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Complex roles of filamin-A mediated cytoskeleton
network in cancer progression
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Abstract

Filamin-A (FLNA), also called actin-binding protein 280 (ABP-280), was originally identified as a non-muscle actin
binding protein, which organizes filamentous actin into orthogonal networks and stress fibers. Filamin-A also anchors
various transmembrane proteins to the actin cytoskeleton and provides a scaffold for a wide range of cytoplasmic and
nuclear signaling proteins. Intriguingly, several studies have revealed that filamin-A associates with multiple
non-cytoskeletal proteins of diverse function and is involved in several unrelated pathways. Mutations and aberrant
expression of filamin-A have been reported in human genetic diseases and several types of cancer. In this review, we
discuss the implications of filamin-A in cancer progression, including metastasis and DNA damage response.
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Introduction
The cytoskeleton, a complex network of protein fibers in
eukaryotic cells, provides a dynamic structural frame-
work that is crucial for maintaining normal cell activity,
including cell shape, cellular motion, division, and
intracellular transport among other processes [1-3].
Eukaryotic cells contain three main types of cytoskeletal
filaments: microfilaments, intermediate filaments, and
microtubules [1,3]. Microfilaments (also called actin fila-
ments or F-actin) are composed of linear polymers of
actin subunits that form the thinnest filaments of the
cytoskeleton. The actin filament is a polar macromol-
ecule characterized by the elongation of one filament
end coupled with shrinkage at the other. This dynamic
interplay generates force and causes net movement of
the intervening strand [4]. Actin filaments also act as
tracks for the movement of myosin molecules that
attach to the microfilament and "walk" along them [5].
In addition, actin filaments cross-link into bundles to
form the dynamic actin cytoskeletal network, which is in
turn finely tuned by multiple families of cytoskeletal pro-
teins [6], called actin binding proteins. These proteins
typically share a conserved, α-actinin-like F-actin bin-
ding domain (ABD) [7-9].
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One actin binding protein that contains the actinin-
like F-actin binding domain is the filamin family. This
family is composed of three homologous proteins
(FLNA, FLNB, and FLNC) that are products of different
genes and their mRNA splice variants [10]. The three
filamin genes are highly conserved and filamin proteins
exhibit 60-80% overall amino acid identity, with the
greatest divergence observed at the two hinge regions,
sharing 45% identity [11]. Filamin-A (FLNA), also
known as human actin-binding protein 280 (ABP-280)
or filamin-1, is encoded by the X-linked gene FLNA
[12,13]. As shown in Figure 1, the human filamin-A is a
homodimer with large subunits of 280KD, forming a
V-shaped structure [11,14-16]. At the NH2 terminus of
the monomer, there is an actin-binding domain (ABD),
followed by 24 tandem repeats of ~96 amino acids in
length. Between repeats 15 and 16, there is a hinge
domain, and repeat 24 is separated from repeat 23 by a
second hinge domain. The last 65 amino acids of repeat
24 mediates the dimerization of filamin-A subunits [14].
Filamin-A binds and cross-links cortical actin filaments

into a dynamic three-dimensional structure through its
N-terminal actin-binding domain [17,18]. In addition to
filamentous actin, filamin-A interacts with more than 60
functionally diverse cellular proteins, including trans-
membrane receptors, signaling molecules, DNA damage
repair proteins. These diverse interactions suggest that
filamin-A is a key component of a versatile signaling
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Figure 1 Structure of human filamin-A protein. Filamin-A is a V-shaped homodimer. Each monomer is a protein of 2647 amino acids that
contains 24 tandem repeats. Each repeat contains ~96 amino acids. Filamin-A can be divided into 3 major domains: F-Actin-Binding Domain
(ABD), the filamin-A Rod regions: Rod-1 containing repeat 1–15 and Rod-2 containing repeats 16–23; C-Terminal Domain (FCTD) of repeats 16–24,
containing major partner interaction domains. In the FCTD, a defined C-terminal filamin-A dimerization domain of ~65 amino acids is located in
repeat 24, and a filamin-A hinge regions of about 34 amino acids is located between repeat 23 and 24, and between repeat 15–16.
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scaffold complex [15,17-19]. In this review, we discuss the
role of filamin-A in human diseases, with an emphasis on
cancer.

