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Epigenetic regulation of thyroid hormone-induced
adult intestinal stem cell development during
anuran metamorphosis
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Abstract

Epigenetic modifications of histones are emerging as key factors in gene regulation by diverse transcription factors.
Their roles during vertebrate development and pathogenesis are less clear. The causative effect of thyroid hormone
(T3) on amphibian metamorphosis and the ability to manipulate this process for molecular and genetic studies
have led to the demonstration that T3 receptor (TR) is necessary and sufficient for Xenopus metamorphosis, a
process that resembles the postembryonic development (around birth) in mammals. Importantly, analyses during
metamorphosis have provided some of the first in vivo evidence for the involvement of histone modifications in
gene regulation by TR during vertebrate development. Furthermore, expression and functional studies suggest that
various histone modifying epigenetic enzymes likely participate in multiple steps during the formation of adult
intestinal stem cells during metamorphosis. The similarity between intestinal remodeling and the maturation of the
mammalian intestine around birth when T3 levels are high suggests conserved roles for the epigenetic enzymes in
mammalian adult intestinal stem cell development and/or proliferation.
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Introduction
The adult mammalian intestine has long been served as
a model system to study the property and function of
adult organ-specific stem cells due to the constant self-
renewal of the intestinal epithelium throughout adult
life [1,2]. In the adult mammalian intestine, the stem
cells reside in the crypts. After stem cell division, the
daughter cells migrate along the crypt-villus axis as
they gradually differentiate into different types of epi-
thelial cells. At the tip of the villus, the differentiated
epithelial cells undergo apoptosis and are replaced by
the newly arrived, differentiated epithelial cells, com-
pleting the self-renewing cycle once every 1–6 days
[2-4]. Similar processes occur in the intestine in all ver-
tebrates, including amphibians, with the epithelium be-
ing replaced once every 2 weeks in Xenopus laevis [5].
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While many studies have been carried out on the mam-
malian intestinal stem cells in the adult, few have been
on the formation of such stem cells during vertebrate
development, largely due to the difficulty to manipulate
uterus-enclosed mammalian embryos.
The frog intestine resembles the adult intestine in

mammals. In the highly related species Xenopus laevis
and tropicalis, the frog intestine contains numerous epi-
thelial folds that resemble the crypt-villus structure in
mammals [6,7]. The stem cells localized in the trough of
the fold proliferate and the daughter cells differentiate
into different epithelial cells as they migrate up toward
the crest of the fold, where they undergo apoptosis.
Interestingly, amphibians undergo biphasic development,
first forming a free-living tadpole (Figure 1). After a fi-
nite period of premetamorphic growth, the tadpole
metamorphoses into a frog. Accompanying this meta-
morphic transition, the animal intestine remodels exten-
sively. The Xenopus tadpole intestine is a simple tubular
structure made of mainly larval epithelial cells with little
connective tissue or muscles (Figure 1). It has a single
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Figure 1 T3-dependent intestinal remodeling during Xenopus metamorphosis involves larval cell apoptosis and de novo formation of
adult epithelial stem cells. Xenopus undergoes a biphasic development. Its embryogenesis, when there is little TR or T3, leads to the formation of a
free-living premetamorphic tadpoles by stage 45. During premetamorphosis (stage 45–54), there are high levels of TR but little T3, and the intestine
has a simple structure with only a single fold, the typhlosole. During metamorphosis, the T3 level in the plasma rises to peak around stage 62, and
most larval epithelial cells in the intestine undergo apoptosis, as indicated by the circles. Concurrently, the proliferating adult progenitor/stem cells are
formed de novo from larval epithelial cells through dedifferentiation, as indicated by black dots. By the end of metamorphosis (stage 66), the levels of
both TR and T3 drop lower and the newly differentiated adult epithelial cells in the intestine form a multiply folded epithelium.
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epithelial fold, the typhlosole. During metamorphosis,
the vast majority of the epithelial cells undergo apop-
tosis while some differentiated larval epithelial cells de-
differentiate into adult progenitor/stem cells, which
subsequently proliferate and differentiate to form a
multi-folded adult epithelium surrounded by extensive
connective tissue and muscles [1,8-12]. As metamor-
phosis occurs totally independently of maternal influ-
ence, this offers a unique opportunity to study how
adult organ-specific stem cells are formed during verte-
brate development.

