2.5 as MAF+ve and studied a cohort of 1769 
patients, including those from the AZURE trial. Kaplan–
Meier survival curve analysis showed that MAF-ve tumor 
patients benefited from zoledronic acid, while in premen-
opausal women with MAF+ve tumors, zoledronic acid 
treatment led to poorer overall survival (OS) [149]. This 
result suggests a correlation between menopausal status 
in women and BCBM, which may be related to hormo-
nal changes as studies have shown that estrogen induces 
apoptosis in osteoclasts, and other hormones involved in 
perimenopausal changes regulate the bone microenvi-
ronment [150, 151]. Predictive power of MAF might be 
further improved when we take other factors into con-
sideration, for example, IL-6 expression. Studies have 
shown that IL-6, a factor involved in BCBM, significantly 



Page 19 of 29Wang et al. Cell & Bioscience          (2023) 13:224  

increases in the serum of women with age. There is evi-
dence that IL-6 may be mechanistically related to the 
function of zoledronic acid. Zoledronic acid alters the 
expression of IL-6 in prostate cancer cells and influences 
osteoclast differentiation through IL-6 [152, 153]. There-
fore, it can be speculated that IL-6 may be one of the fac-
tors contributing to the differential efficacy of zoledronic 
acid among patients with different menopausal statuses. 
Further research and validation is required to determine 
how MAF, menopausal status, and IL-6 can be used in 
conjunction to inform treatment decisions. This repre-
sents one of many similar avenues of study that can help 
bring biomarkers from the bench to the bedside.

These biomarkers not only have predictive and prog-
nostic value but also participate in the pathophysiology 
of BCBM (Table 5). Their related signaling pathways are 
shown in Fig. 7.

A subset of the aforementioned biomarkers have been 
evaluated for use in liquid biopsies. The technique of liq-
uid biopsy involves real-time combined analysis of circu-
lating tumor cells, circulating tumor DNA, extracellular 
vesicles, RNA, proteins, and other substances derived 
from primary or metastatic tumor lesions in blood or 
other body fluids, providing information about the tumor 
[154]. It offers a variety of advantages over tissue biopsy.

Within the scope of liquid biopsy, the development of 
novel assays to detect biomarkers within exomes is par-
ticularly promising. Exosomes are a subset of extracel-
lular vesicles that mediate cell-to-cell communication 
by transporting molecular cargoes such as proteins, 
mRNA, miRNA, and lipids from donor cells to recipient 
cells, thereby participating in physiological and patho-
logical processes. Exosomes offer several advantages 
in liquid biopsy. First, they are enriched in body fluids 
and easily accessible. Second, due to their lipid bilayer 
structure, exosomes are stable, which allows them to 
maintain stability during circulation in the body, sample 
transportation, and storage, making them crucial for the 
development of biomarkers using retrospective samples 
[155, 156].

Numerous studies have enriched and purified 
exosomes through ultracentrifugation and confirmed 

their role in the process of BCBM and their potential as 
biomarkers. As mentioned earlier, exosomal miRNA-21 
promotes the formation of osteolytic metastatic lesions 
in breast cancer, and exosomal mRNA of miRNA-19a, 
HSP90AA1, SPP1, IL3, VEGFA, and PTK2 genes have 
also been validated as biomarkers [20, 98, 120]. In addi-
tion to exosomes, free RNA, proteins, and circulating 
cells can also be used for liquid biopsy in the prognosis 
of BCBM, and they are summarized in Table 6. A recent 
study has reported that serum periostin is a prognos-
tic biomarker for breast cancer-specific survival [157]. 
Previous research has also indicated high expression of 
periostin in breast cancer patients with bone metastasis 
[158]. Therefore, future studies can validate whether peri-
ostin can be applied in liquid biopsy to predict the risk 
of bone metastasis occurrence in high-risk individuals 
[157].

Liquid biopsy offers unique advantages compared to 
tissue biopsy. Tumor cells are heterogeneous, and cancer 
cells undergo molecular changes because of fluctuations 
in microenvironment and therapeutic interventions. 
Whereas tissue biopsies are limited in their ability to be 
representative of subpopulations of tumor cells and to 
reflect real-time development of the tumor, liquid biop-
sies are not [156]. The major benefit of liquid biopsy is 
that it is minimally invasive and can be performed multi-
ple times [159]. Therefore, the use of liquid biopsy helps 
in closely monitoring patients, predicting the risk of 
BCBM, and guiding treatment decisions.