Filamin-A mutations and human genetic diseases
Due to its versatile function in regulating cell motility
and signaling, defects in the FLNA gene have been
demonstrated as the cause for a wide range of develop-
mental malformations involving the brain, bone, limbs,
and heart [10,19]. Periventricular nodular heterotopia
(PNH) is a well characterized neuron development dis-
order, mainly caused by loss-of-function mutations in
FLNA gene [20-25], while other possible genetic contri-
butions cannot be excluded [26-29]. In patients affected
by PNH, clusters of grey matter along the ventricles con-
sisting of neurons fail to migrate to the cortex during
prenatal development. X-linked PNH is mainly confined
to females, indicating that FLNA null mutations in males
are predominantly associated with prenatal death. In
addition, PNH patients can co-present abnormal cere-
bral migration with other brain, skeletal, or visceral
abnormalities [30-35], while higher chance of FLNA mu-
tation has been implicated as the causes for these cases.
Furthermore, clustered missense mutations in FLNA
have been identified in a diverse spectrum of congenital
malformations in humans [19,36], including otopala-
todigital syndrome (OPD), frontometaphyseal dysplasia
(FMD) and Melnick–Needles syndrome (MNS). More-
over, using a familial and genealogical survey, it was
discovered that missense mutations in FLNA were the
likely genetic cause of familial cardiac valvular dystrophy
[33,37,38].
The importance of filamin-A controlled cell adhesion

and migration in human development has been confirmed
using mouse models and established cell lines of filamin-A
deficiency [39-43]. These approaches have been successful
in reconstructing the phenotypes observed in patients car-
rying FLNA defects, indicating that impaired filamin-A is
likely responsible for several human genetic diseases. The
underlying pathological mechanisms of these diseases are
complex and might be attributed to the loss of FLNA part-
ner bindings or through aberrant FLNA protein interac-
tions. Nevertheless, the effect of most of patient mutations
on FLNA partner interactions remains to be elucidated at
the molecular level.

Filamin-A in cytoskeleton reorganization and cell shape
determination
The cytoskeleton provides rigid structural support that
is responsible for maintaining cell shape. Somewhat
paradoxically, this rigid network is also highly active and
dynamic, which endows the cells with plasticity and
adaptability to respond to stimuli from the surrounding
environment. As an actin binding protein, filamin-A
plays an essential role in these processes. Filamin-A is
responsible for cross-linking actin filaments into orthog-
onal networks. These Filamin-A-actin networks possess
active and reversible organizational properties, which
protect cell from various shear stresses [44-46]. As
shown in Figure 1, the unique structure of filamin-A,
homodimer and multiple actin binding sites (ABD and
Rod 1 domain), forges its high avidity binding to F-actin
[47]. FLNA hinges alternatively confer flexibility to the
filamin-A molecule [44]. The conformation of Rod 2 re-
gion also modulates the interaction of FLNA with mul-
tiple binding partners (Table 1), which allow the binding
affinity of FLNA to actin filaments to be finely tuned to
the arrangement of F-actin which varies throughout the



Table 1 A partial list of Filamin-A interacting partners

Interacting partners Binding
sites*

Approach** Significance Reference

Cytoskeleton and cell shape maintenance

F-actin ABD, Rod-1 b 3D F-actin networks with unique mechanical and physiological properties [47,54]

Calmodulin ABD b Regulates F-actin binding in vitro [55]

R-Ras 3 b, c Enhances integrin activation and maintains endothelial barrier [56,57]

Syk 5 b, c Supports ITAM-mediated receptor signaling in platelet [58]

Vimentin 1-8 c Vimentin phosphorylation, cell surface expression of β1 integrins and cell
spreading on collagen

[52,53]

Supervillin 8–10, 20–22 a Cell spreading [59]

Membrane and membrane associated proteins

Dopamine D2 and D3
receptors

19 a, b, c Stabilizes β-arrestins-filamin-A complex [60,61]

Pro-Prion 10,16–18, 20,
21, 23

b, c Enhances the binding of filamin-A with β1 integrin, and promotes cell spreading
and migration in melanoma

[62,63]

GPI bα (CD 42b) 17 b, c Intracellular trafficking and maintains the size of platelets [64,65]

β Integrins 21 c Adhesion, mechanoprotection and competing binding site with talin to regulate
integrin activation

[66,67]

Tissue factor 22-24 a, b Supports cell spreading and migration [68]

CEACAM 1 23–24 a, b Reduces cell migration [69]

Migfilin (FBLP-1) 21 a, b, c Disconnects filamin-A from integrin and promotes talin-integrin binding [48,70-72]