Thyroid hormone (T3) and the formation of adult
intestinal stem cells
Both the maturation of the adult mammalian intestine
and the remodeling of the intestine during frog meta-
morphosis occur when the plasma thyroid hormone
(T3) concentrations are high, a period referred to as
postembryonic development [13]. Importantly, T3 plays
a causative and organ-autonomous role during amphib-
ian metamorphosis [14,15]. T3-treatment of premeta-
morphic tadpoles or tadpole organ cultures induces
precocious metamorphosis while blocking the synthesis
of endogenous T3 inhibits natural metamorphosis. This
has enabled cellular, molecular, and genetic analyses on
the formation of the adult intestinal stem cells during in-
testinal metamorphosis [1,16-18]. By using recombinant
organ-cultures made of wild type and transgenic animals
expressing GPF, we have shown that adult epithelial
stem cells formed upon T3 treatment of the organ cul-
tures of premetamorphic intestine originate from the lar-
val epithelium [8].
Extensive studies indicate that T3 controls Xenopus

metamorphosis by regulating gene transcription through
nuclear T3 receptors (TRs) [19-31]. To investigate the
role of TR in adult intestinal stem cell development, we
have made use of recombinant organ-cultures consisting
of tissues from wild type and transgenic animals express-
ing a dominant positive TR (dpTR) under the control of
a heat shock-inducible promoter [10,22]. We have shown
that inducible expression of the dpTR in all tissues of the
intestine in the absence of T3 is sufficient to induce intes-
tinal metamorphosis, including larval epithelial cell death
and adult stem cell formation, suggesting that TR is both
necessary and sufficient for the inductive effects of T3 on
stem cell formation [10]. Furthermore, expression of
dpTR in the larval epithelium alone is able to induce the
dedifferentiation of larval epithelial cells to upregulate
sonic hedgehog gene, which is highly expressed in the
proliferating adult epithelial progenitor/stem cells. Inter-
estingly, such cells fail to upregulate the expression of two
well-known markers of the adult mammalian intestinal
stem cells and the formation of the stem cells express-
ing such markers also requires the expression of dpTR
in the rest of the intestinal organ culture, i.e., the non-
epithelium [10], consistent with earlier studies showing
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an requirement for cell-cell interaction during the for-
mation of the adult intestine [28,32]. These findings
suggest that TR-mediated gene regulation in both the
epithelium and the non-epithelium are required for
stem cell development, with the T3-induced gene ex-
pression changes in the non-epithelium likely contrib-
ute to the formation of the stem cell niche for the
developing adult stem cells. Many such tissue-specific
T3-regulated genes have been identified and the ana-
lyses of the spatiotemporal expression profiles of some
of the epithelial genes indeed support their involvement
in adult stem cell formation/proliferation [33-37].

Mechanism of gene regulation by TR during
Xenopus development
TR can both activate and repress gene transcription.
For T3-induced genes, TR most likely functions as het-
erodimers formed with 9-cis retinoic acid receptors
(RXRs), another number of the nuclear hormone recep-
tor superfamily [38-42]. TR/RXR heterodimers bind to
T3-response elements (TREs) in target genes constitu-
tively and regulates their expression in a T3-dependent
manner [38-41,43-45]. In the absence of T3, TR binds
to corepressors such as the two highly related proteins N-
CoR (nuclear corepressor) and SMRT (silencing mediator
of retinoid and thyroid hormone receptors), which form
Figure 2 Upregulation of genes involved in epigenetic modifications du
protein extracts were prepared from Xenopus laevis tadpoles at different stage
TSA, an HDAC inhibitor. Means +/− SEMs are given. Statistical significance as
the HDAC-specific drug TSA inhibited all activities. See [91] for details. (B)-(D).
mRNA levels were determined by using total RNA from intestine at different s
large histone deacetylase (HDAC)-containing complexes
[46-62]. In the presence of T3, TR recruits diverse coacti-
vator complexes, such as ATP-dependent chromatin
remodelers and histone acetyltransferase/methyltransfer-
ase-containing complexes [39,51,63-84]. Thus, TR likely
regulates gene transcription in part through chromatin re-
modeling and histone modifications.
Molecular studies during frog development were the