Single‑cell sequencing and organoid models 
in the field of breast cancer bone metastasis 
(BCBM) research
Single‑cell sequencing
Technological advancements are making nucleic acids 
increasingly relevant as the targets of screening and 
diagnosis. A multistage disease as complex and heterog-
enous as BCBM offers a particular set of challenges that 
must be addressed by a deliberate, well planned sequenc-
ing protocol. The continuous evolution of heterogene-
ous tumor cell populations resulting in the emergence 
of treatment-resistant clones, which can cause drug 

Table 5 Biomarkers and their functions

Multiple signatures are not included

Functions Biomarkers Refs.

Cell adhesion and cytoskeleton GIPC1, DOCK4, CAPG, IL-1B, PRL [79, 82, 85, 91, 94]

Tumor stemness or EMT PAK4, RANKL, IL-1B, EZH2, ZNF217 [57, 78, 87, 93, 112]

Regulation of the bone microenvironment RANKL, PRL, ZNF217, miRNA-19a, IBSP, miRNA-124, miRNA-429, 
LncRNA FGF14-AS2, MAF, miRNA-16, miRNA-378, SCUBE2

[28, 86, 89, 98, 100, 101, 
103, 104, 106, 108, 111, 
112]

Bone turnover markers P1NP, CTX, 1-CTP, NTX [96, 147]
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Fig. 7 Relevant signaling pathways of biomarkers in BCBM. Multiple signatures are not included

Table 6 Potential biomarkers for liquid biopsy in breast cancer bone metastases

Biomarkers Category Techniques used Refs.

RANKL Protein ELISA [88]

SCUBE2 Protein ELISA [28]

P1NP, CTX, 1-CTP Protein Immunological analysis [96]

uNTx Protein ELISA [147]

IBSP
Exosomal miRNA-19a

RNA, protein ELISA (IBSP)
RT-qPCR (Exosomal miRNA-19a)

[98]

miRNA-30b-5p RNA RT-qPCR [99]

miR-378 and miR-16 RNA RT-qPCR [102]

HSP90AA1, SPP1, IL3, VEGFA, PTK2 Gene panel RT-qPCR [120]

CTC Cell Immunomagnetic sorting [136, 137]

cOC Cell Flow cytometry and immunofluorescence staining [140]
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responses in the primary site and the distant metastatic 
sites to be very different [160]. Traditional high-through-
put bulk sequencing techniques provide only average 
transcriptomic levels of all cells in heterogeneous tumor 
tissues and is of relatively low resolution. However, sin-
gle-cell transcriptomics offers high resolution and over-
comes the limitations of traditional bulk sequencing 
techniques, allowing for the study of gene expression 
states and functions at the single-cell level. Single-cell 
sequencing can classify breast cancer cell populations of 
different molecular subtypes to identify disease patterns 
that may be associated with adverse prognosis and drug 
resistance. This technology can also be used to elucidate 
tumor microenvironment heterogeneity, laying the foun-
dation for further understanding the origin, metastasis, 
and treatment resistance of tumors. Single-cell sequenc-
ing reveals tumor heterogeneity and evolution, promot-
ing the development of precision medicine [161, 162].

Wu et  al. conducted a study employing single-cell 
RNA sequencing to delve into the cellular components 
within the microenvironment. Their research uncovered 
that SCUBE2, expressed by MCF7 cells, plays a pivotal 
role in inducing the enrichment of a specific osteoblas-
tic subpopulation within metastatic lesions. This induc-
tion, in turn, promotes osteoblast differentiation [28]. In 
a separate investigation utilizing data gathered through 
single-cell sequencing, Zhang et al. explored various cell 
subpopulations within the tumor microenvironment of 
bone metastasis. Their research pinpointed the existence 
of the MSC_MARCKSL1 subpopulation, situated in the 
early stages of differentiation and characterized by its sig-
nificant differentiation potential. These findings suggest a 
potential involvement of this subpopulation in the regu-
lation of bone metastasis [163].