Caveolin-1 22-24 a, b Intracellular trafficking [73,74]

Intracellular signaling

β-arrestins 22 a, b, c ERK activation and actin cytoskeleton reorganization [75]

Wee1 22-24 b, c Regulates Wee1 expression and promotes G2/M phase progression [42]

K-RAS nd nd Filamin-A deficiency reduces K-RAS oncogenic potentials [76]

NIK nd b Mediates the activation of the IKKα/NF-κB cascade through CD28 signaling [77]

sst2 19-20, 21-24 b, c Negative control on PI3K pathway [78]

Androgen receptor 16-19 a, b, c Required for androgen-induced cell migration [79,80]

SEK1 22-23 a, b, c Tumor necrosis factor-alpha signaling [81]

TRAF2 15-19 a, b, c Inflammatory signal transduction [82]

Small GTP-binding proteins and their regulators

Rho/Cdc42/RalA 24 c Remodeling of cytoskeleton [83]

ROCK 24 b, c Remodeling of cytoskeleton [84]

FilGAP 23 a, b, c Cell spreading and GAP activation [17,85]

Trio 23–24 c GEF for RhoG/Rac1 and RhoA and required for ruffling [86]

Nuclear function associated proteins

BRCA1 23-24 a, b, c Facilitates the recruitment of BRAC1 and RAD51 to DNA damage sites and
stabilizes the DNA-PK holoenzyme

[87]

BRCA2 21-24 a, b, c Required for efficient homologous recombination DNA repair and recovery of
G2/M phase arrest

[88-90]

RefilinB 15-24 a, b Stabilizes perinuclear actin actin networks and regulates nuclear shape [91]

TIF-IA, RPA40 ABD b Suppresses ribosomal RNA gene transcription [92]

TAF1B/mKIAA1093 1-7 a, c Possible role in rRNA production, protein translation and the organization of
centromeres

[93]

Note:
*: This column indicates the domains involved in the respective interactions. Numbers in this column represent the repeat numbers of filamin-A.
**: The approaches used to demonstrate the interaction including, (a) yeast two-hybrid; (b) in vitro pull-down; (c) co-immunoprecipitation; or (nd), not determined.
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cytoplasm [48-51]. Furthermore, filamin-A has been
shown to regulate intermediate filament systems via the
interaction with vimentin, a component of intermediate
filaments [52,53]. These conserved structural functions
allow filamin-A to be a highly dynamic mediator of cyto-
skeleton reorganization.
Filamin-A also connects actin networks to plasma

membrane. The distinctive shape of a cell depends on
the organization of the actin network together with the
proteins that connect actin filaments to the plasma
membrane. When attached to a planner network of actin
filaments, the membrane maintains as a flat surface.
However, when the underlying actin network is orga-
nized into parallel bundles of actin filaments, the mem-
brane acquires the finger-like shape of cell protrusion,
such as lamellipodia, pseudopodia and filopodia. In
addition to cross-linking actin filaments into 3D net-
works, filamin-A interacts with a wide variety of pro-
teins, including transmembrane proteins and signaling
molecules (Table 1). Additionally, filamin-A acts an
adaptor that mediates the complex connections between
the integral membrane proteins and actin filaments,
which enables filamin-A to modulate cell shape at spe-
cific areas. Moreover, actin filaments are enriched in the
cortex of many cells, a narrow zone just beneath the
plasma membrane, where the protrusive structures are
formed. At both the leading edge and the rear of polar-
ized motile cells, filamin-A can bind actin to influence
the nature of cytoplasmic protrusions and retractions
[94,95]. Interestingly, it has been shown recently that
filamin-A organizes perinuclear actin networks and re-
gulates the nuclear shape via RefilinB (FAM101B) [91].
In addition, Filamin-A acts as a scaffold for signaling

molecules that mediate intracellular protein trafficking.
Membrane receptors sense and transmit extracellular
biochemical signals across cell membranes, which is
dependent on the association with the F-actin cytoskel-
eton. Filamin-A regulates matrix–cytoskeleton signaling
by virtue of binding to both actin networks and the
cytoplasmic tails of membrane receptors (Table 1). One
of the most well-studied interactions is with the integrin
family of proteins which have recently been described at
the atomic level [48,49]. In response to intergrin bin-
ding, the filamin-A molecule is mechanically stretched,
which alters partner binding affinity while opening new
partner binding sites. It is hypothesized that this
phenomenon underlies FLNA’s mechanism for regula-
ting the cytoskeleton. Following integrin binding to
extracellular matrix ligands, filamin-A coordinates the
actin-remodeling activities of GTPase signaling factors
as shown in Table 1, and anchors them in proximity to
the cell membrane, leading the formation of lamellipodia
and filopodia [10]. Upon stimulation, membrane recep-
tors are continually endocytosed and recycled back to
the cell membrane by trafficking [96,97]. While the bio-
chemical pathways of protein trafficking are not com-
pletely defined, increasing evidence demonstrates that
filamin-A is pivotal for the intracellular trafficking and
for deployment of cell β1 integrins on the cell mem-
brane, which are essential for maintaining directed cell
migration[53,98,99].

