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One cell, multiple roles: contribution of
mesenchymal stem cells to tumor development
in tumor microenvironment
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Abstract

The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn
more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are
recruited to tumor which is referred as the never healing wound and altered by the inflammation environment,
thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other
factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal
transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review,
we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor
progression.
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Introduction
Mesenchymal stem cells (MSCs, also called as mesen-
chymal stromal cells) is a subset of non-hematopoietic
adult stem cells which originate from mesoderm. They
possess self-renew ability and multilineage differentiation
into not only mesoderm-lineage, such as chondrocytes,
osteocytes and adipocytes, but also ectodermic cells and
endodermic cells [1-5]. MSCs exist in almost all tissues.
They can be easily isolated from bone marrow, adipose,
umbilical cord, fetal liver, muscle, lung and etc, and can
be successfully expanded in vitro [6-10]. Due to lack of
specific markers to define MSCs, their identification was
depended on the plastic adhesion property, a panel of
surface markers, including CD31, CD34, CD45, CD29,
CD90, and CD105, as well as multiple differentiation po-
tential. Together with immunosuppressive properties
endowed by the inflammation in the damaged tissues,
MSCs can display their tissue reparative function. Above
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reproduction in any medium, provided the or
is observed in MSC-based therapy in vigorous inflam-
matory diseases, however, with chronic and insufficient in-
flammation, MSCs cannot rescue the tissue damage, even
worsening the disease. Inflammation is always associated
with tumor development where tissue suffers from
chronic injury. Based on the property of MSCs being
recruited to injured tissues, MSCs are used to deliver anti-
tumor reagent directly to tumors for cell based therapy
[11-13]. However, the role of MSCs in constructing tumor
microenvironment and its potential mechanisms are still
controversial. Here, we will focus on the effects of MSCs
on the tumorigenesis and tumor metastasis.
The “seed and soil” hypothesis was proposed by Paget

in the late nineteenth century, so we can imagine how
important the tumor microenvironment is. Tumor micro-
environment is very complicated, and includes various cell
types, lots of soluble factors, extensive neovasculature [14]
and excessive extracellular matrix (ECM) deposition. The
network orchestrated by tumor cells, stroma cells [15] and
the soluble factors contribute to tumorigenesis, progres-
sion, metastases and reoccurrence [16].
MSCs and other components in tumor microenvironment
Tumor microenvironment always provides essential con-
ditions to maintain cancer stem cells/cancer initiating
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:lixinwei@smmu.edu.cn
mailto:shiyufang2@gmail.com
http://creativecommons.org/licenses/by/2.0


Yang et al. Cell & Bioscience 2013, 3:5 Page 2 of 10
http://www.cellandbioscience.com/content/3/1/5
cells, as well as to boost the cancer cell metastasis. Dis-
tinct types of cells, including fibroblast stromal cells (also
known as tumor-associated fibroblasts, TAFs) [15,17],
immune cells, endothelial cells, adipocytes, and mesenchy-
mal stem cells (MSCs) [17] contribute to tumor progres-
sion through crosstalking with each other in either direct
or indirect manners. Once tumor develops, TAFs are acti-
vated to repair the never healing wound [18]. TAFs play
roles in tumor stroma organization by producing plentiful
ECM, meanwhile, they contribute to angiogenesis together
with endothelial cells and macrophages by producing
growth factors, cytokines, chemokines, matrix-degrading
enzymes [19]. A growing number of researches demon-
strated that blood vessels formed by endothelial cells are
responsible for supplying nutrients and transporting meta-
bolic and biological waste [20], thus tumor angiogenesis
is important in many types of tumors [21]. In addition,
adipocytes, another component of energy supplier, are
reported to promote homing, migration and invasion of
Table 1 Cytokines in tumor microenvironment and effects on

Cytokines Cellular sources Tumor gro

IL-1 macrophages, DCs, B cells, NK cells,
keratinocytes, tumor cells

+

IL-2 Th1 lymphocytes -

IL-4 Th2 lymphocytes -

IL-6 T (mainly Th2) and B cells,
keratinocytes and macrophages.
tumor cell, fibroblast, endothelial cells

+(low concen
-(high concen

IL-8 tumor cells +

IL-10 Th cells, B cells, activated monocytes,
macrophages, thymocytes,
keratinocytes, and tumor cells.