Sequencing techniques can also provide important 
insight into how breast to bone metastasis influences 
further metastasis to other sites [5]. The origin of metas-
tasis to other organs can be from the primary tumor or 
from bone metastatic lesions, highlighting the need to 
understand the tumor’s evolutionary process. Brown 
et al. utilized phylogenetic techniques to analyze whole-
exome sequencing and copy number variation data in 
breast cancer specimens, exploring the patterns of tumor 
metastasis. Their study observed that the most common 
pattern of initial metastasis in breast cancer is a single 
metastatic site, followed by multiple seeding events from 
the primary tumor, which subsequently undergo metas-
tasis-to-metastasis cascading dissemination [164].

Single-cell sequencing plays a pivotal role in advanc-
ing the development of biomarkers, particularly in breast 
cancer research. In pertinent studies, breast cancer cells 
and immune cell populations of distinct molecular sub-
types have been systematically classified, leading to the 

identification of unique subgroups that may hold rele-
vance for prognosis and the understanding of drug resist-
ance [162]. For instance, Savas et al. conducted single-cell 
RNA sequencing on T cells isolated from human breast 
cancer tissues. This endeavor revealed the remarkable 
heterogeneity within the T cell population and culmi-
nated in the development of a  CD8+ TRM gene signa-
ture, derived from the sequencing data. This signature 
serves as a valuable prognostic biomarker, specifically tai-
lored for early TNBC patients [165]. Moreover, investiga-
tions into breast cancer tumor stem cells using single-cell 
sequencing have unveiled a set of 14 genes that exhibit 
significant upregulation in tumor stem cells. Notably, 
these genes have been correlated with survival outcomes, 
positioning them as potential biomarkers with clinical 
significance [166].

Single-cell sequencing not only holds promise for pre-
dicting patient prognosis but also plays a vital role in 
predicting drug efficacy. An illustrative example of this 
is the work of Wang et al., who utilized this technology 
to uncover the presence of immune-inhibitory imma-
ture myeloid cells (IMCs) within breast cancer tumors 
that displayed resistance to anti-Her2 treatment and the 
CDK4/6 inhibitor Palbociclib. To surmount this resist-
ance, Wang’s research demonstrated the effectiveness 
of a combined approach. It involved the use of tyrosine 
kinase inhibitors that targeted IMCs in conjunction with 
immune checkpoint inhibitors. This innovative combina-
tion therapy successfully overcame resistance, highlight-
ing the considerable potential of single-cell sequencing 
in monitoring the evolution of tumors under the influ-
ence of drug interventions. It offers valuable insights into 
devising more effective treatment strategies [167].

Knowledge of the mechanisms behind BCBM is only 
as good as the in vitro and in vivo experimental models 
used. Development of more suitable BCBM models is 
critical to both the development of better screening bio-
markers and therapeutic drugs. One of the most promis-
ing avenues in the study of BCBM is the use of organoids 
in precision medicine. Organoids are three-dimensional 
models containing multiple cell types that simulate the 
characteristics of tumors in the body and can be used 
to study the biological properties of tumor cells in detail 
[168]. They offer unique advantages since they are often 
cheaper and faster to use than in-vivo models. Previous 
studies have found that the use of xenograft organoid 
models can be used for drug screening and precision 
therapy. In a case study of an early-stage metastatic 
TNBC patient, researchers observed that the model’s 
response to drugs correlated with the clinical outcomes 
observed [169]. The development of more sophisticated 
organoids may yield a better temporal understanding of 
BCBM since sample sizes can be larger, and researchers 
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can afford to do perform histological analysis at smaller 
time intervals. In a recent study using organoid models 
derived from BCBM patients, single-cell RNA sequenc-
ing (ScRNAseq) results showed that the model largely 
preserved cellular subclonal heterogeneity. These find-
ings demonstrate that organoid models may be uniquely 
valuable in studying tumor heterogeneity without sacri-
ficing authenticity [161].