Filmin-A and cell-matrix interaction
The extracellular matrix (ECM) not only provides essential
physical support to cells but also initiates crucial bioche-
mical and biomechanical cues that are required for tissue
morphogenesis, tumor invasion, and wound healing
[100,101]. However, the mechanisms by which cells
recognize and respond to changes in ECM properties are
not clear. It is believed that adhesion receptors such as
integrins, discoidin domain receptors and syndecans
mediate cell to cell communication [102-104]. Upon
stimulation by extracellular matrix ligands, intergrins are
activated and recruit filamin-A to actin filaments, which
facilitate cell spread through matrix-to-cell (outside-in)
signals. As a result, filamin-A may enhance integrin–
ligand interactions by binding to the cytoplasmic domain
of the β1-intergrin subunit through inside-out signaling
[98].
Although interactions with adhesion receptors facilitate

the interplay between the cell and the ECM, the mecha-
nisms by which filamin-A regulates cell migration are not
simply unidirectional. For example, the strong association
between integrin and filamin-A impairs migration [105],
and the competition binding by talin to replace filamin-A
can resume signaling and movement, which altogether
underscores the importance of a balance of multiple inter-
actions during migration [66,67,105]. Xu et al. reported
that filamin-A regulates focal adhesion disassembly, and
that down-regulation of filamin-A enhances the cleavage
of focal adhesion proteins [106]. Furthermore, filamin-A
has been shown to play a role in ECM degradation and it
has been demonstrated that knockdown of filamin-A
increases the expression of matrix metalloproteinase-9
(MMP-9) [107] which induces MMP2 activation [108].

Filamina A and cancer metastasis
It is known than filamin-A interacts with many proteins
related to cancer metastasis [17,41,52,83,109,110] (Table 1).
Although a large volume of studies associate filamin-A
with cancer metastasis, the specific roles of filamin-A du-
ring metastatic invasion remain elusive. This enigma is a
reflection of the complex nature of metastasis, a multifac-
torial process which involves tumor cell detachment from
the primary sites, followed by tumor cell invasion of the
EMC and migration, and finally intravasation, survival in
the vasculature, extravasation, and colonization at the sec-
ondary sites. Metastasis requires the cancer cells to be able
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to adapt to different cells shapes, to resist to mechanical
stress, and to be highly motile. In addition, it is highly im-
portant that the cell is able to re-attach to ECM at secon-
dary sites. It should come as no surprise that all of these
processes are related to the filamin-A cytoskeleton net-
work. Thus, it is conceivable that lack of filamin-A would
render the tumor cells less mobile and less invasive, more
sensitive to mechanical stress, and result in inefficiency in
attachment to ECM at secondary sites to form metastasis
colonies. It is also possible that cancer cells with appropri-
ate filamin-A levels would likely have an advantage during
metastasis. Alternatively, during the early stages of tumori-
genesis, in situ cancer cells need to be detached from the
original sites to initiate metastasis. It stands to reason that
filamin-A may be required for the cancer cells to remain
attached to the original site, and that mis-regulation or
loss of filamin-A may increase the risk of initiation of can-
cer metastasis. Due to the dual roles of filamin-A in the
regulation of cancer cell mobility and cell interaction with
the extracellular matrix, it is unsurprising that inconsistent
results were reported on filamin-A’s role in cancer metas-
tasis (see a summary in Table 2).
In support of the hypothesis that filamin-A promotes