+

IL-11

IL-12 APC: monocytes, macrophages, and
DCs. tumor cells, neutrophils

-

IL-15 macrophages, DCs -

IL-18

IFN-α -

IFN-β -

IFN-γ T (mainly Th1)and B cells, NK cells, NKT
cells, CTL macrophages, mast cells, DCs

-

TNF-α activated macrophages, T and B cells,
NK cells, tumor cells, neutrophils,
fibroblasts, keratinocytes

+(low concen
-(high concen

TGF-β T and B cells, macrophages, platelets,
bone-marrow stroma, tumor cells

-

M-CSF macrophages, endothelial cells,
fibroblasts, bone-marrow stroma

+

GM-CSF respiratory epithelial cells, T cells, NK
cells, NKT cells, macrophages,
eosinophils, endothelial cells, fibroblasts

-

MIF macrophages, T cells, eosinophils,
fibroblasts, keratinocytes, pituitary

+

Abbreviations: +, promote ; —, inhibit.
tumor cells by secreting adipokines including interleukin-
8 (IL-8) and also make tumors grow rapidly by providing
fatty acids [22]. Meanwhile, the immune surveillance built
up by tumor-associated macrophage (TAM), NK cells, T
cells, B cells, polymorphonuclear leukocytes (PMN), and
dendritic cells (DCs) [1] in the tumor sites should not be
ignored. They can shift the tumor immune microenviron-
ment, thereby favoring the tumor progression, invasion,
malignancy and relapse [17]. With the advent of tissue
repair and immune regulatory function of MSCs, MSCs
has attracted more attention to their roles in regulating
tumor environment [1,23]. MSCs are recruited from re-
mote sites into the tumor sites, therein influencing tumor
microenvironment by interacting with other cell types or
secreting soluble factors. In addition, MSCs are able to dif-
ferentiate into several stromal cells, such as adipocytes
and TAFs [1,7], which was reported in an induced gastric
cancer model [24]. Striking evidence also indicated that
MSCs played a critical role in tumor vasculogenesis by
tumor progression
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differentiating into pericytes and endothelial-like cells [1].
Together with cytokines [Table 1], chemokines [Table 2]
and condition where they resided in, MSCs played the in-
dispensable role in regulating different stages of tumor
progression.
Table 2 Chemokines in tumor microenvironment and effects

Chemokines Chemokine receptors Cellular sources

CCL2 CCR2 tumor cells, macrophages,
endothelial cells, TAFs

CCL3 CCR1,4,5 endothelial cells

CCL4 CCR5 macrophages

CCL5 CCR1,3,5 MSCs, tumor cells, TAFs

CCL7 CCR1,2,3

CCL8 CCR2,3,5

CCL11 CCR3

CCL12 CCR2

CCL16 CCR1

CCL17 CCR4 tumor cells, macrophages

CCL18 unknown TAM

CCL19 CCR7,11 tumor cells, DCs

CCL20 CCR6 tumor cells

CCL21 CCR7,11 lymph nodes, tumor cells,
endothelial cells

CCL22 CCR4 tumor cells, macrophages

CCL23 CCR1

CCL24 CCR3

CCL25 CCR9,11

CCL26 CCR3

CCL27 CCR2,3,10

CXCL1 CXCR1,2 tumor cells, TAFs

CXCL2 CXCR2 tumor cells, TAFs

CXCL3(GRO-α,β,γ) CXCR2 tumor cells, TAFs

CXCL5( ENA-78) CXCR1,2

CXCL6 CXCR1,2

CXCL7(NAP2) CXCR1,2

CXCL8 CXCR1,2 TAFs,endothelial cells, tumor
cells, monocytes

CXCL9 CXCR3

CXCL10 CXCR3 tumor cells

CXCL11 CXCR3

CXCL12 CXCR4 tumor cells, astrocytes,
fibroblasts, microglia cells

CXCL13 CXCR5 tumor cells, macrophages,
TAFs

CXCL14 unknown

CX3CL1 CX3CR1

PF4

IP-10 CXCR3

MIG CXCR3

Abbreviations: +, promote; —, inhibit.
How MSCs are recruited to tumors?
In normal status, MSCs natively present the tropism of
adhering to matrix components, so they prefer to home to
bone, lung and cartilage when injected intravenously. Ne-
vertheless, a growing number of studies have shown that
on tumor progression
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MSCs home to injury sites induced by inflammation with-
out organ specificity [100-105]. MSCs migration to tumors
is due to the tumor microenvironment accompanied by
soluble factors produced by inflammaroty and tumor
cells and chemokine receptors on MSCs. Those soluble
inflammation-associated factors includes growth factors,
chemokines and cytokines [17], such as epidermal growth
factor (EGF), vascular endothelial growth factor-A (VEGF-
A), fibroblast growth factor (FGF), platelet-derived growth
factor (PDGF), hematopoietic growth factor (HGF),
transforming growth factor-β1 (TGF-β1), tumor necro-
sis facror-α (TNF-α) [106-108], stromal cell-derived
factor-1α (SDF-1α), IL-8, IL-6, granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage
colony-stimulating factor (GM-CSF) [101], monocyte
chemoattractant protein-1(MCP-1), urokinase-type plas-
minogen activator (uPA) [109].
Chemokine receptors expressed on MSCs such as