Organoids models
Organoids represent intricate three-dimensional struc-
tures that closely mimic the architecture and func-
tionality of organs. They originate from stem cells or 
organ-specific progenitor cells and are generated through 
in  vitro self-organization processes. When compared 
to other tumor models, organoids offer conditions that 
more faithfully replicate the characteristics of the origi-
nal tumor. This is especially advantageous in the in-depth 
study of human cancers, including breast cancer. To 
illustrate, when cultured in conventional tissue culture 
bottles, there exists a substantial disparity, exceeding 17 
million times, between the stiffness of healthy mammary 
glands and the surrounding cell layer. In contrast, the 
elastic modulus of Matrigel, a common substance used 
in organoid culture, is relatively like that of mammary 
glands. This aligns organoid cultures more closely with 
the natural tissue environment. Furthermore, in stand-
ard two-dimensional (2D) cell cultures, there is a gradual 
loss of heterogeneity, whereas the tumor environment 
maintains a high degree of heterogeneity. In contrast, 
organoids encompass various cell types and can simu-
late some of the essential functions of organs. As a result, 
they are exceptionally well-suited for research into the 
tumor microenvironment (TME) and offer a more com-
prehensive and physiologically relevant platform for such 
investigations [170].

The extracellular matrix (ECM) plays critical roles 
in driving cancer phenotype, disease progression and 
therapeutic response in  vivo. 3D engineered matrices 
with tunable biochemical and mechanical properties are 
poised to answer previously untestable hypotheses sur-
rounding mechanisms of these important cancer–matrix 
interactions [171]. Dhimolea et  al. employed organoids 
as a valuable tool to investigate hormone therapy resist-
ance within the intricate metastasis microenvironment, a 
context that is challenging to replicate in traditional 2D 
cultures. In their study, they cultured spheroids derived 
from hormone receptor-positive (HR+) breast cancer 
and prostate cancer cells, as well as patient-derived orga-
noids, within a 3D ECM. They examined these cultures 
both in isolation and in conjunction with bone marrow 
matrix. Through this approach, they made a significant 
discovery. Their research revealed the extent to which 

tumor cells rely on hormone receptor (HR) signaling for 
anchorage-independent growth. Furthermore, it under-
scored how the metastatic microenvironment has the 
capacity to restore this malignant property of cancer 
cells, particularly during hormone therapy. This finding 
sheds valuable light on the mechanisms underlying hor-
mone therapy resistance and provides insights into the 
dynamic interplay between cancer cells and their micro-
environment in the context of metastasis [172].

Organoids serve as invaluable tools that offer histo-
logical insights into cancer development, enhance our 
understanding of the carcinogenic process, and open 
avenues for the discovery of novel treatment approaches. 
Notably, organoid models have found application in 
the investigation of bone metastasis in breast cancer. 
In some studies, researchers have identified a correla-
tion between elevated expression of Sclerostin (SOST) 
and the occurrence of bone metastasis in breast cancer, 
as well as a poorer prognosis for breast cancer patients. 
Silencing SOST expression has been shown to signifi-
cantly diminish the capacity of SCP2 cells. Moreover, it 
has been revealed that the interaction between SOST 
and STAT3 can potentiate the TGF-β/KRAS signaling 
pathway, consequently promoting tumor growth and 
bone metastasis. Remarkably, the administration of S6, 
a leading candidate drug, has demonstrated a notable 
capacity to inhibit the growth of breast cancer organoids. 
Additionally, it has exhibited efficacy in mitigating bone 
metastasis in mouse models. These findings underscore 
the potential therapeutic value of targeting SOST and 
its associated pathways in addressing breast cancer and 
its metastatic spread to the bone [173]. Recent research 
has underscored the pivotal role of Wnt ligand signaling 
in the regulation of migration, invasion, and metastasis 
in breast cancer. Specifically, the Wnt receptor frizzled 6 
(FZD6) has emerged as a valuable marker for identifying 
TNBC patients who face a heightened risk of metastasis 
and recurrence. In this study, organoids were leveraged 
as a crucial tool to assess the transformation degree of 
breast cancer cells. This approach allows for a deeper 
understanding of the molecular and functional altera-
tions that occur in breast cancer, shedding light on the 
potential mechanisms underlying metastasis and offering 
valuable insights into disease progression and patient risk 
assessment [174].

While organoids hold great promise as invaluable mod-
els, their practical implementation faces certain limita-
tions. Firstly, despite their ability to offer more realistic 
3D models for cancer research, creating an organoid 
model that faithfully mirrors the heterogeneity of a 
patient’s tumor and its tumor microenvironment (TME) 
remains a significant challenge. This challenge arises due 
to the absence of critical components such as stroma, 
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immune cells, blood vessels, and microbiota within 
organoids. Additionally, the time required for culturing 
organoids derived from breast cancer patients poses a 
significant hurdle. The process can be time-consuming, 
and the efficiency of organoid derivation and reliable 
in vitro expansion is often characterized by unpredicta-
bility and low success rates. These limitations underscore 
the need for continued research and development efforts 
to refine organoid models and enhance their capacity to 
faithfully recapitulate the complexity of tumors and their 
microenvironments [170, 171].