cancer metastasis, a comparative proteomic study has
identified that high levels of filamin-A were correlated
with increased metastatic potential of hepatocellular car-
cinoma [112]. Using a three-dimensional migration ap-
proach, Quite et al. found that filamin-A is required for
podosome stabilization, podosome rosette formation,
extracellular matrix degradation, and three-dimensional
mesenchymal migration [121]. Li et al. identified the
interaction of pro-PrP with filamin-A and the binding
enhances association between FLNA and integrin β1,
which promotes cell spreading and migration and fur-
ther contributes to melanomagenesis [62]. Recently, we
have shown that knockdown of filamin-A in melanoma
C8161 cells reduced metastasis in xenograft mouse mo-
dels, and that filamin-A inhibition reduced the mobility
and invasiveness of breast cancer cell lines that do not
over-express ErbB2 in vitro [116]. These studies support
the model that filamin-A expression is likely responsible
for remodeling cancer cell shape and mobility which is
integral for initiating metastasis.
Filamin-A readily undergoes proteolysis at its two

hinge regions to generate 170 kDa, 150 kDa, 120 kDa,
110 kDa and 90 kDa of major fragments. Based on IHC
on human prostate tissue microarray, Bedolla et al.
found that filamin-A proteolysis is associated with a re-
duction of metastatic potential of prostate cancer. The
prostate cancer metastasis correlates with cytoplasmic
localization of full-length filamin-A but not nuclear
filamin-A fragments [114]. It was further suggested that
metastasis may be prevented by cleavage and subsequent
nuclear translocation of this protein [114]. Castoria et al.
recently reported that the interaction of filamin-A with
androgen receptor (AR) at the cytoskeleton can be rap-
idly induced upon stimulation by androgen. Filamin-
A/AR complex further recruits integrin beta 1, activating
a cascade that drives cell migration [79]. Cells expressing
mutant AR that lack a filamin-A interacting domain fail
migrate in response to androgen stimulation [79].
At the same time, a few reports suggest that reduction

of the full-length filamin-A promotes metastasis by a dif-
ferent mechanism. Baldassarre et al. showed that knock-
down of filamin-A in fibrosarcoma increased matrix
metalloprotease 2 activity and activation, enhanced the
ability of cells to remodel the ECM, and increased cellu-
lar invasive potential without significantly altering two-
dimensional random cell migration [108]. In addition,
using breast cancer cells that over-express ErbB2, Xu
et al. reported that knockdown of filamin-A promoted
cleavage of focal adhesion in cancer cells and stimulated
cancer cell migration, invasion, and metastasis. The
same authors also reported that local breast cancers du-
ring early development have a higher levels of filamin-A
than late counterparts [106]. Although the question of
whether the filamin-A levels witnessed in these cancer
tissues were inclusive of surrounding ECM among the
in situ carcinoma remains elusive, this study suggests
that loss of filamin-A enhances FAK turnover, which
results in the disrupting cancer cell attachment to the
EMC. Furthermore, O’Connell et al. demonstrated that
Wnt5a-activated calpain 1 is able of cleaving filamin-A,
which causes cytoskeleton remodeling and enhances
melanoma cell motility [120].
The apparent discrepancies among the literature

strongly indicate that levels of filamin-A in the cancer
cells may not be the sole indicator of predicting whether
a cancer is more or less metastatic. The type of cancer
cells (such as carcinoma verses fibrosarcoma), concur-
rent expression of other relevant genes in the cancer
cells (such as ErbB2), their interactions with the extra-
cellular environment, and the proteolysis of filamin-A
also appear to be major collaborating factors for filamin-
A mediated metastatic invasion.

Filamin-A in cell signaling and cancer progression
In addition to the regulation of metastasis, filamin-A is
also involved in other aspects of tumor progression. The
interaction between filamin-A and R-RAS has been sug-
gested to be responsible for maintaining the endothelial
barrier function [56]. Knockout of mouse FlnA signifi-
cantly reduces the oncogenic properties of K-RAS, in-
cluding lung tumor formation, proliferation of K-RAS
expressing fibroblasts, and the activation of the down-
stream signaling molecules such as ERK and AKT [76].
Found in most cases of infant acute lymphoblastic leu-
kaemia (ALL) and acute myeloblastic leukaemia (AML),



Table 2 Summary of literature of filamin-A in cancer metastasis

Research system Observations Reference

Literatures reported the role of filamin-A in facilitating metastasis and cell locomotion

Meckel-Gruber syndrome patient Filamin-A interacts with the cytoplasmic domain of meckelin, a transmembrane receptor, which
is essential for neuronal migration and Wnt signalling

[111]

Hepatocellular carcinoma (HCC) Comparative proteomics revealed that high level of filamin-A expression is associated with
increased metastatic potentials of HCC cells.