first to provide strong evidence for the involvement of epi-
genetic changes in gene regulation by TR during verte-
brate development. First, chromatin immunoprecipitation
(ChIP) assay has shown that TR and RXR bind to T3-
inducible genes constitutively in pre- and metamorphos-
ing Xenopus laevis and tropicalis tadpoles [85,86]. Second,
gene regulation by T3 during T3-induced as well as nat-
ural metamorphosis is accompanied by increases in the
histone acetylation levels at the target genes as well as the
release of corepressor complexes and the recruitment of
coactivator complexes [62,76,81-85,87-89]. More import-
antly, treatment premetamorphic tadpoles with the HDAC
inhibitor tricostatin A (TSA) inhibits HDAC activity in
tadpole tissues and derepresses T3-response genes in the
absence of T3 (Figures 2 and 3) [90,91]. Finally, ChIP ana-
lyses of total histones and different histone acetylation and
methylation marks have shown that T3 treatment leads to
the removal of core histones at the T3 target genes, and a
ring intestinal stem cell development. (A) HDAC activity. Intestinal
s and assayed for HDAC activity in the presence or absence of 10 nM
compared with the stage 54 animals is expressed as *: P <0.01. Note that
The relative mRNA levels of N-CoR (B), PRMT1 (C), and Dot1L (D). The
tages during Xenopus laevis development. See [76,87,98] for details.



Figure 3 TSA induces direct TR target genes but blocks the
regulation of late T3-response genes in premetamorphic tadpole
intestine. Stage 55 tadpoles were treated with T3 (5 nM) and/or TSA
(100 nM) for the indicated number of days. Total RNA was extracted
from isolated intestine and assayed by PCR for the mRNA levels of
indicated genes. IFAPB: intestinal fatty acid binding protein. See [91]
for details.
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reduction in the levels of repression histone modifica-
tion marks and an increase in the levels of activation
histone modification marks in the remaining nucleo-
somes [31,88,89,92]. This is consistent with earlier
studies in the reconstituted frog oocyte transcription
system, where the ordered nucleosomal organization of
the minichromosome containing a T3-responsive pro-
moter assembled in the Xenopus laevis oocyte, was
found to be disrupted by TR/RXR in the presence but
not in the absence of T3 [43,44,93,94]. The exact mecha-
nisms for the chromatin remodeling are yet to be deter-
mined. It is likely that the release of the HDAC-containing
N-CoR/SMRT complexes contributes to the increased
acetylation at the target genes. Likewise, the recruitment
of the coactivator complexes, such as the chromatin re-
modeling complexes containing Brg1 and BAF57 and
histone modification complexes containing acetyltrans-
ferases SRC and p300 and methyltransferases PRMT1
and CARM1, would help to remodel the chromatin and
alter histone modifications at the promoter regions
[21,31,62-64,76,77,81-85,87-89].

Regulation of genes encoding epigenetic enzymes
during intestinal stem cell development
The changes in the levels of various histone modifica-
tions upon gene activation by T3 argue for a role of
epigenetic genes during adult intestinal stem cell devel-
opment. Interestingly, when HDAC activity and HDAC1
(Rpd3) expression were analyzed in the metamorphosing
intestine, both were found to be low in premetamorphic
tadpoles (Figure 2A) [91] and strongly upregulated at the
climax of metamorphosis (stages 60–62) when stem cells
are forming and proliferating [91]. Similar observation
was made for the expression of the TR-binding corepres-
sor N-CoR (Figure 2B) [87], which forms complexes with
HDACs [56,61,95]. Thus, it is likely that in addition to
their roles in facilitating repression by unliganded TR (see
above), the HDAC-containing corepressor complexes may
also play a role during metamorphosis when T3 is present
(see below). Among the histone acetyltransferases analyzed,
SRC3 were found to be upregulated during intestinal meta-
morphosis while SRC1 and p300 changed little during
metamorphosis in the intestine [96].
In addition, several histone methyltransferases are