CCR1, CCR4, CCR7, CCR9, CCR10, CXCR4, CXCR5,
CXCR6, CX3CR1, and c-met lead to their tumor-homing
process, too. Recent data implicate the hypoxia status,
maintaining the chronic inflammation in tumor, also con-
tribute to MSCs mobilization [110].
Based on the tumor-tropism property of MSCs, they

can be used for tumor therapy as delivery vehicles of
specific therapeutic genes. Transfering of IFN-β, IFN-γ,
IL-2, IL-3, IL-12, CCL5, suicide gene cytocine deaminase
(CD), adenovirus type 5 early-region 1A (Ad5.E1A) gene,
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) into MSCs have been demonstrated to be anti-
cancer, and transferring of other genes like CX3CL1 and
NK4 also can inhibit metastases of tumors [11,111-124].
In addition, gene-enhanced MSCs are more effective for
tissue repair and genetic disease treatment than unmodi-
fied MSCs [125-133].
MSCs can promote tumor growth
A lot of functional studies have tackled the question of
whether MSCs would influence tumor progression with
respect of their tissue reparative function and immuno-
suppressive properties, however, it is still controversial.
In osteosarcoma mouse model, MSCs promoting tumor
growth was proved in both in vivo and in vitro study
[134]. Similar results were also obtained from cancer
cells co-implanted with MSCs in either colon carcinoma
[135] or ovarian carcinoma [136]. However, the contrary
effect was observed in Kaposi sarcoma (KS) model [135].
The reason for this is the difference in employing different
doses of MSCs [137,138]. Nevertheless, MSCs are associ-
ated with tumor progression via shifting the balance of
tissue microenvironment where they resided. Here, we will
discuss their potential mechanisms in regulating tumor
development.
MSCs promote angiogenesis in tumor
Blood Vessels are very important in tumor growth, espe-
cially at late stage of tumor progression. Current data
suggested that MSCs promoting tumor angiogenesis was
mainly dependent on their differentiation potential into
endothelial-like cells or pericytes and secreting pro-
angiogenic factors like vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), fibroblast
growth factor (FGF) and CXCL12, thereby facilitating
angiogenesis [1]. In addition, TAF, a critical component of
tumor microenvironment, partly can be derived from
MSCs that may be mobilized from local sites or circulation.
In immunodeficiency mice, TAFs obtained from human
tumor facilitate the growth of human breast and ovarian
cancers via inhibiting tumor cell apoptosis, enhancing cell
proliferation, as well as promoting angiogenesis [136].

MSCs suppress immune responses
Extensive investigations have shown that MSCs can
exert immunosuppressive function to multiple types of
immune cells from either innate immunity or adaptive
immunity, such as T cells, B cells, DCs, NK cells and
etc. [139]. For T cells, MSCs implemented inhibitory
function through secreting high levels of chemokines
and inhibitory factor, followed by decreasing T cell activ-
ity locally [91,140]. Moreover, MSCs were reported to
suppress B cell function via inhibiting chemokine recep-
tors expression [141], to prevent the maturation and
cytokine production of DCs and to decrease IL-2 in-
duced proliferation, cytokine production and cytotoxic
activity of NK cells. Furthermore, MSCs can promote
generation of T regulatory (Treg) cells [1,142]. The fac-
tors, such as prostaglandin E2 (PGE2), nitric oxide (NO),
indoleamine 2,3-dioxigenase (IDO), PD-L1 and soluble
HLA-G5, more or less, are involved in mediating MSC-
based suppressive function directly or indirectly [1]. How-
ever, it is noteworthy that the immunosuppressive function
of MSCs was, not innate, elicited by the synergy effect of
interferon-γ (IFNγ) and any of three other proinflammatory
cytokines, TNFα, IL-1α, or IL-1β [140].