[112]

Cancer tissues By using a newly developed antibody that recognizes secreted variant of filamin-A, gradually
increased levels of filamin-A was detected in normal breast tissue, localized and invasive breast
cancer, which is associated with cancer progression.

[113]

Prostate cancer cell and tissue
microarray

Filamin-A proteolysis results in nuclear localization of 90 kDa fragment, which is associated with
decreased cancer metastasis, while elevated cytoplasmic levels of filamin-A was associated with
enhanced metastatic potential

[114]

FlnA-knockdown rats Filamin-A deficiency results in the abnormal migration, and then further causes disorganization
of radial glia, which is the leading cause of PH pathogenesis.

[115]

NIH3T3 and HT1080 cells Interaction of filamin-A with androgen receptor is essential for integrin β1 and FAK activation
and cell migration induced by androgen stimulation

[79]

M2 and A7 melanoma cells Filamin-A functions to stabilize cortical actin in vivo and is required for efficient cell locomotion [16]

FlnA null mouse platelets The interaction between FlnA and Syk regulates ITAM- and ITAM-like-containing receptor
signaling which is essential for platelet spreading

[58]

M2 melanoma cells R-Ras regulates migration through an interaction with filamin A in melanoma cells [57]

EK-293 cells Filamin A interacts with vimentin to regulation of cell adhesion to collagen through recycling
beta1 integrins to cell membrane

[52,53]

Melanoma and breast cancer cells
and breast cancer TMA

Filamin-A deficiency in melanoma and breast cancer cells reduces not only cell motility and
invasiveness, but also spontaneous and systemic metastasis in nude mouse xenograft. Decreased
filamin-A expression levels in cancer cells are associated with better survival of distant
metastasis-free in breast cancer patients.

[116]

Literatures reported the role of filamin-A inhibiting metastasis

Human fibrosarcoma cells Filamin-A deficiency increases matrix metalloproteinase (MMP) activity and induces MMP2
activation, enhancing the ability of cells to remodel the ECM and increasing their invasive
potential

[108]

HT1080 and Jurkat cells Filamins play a role in cell migration and spreading through the interactions between filamins
and transmembrane or signaling proteins, which is mediated at least in part by repeat 19 to 21.

[117]

A7 melanoma cells Migfilin acts as a molecular switch to disconnect filamin from integrin for regulating integrin
activation and dynamics of extracellular matrix-actin linkage.

[71]

Hematopoietic cell ASB2 may regulate hematopoietic cell differentiation by modulating cell spreading and actin
remodeling through targeting of filamins for degradation

[48,118,119]

Chinese hamster ovary cells Tight filamin binding restricts integrin-dependent cell migration by inhibiting transient
membrane protrusion and cell polarization.

[105]

A7 and M2 cells Co-expression of CEACAM1-L and filamin A lead to a reduced RalA activation, focal adhesion
turnover and cell migration

[69]

Primary melanoma cell line Wnt5A activates calpain-1, leading to the cleavage of filamin A, which results in a remodeling of
the cytoskeleton and an increase in melanoma cell motility.

[120]

ErbB2 overexpressed breast cancer
cells and Breast TMA

Filamin-A deficiency in ErbB2-breast cancer cells reduces FAK turnover and cell motility. Down-
regulation of filamin-A in stromal and base membrane is associated with breast cancer
progression and invasive lymph node status