also expressed in the metamorphosing intestine. The
histone H3R17 methyltransferase CAMR1 is expressed
constitutively during metamorphosis [77] while the his-
tone H4R3 methyltransferase PRMT1 is upregulated by
T3 during both natural and T3-induced intestinal
metamorphosis (Figure 2C) [76]. More recent promoter
analyses have suggested that PRMT1 is indirectly in-
duced by T3, in part through the activation of c-Myc
gene [97], a transcription factor that is known to be im-
portant for stem cells and cell proliferation in general.
Another histone methyltransferase, Dot1L (Dot1-like),
the only known histone H3K79 methyltransferase, has
been shown to be upregulated in the intestine during
metamorphosis (Figure 2D) and its induction is directly
at the transcription level through the binding of TR to
a TRE in its promoter [98]. Thus, multiple histone
methyltransferases appear to be involved in the adult
intestinal stem cell development.

Distinct roles of epigenetic enzymes at multiple
steps of intestinal stem cell development
As indicated above, unliganded TR recruits HDAC-
containing corepressor complexes to T3-target genes
in different organs of premetamorphic tadpoles, including
the intestine, while liganded TR recruits coactivator
complexes containing histone acetyltransferases and
methyltransferases. These enable TR to play a dual func-
tion role during frog development, repressing T3-
inducible genes to prevent premature metamorphosis in
the absence of T3 while activating these genes to induce
metamorphosis when T3 is present [24]. The involvement
of HDAC(s) in gene repression by unliganded TR has been
substantiated by the ChIP analyses on histone acetylation
levels at the T3 target genes [90,91]. Furthermore, overex-
pression of a dominant negative corepressor N-CoR that
disrupts the formation of an active HDAC-containing
corepressor complex at T3 target genes results in pre-
cocious initiation of metamorphosis and the upregula-
tion of T3 target genes [99]. Thus, HDAC activity plays
an important role to repress TR target genes in the pre-
metamorphic tadpole intestine to prevent precocious
formation of adult stem cells. Interestingly, the expres-
sion of N-CoR and HDAC1 as well as HDAC activity is
strongly upregulated during intestinal metamorphosis
(Figure 2). Thus, HDAC activity is likely also important
for one or more steps downstream of gene activation by
liganded TR. This dual role of HDACs in intestinal devel-
opment has been supported by molecular studies using the
HDAC inhibitor TSA. TSA treatment of premetamorphic
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tadpoles for 2–3 days in the absence of T3 leads to upregu-
lation of T3-target genes such as TRβ, while in the pres-
ence of T3, little effect is observed (Figure 3) [91]. This
agrees with the mechanism that unliganded TR represses
TR target genes by recruiting HDAC-containing com-
plexes and inhibiting HDACs will thus depress the genes.
In the presence of T3, the HDAC-complexes are released
from the T3 target promoters and thus inhibiting HDAC
will have no effect. Interestingly, TSA surprisingly inhibits
T3-induced metamorphosis and the regulation of down-
stream T3 response genes [91]. For example, in the animal
intestine, the formation and/or proliferation of the adult
epithelial stem cells is inhibited by TSA treatment [91].
Likewise, the downregulation of intestinal fatty acid bind-
ing protein (IFABP) gene after prolonged T3-treatment,
which accompanies larval epithelial cell death and adult
stem cell development, is also blocked by TSA (Figure 3).
Thus, histone deacetylation appears to also function at a
step(s) down-stream of gene regulation induced by
liganded TR to affect the regulation of genes involved in
the subsequent steps important for adult intestinal stem
cell formation.
Among the histone methyltransferases known to be