MSCs inhibit apoptosis of tumor cells
Recent report has shown that serum-deprived MSCs
could facilitate tumor growth and survival by autophagy
[143] in both breast cancer animal model and in vitro
assay. Tumor progression is accompanied with hypoxia
and starvation, because solid tumors with size beyond
2 mm will limit tumor cells to uptake sufficient nutrient
and oxygen due to less vasculature. Under hypoxia and
starvation status, MSCs maintain their self-survival via au-
tophagy, meanwhile, they release a lot of anti-apoptotic or
pro-survival factors, such as VEGF, bFGF, PDGF, SDF-1α,
insulin-like growth factor 1, 2 (IGF-1,2), transforming
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growth factor-β (TGF-β) and insulin-like factor binding
protein-2 (IGFBP-2) [144-146] to prevent tumor cells
from apoptosis and support their proliferation, while nor-
mal MSCs do not take this properties. VEGF can increase
the Bcl-2/Bax ratio [147,148], bFGF can upregulate Bcl-2
expression [149], PDGF and TGF-β can induce the ex-
pression of VEGF and bFGF [150]. SDF-1α was repored to
protect chronic lymphocytic leukemia (CLL) cells from
apoptosis induced by drug [151]. Nitric oxide (NO), as
another important molecule secreted by MSCs, was con-
sidered as a bifunctional regulator of apoptosis, proa-
poptotic at high dose and antiapoptotic at low [152].
Another essential chemokine IL-6 produced by tumor
cells and MSCs inhibit apoptosis by upregulating the ex-
pression of Bcl-xl [153].
Another perspective also indicated that MSCs are the

guardians of tumors, since they can mediate the che-
motherapy resistance of tumor cells. Drug resistance
was classified into environment mediated-drug resistance
(EM-DR), cell adhesion mediated-drug resistance (CAM-
DR) and soluble factor mediated-drug resistance (SM-DR),
the latter two are associated with MSCs [154].

MSCs can promote tumor metastasis
Metastasis is the major cause of cancer patient death.
With more and more potential mechanisms of tumor
metastasis are discovered, evidences from in vitro and
in vivo studies both pointed out that MSCs have a close
relationship with cancer metastasis [155-157]. MSCs in-
duced metastasis only occurs in close proximity to tumor
sites while the effect will be reversed when MSCs are in-
oculated in separate sites, even in nearby sites [156]. Other
mechanisms, including epithelial-mesenchymal transition
(EMT) induction, regulation of cancer stem cells (CSCs)
and mesenchymal niches shifting, are also involved.

MSCs induce EMT of tumor cells
EMT was first identified as the characteristics of em-
bryogenesis which was described as loss of cell adhesion,
repression of E-cadherin expression, and increased cell
mobility. The concept of EMT then was extended to
tumor metastasis. In breast cancer, when tumor cells
were co-cultured with MSCs or MSCs-conditioned me-
dium, tumor cells and MSCs both can be induced to
expressed EMTassociated molecules [158,159]. Additional
researches indicated that EMT appeared to be partly
dependent on TGFβ and VEGF which are associated with
MSCs [160,161].

MSCs regulate CSCs proliferation
Due to CSCs less sensitive to chemotherapy and toxins, they
indeed play crucial roles in tumor metastasis [162]. MSCs
can enhance CSCs proliferation by secreting cytokines, IL-6
and CXCL7, thereby facilitating the tumor growth [163-165].
MSCs shift mesenchymal niche
Another mechanism may be pointed to the mesenchymal
niche. Growing evidences showed that MSCs can migrate
not only to primary tumor sites but also to pre-metastatic
sites [166-168]. Factors produced by primary tumors may
diffuse to other tissues [167,168] and attract MSCs to be
there, which will set up the mesenchymal niche for tumor
cell migration. Further researches gave the indication that
CCL5 produced by tumor cell-stimulated MSCs, through
binding with CCR5, lead the tumor metastasis [156].

Conclusion
This review draws attention to the complex of MSCs in-
teraction with tumor microenvironment and highlights
the fact that both tumor growth and tumor metastasis can
be influenced by MSCs directly or indirectly. The effects
of MSCs in tumor are varied: the notion that MSCs pro-
moting tumor growth and metastasis has been supported
from distinct aspects involved in angiogenesis, tumor cell
survival, immunosuppressive microenvironment shape, as
well as CSC maintenance and mesenchymal niche con-
struction. However, the controversial results also exist.
That can be attributing to the different microenvironment
where they reside, the dose employed and their heterogen-
eity. Therefore, we should pay more attention to MSC-
based therapy, especially the potential risk when it works
as gene carriers. Nevertheless, it is important to under-
stand the principles and mechanisms of MSCs regulating
tumor progression that will give the indication how to em-
ploy MSCs to treat tumor.
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