[106]
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the fusion of MLL and its partner gene leads to a gain of
function of the MLL gene, which affects the differenti-
ation of the hematopoietic pluripotent stem cells or
lymphoid and myeloid committed stem cells [122].
FLNA was also identified as a new partner gene fused to
MLL [123]. Recently, Muscolini et al. identified the
interaction between filamin-A and NF-κB inducing ki-
nase (NIK), and found that filamin-A is essential for
mediating the activation of the IKKα/NF-κB cascade
through CD28 signaling [77].
Interaction of FLNA with membrane transforming
receptors has also been reported. Najib et al. found
that filamin-A can compete with PI3K-p85 binding to
the G protein-coupled receptor (GPCR) sst2 to nega-
tively regulate PI3K signaling [78]. It has also been
demonstrated that filamin-A modulates signaling
events and cellular responses induced by external
stimuli, including EGF receptor [124] and tumor
necrosis factor (TNF) receptor-associated factor 2
(TRAF2) [82].
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Although FLNA mutations can be the cause of human
genetic disease, increased cancer incidence has not been
observed in these patients. Furthermore, filamin-A is
dispensable for cell-autonomous survival and loss of
filamin-A expression or depletion of filamin-A with
RNAi does not cause cell death or not impede growth
[88,125-127]. Nevertheless, disruption of filamin-A func-
tion may contribute to the biology of cancers and pro-
vide the tumor cells with a growth advantage. Therefore,
further studies are required to address whether anomaly
in FLNA can initiate tumorigenesis.
DNA damage response and nuclear functions of Filamin-A
In the past two decades, a striking discovery related to
filamin-A is its nuclear functions, especially in DNA
damage response. In 2001, Yuan and Shen first reported
the interaction between filamin-A and BRCA2, a critical
protein involved in DNA damage repair [89]. Coinciden-
tally, Velkova et al. reported interaction of filamin-A
with BRCA1, another DNA repair protein, in 2010 [87].
It has been demonstrated that inhibition of filamin-A
moderately inhibited homologous recombinational DNA
repair, sensitized cells to ionizing radiation and cisplatin,
and prolonged the recovery of G2 arrest following irradi-
ation [90]. Velkova first suggested a role of filamin-A in
non-homologous end joining repair of the DNA double
strand breaks [87] and has since fundamentally estab-
lished a role of filamin-A in DNA damage response
through the interactions with BRCA1 and BRCA2
[87,88,90,126,127]. Because DNA damage response sig-
naling and DNA repair play a critical role in the main-
tenance of genomic integrity [128], these studies also
raised a possibility that mis-regulation of filamin-A func-
tion may contribute to the initiation of tumorigenesis.
It is likely that filamin-A acts in DNA damage as aux-

iliary factor to provide nuclear matrix support for the re-
pair machinery instead of serving as an enzyme directly
involved in processing DNA damage. Perhaps due to this
indirect role in DNA damage response, the specific con-
sequence of filamin-A inhibition in cell sensitivities to
DNA damage depends on the type of damage or how
the DNA damage is induced. For example, although
inhibition of filamin-A sensitizes cells to radiation, cis-
platin, and bleomycin, it surprisingly also confers a re-
sistance to topo-isomerse poisons [126].
It has also been demonstrated that filamin-A interacts

with RefilinB (FAM101B) to organize perinuclear actin
networks and regulate nuclear shape, which is essential for
normal nuclear function maintenance [91]. Deng et al. also
demonstrated that filamin-A is a nucleolar protein that
suppresses ribosomal RNA gene transcription [92]. In
addition, Oiu et al. identified two nuclear binding partners
of filamin-A, TAF1B and mKIAA1093, from mouse
embryonic cDNA libraries, which further endorses the
proposed nuclear function of filamin-A [93].
Filamin-A as a biomarker and potential target for cancer
therapy
Due to its functions in the control of cell mobility, cell-
ECM interactions, cell signaling, and DNA damage re-
sponse, it is conceivable that filamin-A may be developed
as a biomarker for cancer diagnosis and outcome predic-
tion. When compared with normal tissues, increased ex-
pression of filamin-A was observed in various types of
cancers. In some cases, different stages of cancers have
varied level of filamin-A expression. Thus, when com-
pared with normal tissues, filamin-A expression may
be considered as an alternative diagnostic marker. In
addition, variable expression levels of filamin-A protein
among different cancers may serve as a useful tool for
individualized therapy and outcome prediction.
The correlation of filamin-A expression patterns in

different stages of cancer tissues and cancer outcomes
has been reported. Uhlen et al. employed antibody-based
proteomics to evaluate the expression and localization of
FLNA profiles in 48 normal human tissues and 20 diffe-
rent cancers [129]. They found that ~50 % of the colo-
rectal cancer had moderate to high levels of filamin-A,
whereas filamin-A was undetectable in normal colon
glandular cells. Similarly, the expression of filamin-A
was increased in pancreatic cancer, while in normal pan-
creas, exocrine ductal cells had low to moderate levels of
filamin-A [129]. A Gene profiling approach was also
employed to assess filamin-A expression in human can-
cer. Up-regulation of filamin-A was detected in salivary
gland adenoid cystic carcinoma [130], peripheral cholan-
giocarcinomas [131], human glioblastomas [132] and
in pancreatic cancer [133]. On the contrary, under-
expression of filamin-A was also observed in some types
of cancers, including human bladder cancer [134,135]
and colon adenocarcinoma [136]. These reports suggest
that, tumor tissues may have different expression levels
of filamin-A from the surrounding normal tissue, and
thus FLNA may serve as a useful diagnostic marker.
As discussed in early sections, various reports have