Conclusions and future perspectives
Bone metastasis is a serious complication that occurs in 
advanced breast cancer, impairing patients’ quality of life 
and reducing their lifespan. Existing detection methods 
often struggle to identify early-stage bone metastasis, 
and many patients are only diagnosed when symptoms 
arise [175].

In this context, many studies have attempted to explore 
biomarkers that can predict the occurrence of bone 
metastasis, enabling the selection of high-risk patients 
for subsequent follow-up and treatment. Among them, 
biomarkers compatible with liquid biopsy offer unique 
advantages over tissue biopsy since measurements can be 
repeated and assess the risk of bone metastasis multiple 
times. Future research endeavors in the realm of liquid 
biopsy are poised to unlock the full potential of these bio-
markers for longitudinal monitoring during disease pro-
gression and therapeutic interventions. Such studies hold 
significant promise, particularly in the context of assess-
ing the risk of bone metastasis in breast cancer patients, 
enabling precise patient stratification, and facilitating 
informed drug selection. An illustrative example of the 
potential of longitudinal liquid biopsy comes from the 
retrospective study conducted by Chin et  al., involving 
33 breast cancer patients. In this study, serial analysis of 
circulating tumor DNA (ctDNA) was employed to moni-
tor the status of bone metastatic lesions and to detect 
acquired genetic alterations linked to drug resistance. 
The outcomes of this investigation highlight the clinical 
feasibility and utility of serial ctDNA analysis in tracking 
tumor responses to CDK4/6 inhibitors. Consequently, 
this study provides compelling evidence supporting 
the practical application of longitudinal liquid biopsy 
in clinical settings [176]. These findings underscore the 
immense promise of liquid biopsy as a dynamic tool for 
monitoring disease progression and treatment response, 
thereby contributing to more personalized and effective 
care for breast cancer patients.

Our understanding of the predicting power of the bio-
markers discussed is currently limited. Some of the bio-
markers mentioned are just beginning to show promise in 

preclinical testing, whereas others have already demon-
strated some degree of utility. Without the use of scaled 
up clinical trials in large patient populations, it is exceed-
ingly difficult, if not impossible, to determine which bio-
markers will be robust enough to predict BCBM. More 
substantial validation studies are in our future. With 
continued research in particular patient populations, our 
understanding of which biomarkers will be clinically use-
ful in which situations will improve.

Concurrently, sequencing techniques will continue 
to become more sophisticated and will make the goal of 
precision medicine more attainable. Research in the basic 
sciences and improved models will also undoubtedly 
advance the discovery of novel biomarkers and therapeu-
tic compounds while providing valuable insight into how 
to best use them.

Despite the significant strides made in cancer research 
and biomarker development facilitated by single-
cell sequencing, there are challenges that need to be 
addressed before the widespread adoption of this prom-
ising technology. One such challenge is the limitation 
imposed by the sheer number of cells within a solid 
tumor tissue, which often surpasses the capacity for 
sequencing offered by single-cell sequencing. Addition-
ally, the high costs associated with this technology pose 
a barrier to its widespread application [177, 178]. Future 
research efforts may be directed towards enhancing the 
precision of single-cell sequencing while elucidating the 
characteristics of the tumor microenvironment and its 
cellular composition. An avenue to address this chal-
lenge lies in the integration of single-cell sequencing with 
bulk sequencing data. A notable example is the work of 
Newman et al., who developed CIBERSORT, a tool that 
employs machine learning and deconvolution algorithms 
to estimate the composition and abundance of immune 
cells within mixed cell populations. Building upon this 
advancement, Guo et  al. successfully integrated results 
from both single-cell sequencing and bulk sequencing. 
This integration enabled them to delve into T-cell hetero-
geneity in TNBC and construct a prognostic risk model 
specifically related to T-cells in TNBC. The integra-
tion of these data sources holds significant promise for 
gaining a comprehensive understanding of tumor biol-
ogy and the immune microenvironment. This approach 
has the potential to advance the development of precise 
prognostic models and personalized therapeutic strate-
gies in breast cancer research and beyond [179]. This 
underscores the necessity of developing corresponding 
algorithms to efficiently manage the vast amount of data 
generated by single-cell sequencing.