expressed during intestinal metamorphosis, both CARM1
and PRMT1 are TR-coactivators and likely act at least in
part to enhance the transcriptional regulation by liganded
TR to promote adult stem cell development. Indeed,
transgenic overexpression of wild type PRMT1 leads to an
increased number of intestinal stem cells during metamor-
phosis while antisense morpholino-mediated PRMT1
knockdown reduces the number of such stem cells [11].
Thus, PRMT1 is important for the formation and/or pro-
liferation of adult intestinal progenitor/stem cells during
metamorphosis. Mechanistically, we have shown that
overexpression of PRMT1 indeed enhances the activation
of T3-target genes in the presence of T3 in tadpoles. On
the other hand, it is very likely that PRMT1 can also func-
tion to epigenetically influence the expression of genes
regulated by some other transcription factors during stem
cell development.
The third methyltransferase, Dot1L, is the only known

histone methyltransferase capable of methylating his-
tone H3K79 [100]. Interestingly, ChIP analyses have re-
vealed that the levels of H3K79 methylation at T3
target promoters are strongly increased during either
natural or T3-induced metamorphosis in the intestine
[89]. These findings suggest that T3 activates the Dot1L
gene, and Dot1L in turn feeds back positively as a TR
coactivator during metamorphosis by methylating
H3K79 at T3 target genes to enhance gene activation
and intestinal stem cell development. On the other
hand, like PRMT1, Dot1L may also influence the activ-
ity of other transcription factors during intestinal
metamorphosis.
Conclusion
Ever increasing evidence supports the view that histone
modifications are key epigenetic marks that can influence
gene expression during development and pathogenesis.
Each eukaryotic nucleosome contains four core his-
tones (H2A, H2B, H3, and H4). These histones, par-
ticularly their N-terminal tails, are subject to various
posttranslational modifications, including acetylation
and methylation, etc. [101]. A number of histone acti-
vation and repression marks have been identified based
on the correlations of histone modifications at individ-
ual genes with the levels of the corresponding mRNAs
as determined by genome wide ChIP and gene expres-
sion analyses in cell cultures [102-110]. The total de-
pendence of amphibian metamorphosis on T3 and TR
and the ability to easily manipulate this process for mo-
lecular and genetic studies [20,23,31,111] have enabled
the analyses of some of these modifications in vivo.
These studies have shown that most histone modifica-
tion marks, although not all, are similarly correlated
with gene regulation by TR during Xenopus metamor-
phosis and adult intestinal stem cell development
[88,89,92], suggesting that TR utilizes such epigenetic
modifications to control gene expression during verte-
brate development. Importantly, the distinct spatiotem-
poral expression profiles of various epigenetic enzymes
during intestinal remodeling implicates complex roles
of epigenetic enzymes during adult intestinal stem cell
development. In particularly, HDAC activity appears to
be required not only by unliganded TR to prevent pre-
cocious intestinal metamorphosis in premetamorphic
tadpoles but also at one or more steps downstream of
gene activation by liganded TR for adult intestinal stem
cell development. Similarly, the histone methyltransfer-
ases CARM1, PRMT1, and Dot1L are likely involved
both as coactivators for TR and in the downstream
events leading to the formation of adult intestinal stem
cells. Interestingly, a number of studies have also re-
vealed the importance of epigenetic modifications for
other adult organ-specific stem cells [112-114]. Clearly,
functional studies by using overexpression and knock-
down approaches in vivo [115-119] are needed to deter-
mine the exact roles of these epigenetic enzymes for
Xenopus intestinal stem cell development. Furthermore,
the similarity between amphibian metamorphosis and
postembryonic development (the period around birth
when T3 levels are high) [13,15], and in particular be-
tween intestinal metamorphosis and mammalian intes-
tinal maturation [17,120], suggests conserved roles for
the epigenetic enzymes in the formation and/or prolif-
eration of adult vertebrate intestinal stem cells.
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