implicated that the levels of filamin-A expression in the
cancer cells may be correlated with the cancer meta-
static potential and sensitivities to therapeutic DNA
damage agents. It is conceivable that the level of filamin-
A in cancer tissue can be developed as an alternative
marker for outcome prediction and individualized the-
rapy. As we previously discussed, the role of filamin-A
in DNA damage sensitivity is dependent on the type of
DNA damage [126]. A further implication of these fin-
dings is that expression level of filamin-A in cancer cells
may be exploited as a biomarker to predict the
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effectiveness of different types of therapeutic DNA da-
mage agents to the cancer subtype [126].
The role of filamin-A in DNA damage response pre-

sents an intriguing possibility that targeting filamin-A
may be useful for cancer therapy. In a panel of human
melanoma cell lines established from cancer patients, a
correlation between filamin-A expression and drug sen-
sitivity was observed, i.e. the lower filamin-A level the
cell line had, the more sensitive the cell was to bleo-
mycin and cisplatin treatment [127]. In addition to che-
motherapeutic drugs, filamin-A deficiency sensitizes
melanoma and breast cancer cells to ionizing radiation
[88,89]. These data was further confirmed by xenograft
animal models, which demonstrated that tumors gener-
ated from filamin-A deficient cells displayed a better re-
sponse to chemotherapy [127]. In addition, Nallapalli
et al. found that filamin-A played an important role du-
ring lung tumor growth [76]. These studies predict that
inhibition of filamin-A sensitizes cancer cells to specific
therapeutic DNA damage agents. Considering the meta-
static role of filamin-A in cancer cell mobility and re-
attachment to secondary sites, it is also conceivable to
predict that inhibition of filamin-A would also reduce
distant cancer metastasis. Thus, filamin-A may also be
an ideal therapeutic target for metastasis control.
Small molecules to block filamin-A function have been

attempted. PTI-125 is novel compound binding to
Figure 2 Schematic presentation of filamin-A functions. Through the in
versatile cellular functions, including maintenance of dynamic F-actin netw
cytoskeleton and ECM; acting as a scaffold for cell signaling to regulate cel
protein recycling; regulating RNA transcription through interactions with tr
nuclear receptor signaling through the binding with androgen receptor; an
BRCA1, BRCA2.
filamin-A with 200 femtomolar affinity, which disrupts
the toxic signaling of amyloid-β42 (Aβ42), reducing
amyloid-related Alzheimer’s disease pathogenesis [137].
The same research group also designed filamin-A pep-
tide fragments containing the Ultra-low-dose naloxone
(NLX) binding site, which blocked the protective effect
of NLX on both the MOR–Gs coupling and downstream
cAMP accumulation induced by chronic morphine, pre-
sumably by interfering with NLX’s binding to filamin-A
[138]. Considering that the dimerization of filamin-A at
the C-terminus is a common feature for filamin-A func-
tion, we propose that disruption of the filamin-A dimer
formation could be a valuable approach.
In addition to simply inhibiting filamin-A expression,

alternative strategies to disrupt the filamin-A functions
have been suggested. Because filamin-A cleavage has
been shown to be associated with reduced metastasis,
Bedolla et al. suggest that strategies to induce filamin-A
cleavage may be developed to reduce cancer metastasis
[114]. This strategy may be feasible because it is known
that filamin-A proteolysis by calpains is regulated by
AKT-dependent phosphorylation at serine 2152 [139],
and treatment with PI3K inhibitor that abrogates AKT
activity induces filamin-A cleavage and localization of
the cleavage product into nucleus [140].
In summary, due to its multiple functions as a scaffol-

ding protein, filamin-A integrates intracellular signaling
teractions with its binding partners, filamin-A is endowed with
orks and regulating cell shape; mediating the communication between
l motility; facilitating intracellular trafficking and promoting membrane
anscriptional factors and RNA polymerase machinery; modulating
d mediating DNA damage response through interactions with
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and mediates a variety of cellular processes (Figure 2). Its
functions in cancer, especially in metastasis and sensitivity
to DNA damage, may be exploited for cancer therapy and
outcome prediction. However, the specific consequence of
filamin-A inhibition in metastasis and DNA damage sensi-
tivity is likely dependent on the cancer stages and types of
DNA damage agents. Extensive studies are required to
fully develop filamin-A as a valid cancer marker and thera-
peutic target.
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