Another noteworthy limitation is the loss of spa-
tial information [178]. However, this limitation 
can be addressed through the integration of spatial 
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transcriptomics, which enables the visualization of tran-
scriptomes and quantitative analysis at a single-cell level 
with spatial resolution. This integration offers a more 
precise understanding of breast cancer metastasis. In 
a compelling example, Liu et  al. employed multimodal 
intersection analysis to combine these two technologies. 
Their work led to the identification of early metastatic 
subpopulations of breast cancer and their spatial distri-
bution characteristics. Notably, they revealed that this 
subpopulation exhibited an initial increase followed by 
a decrease in oxidative phosphorylation pathway activity 
during the metastasis process, while the glycolytic path-
way displayed the opposite trend. These findings under-
score the potential significance of cell metabolism in 
predicting breast cancer metastasis [180].

The added benefit of discovering and developing novel 
biomarkers is that most of them also play a role in cancer 
development and can be potential targets for treatment. 
For example, RANKL has significance as a biomarker 
and is also the target of denosumab, an approved for the 
treatment of bone metastasis [86]. Other biomarkers may 
not currently have known clinical significance but may 
become appealing targets for BCBM treatment as our 
knowledge of the molecular mechanisms behind BCBM 
deepen. IL-1B, another biomarker that was discussed, is 
showing potential in preclinical models as a treatment 
target: when used alone the IL-1 receptor antagonist 
anakinra inhibits bone metastasis, although it also pro-
motes primary tumor growth. The combination of anak-
inra with doxorubicin and zoledronic acid compensates 
for this drawback by reducing primary tumor growth 
while inhibiting bone metastasis [181]. Further research 
into other biomarkers may reveal even more promising 
therapeutic targets.

Tremendous strides have been made in unraveling the 
intricate mechanisms underlying breast cancer bone 
metastasis. Yet, certain processes, especially those related 
to secondary metastasis following initial bone metas-
tasis, still lack comprehensive characterization. While 
existing research has shed light on some aspects, such 
as the role of the bone metastatic microenvironment in 
promoting secondary metastasis, there remains a need 
for deeper understanding. Current studies have pointed 
to specific mechanisms, such as cancer cell-autonomous 
secretion of EZH2 and immune suppression mediated by 
osteoclast-derived apoptotic bodies, both of which can 
be promising targets for therapy [57, 58]. These findings 
underscore the potential for novel therapeutic strategies 
in breast cancer bone metastasis. To advance our knowl-
edge in this field, further exploration of the interactions 
between various cell subpopulations within the bone 
microenvironment is essential. This will enable a more 
comprehensive understanding of the cascade of events 

that drive breast cancer bone metastasis. Moreover, it 
will lay the foundation for the development of innova-
tive therapeutic interventions aimed at interrupting these 
complex processes and improving patient outcomes.

In conclusion, the future trajectory of research in breast 
cancer bone metastasis should be guided by several key 
objectives: 1) Mechanistic Understanding: Continued 
efforts should be dedicated to deepening our understand-
ing of the intricate mechanisms that drive breast cancer 
bone metastasis. This knowledge will pave the way for 
more targeted and effective treatments. 2) Biomarker 
Development: The development of highly accurate and 
reliable biomarkers is crucial. These biomarkers have the 
potential to aid in early diagnosis, risk assessment, and 
treatment stratification for breast cancer patients with 
bone metastasis. 3) Clinical Validation: It is imperative 
to subject these biomarkers to extensive large-scale clini-
cal validation to ensure their robustness and reliability. 
This step is essential before their potential implementa-
tion in routine clinical practice. 4) Therapeutic Targets: 
Exploring whether these biomarkers can also serve as 
therapeutic targets is a promising avenue of investigation. 
Targeted therapies based on these biomarkers may offer 
more effective and personalized treatment options.

By pursuing these objectives, the development of new 
technologies and research models will undoubtedly 
advance the study of novel biomarkers, with the poten-
tial for clinical application in the near future, ultimately 
assisting in the prevention of BCBM and improving the 
prognosis of patients with BCBM.
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