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RNA-seq analysis of synovial fibroblasts brings
new insights into rheumatoid arthritis
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Abstract

Background: Rheumatoid arthritis (RA) is a chronic autoimmune-disease of unknown origin that primarily affects
the joints and ultimately leads to their destruction. Growing evidence suggests that synvovial fibroblasts play
important roles in the initiation and the perpetuation of RA but underlying molecular mechanisms are not
understood fully. In the present study, Illumina RNA sequencing was used to profile two human normal control and
two rheumatoid arthritis synvovial fibroblasts (RASFs) transcriptomes to gain insights into the roles of synvovial
fibroblasts in RA.

Results: We found that besides known inflammatory and immune responses, other novel dysregulated networks
and pathways such as Cell Morphology, Cell-To-Cell Signaling and Interaction, Cellular Movement, Cellular Growth
and Proliferation, and Cellular Development, may all contribute to the pathogenesis of RA. Our study identified
several new genes and isoforms not previously associated with rheumatoid arthritis. 122 genes were up-regulated
and 155 genes were down-regulated by at least two-fold in RASFs compared to controls. Of note, 343 known
isoforms and 561 novel isoforms were up-regulated and 262 known isoforms and 520 novel isoforms were
down-regulated by at least two-fold. The magnitude of difference and the number of differentially expressed
known and novel gene isoforms were not detected previously by DNA microarray.

Conclusions: Since the activation and proliferation of RASFs has been implicated in the pathogenesis of
rheumatoid arthritis, further in-depth follow-up analysis of the transcriptional regulation reported in this study may
shed light on molecular pathogenic mechanisms underlying synovial fibroblasts in arthritis and provide new leads
of potential therapeutic targets.
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Background
Rheumatoid arthritis [RA] is a chronic, systemic auto-
immune disorder associated with both genetic and envir-
onmental factors. RA affects 1% of the world’s population,
develops most commonly in adults between 40 – 70
years old, and occurs more frequently in women than
in men [1-4]. xAlthough the etiology of the disease has
not been elucidated fully, the pathogenesis of RA is
characterized by the influx of cells from both the innate
and the adaptive immune systems [5]. These cells in-
duce increased pro-inflammatory cytokine production,
decreased synthesis of anti-inflammatory cytokines, and
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the subsequent activation and proliferation of synovial
fibroblasts (SFs) [3,4]. Rheumatoid arthritis synovial
fibroblasts (RASFs) produce additional cytokines, che-
mokines and matrix-degrading enzymes which ultimately
leads to the thickening and progressive destruction of joint
membrane, cartilage and bone [5-7]. Characterization of
the cytokine signaling pathways involved in RA has pro-
vided a significant opportunity for identifying pro-
inflammatory cytokines which can be targeted for novel
therapeutic intervention. The development of biological
response modifiers (BRMs), particularly the TNF, IL-1,
and IL-6 antagonists, have led to major advances in RA
therapy [3,7]. However, these agents are not effective in
all patients, underscoring the genetic heterogeneity of the
disease and the need for the development of additional
BRMs [8]. RASFs are intricately involved in the pathoge-
nesis of RA and provide a source for the identification
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of new genes and pathways that can be targeted for
therapeutic intervention.
With the advent of next generation DNA sequencing

technologies [9], such as RNA sequencing (RNA-seq), a
more comprehensive and accurate transcriptome analysis
has become feasible and affordable. In RNA-seq, short
fragments of complementary DNA (cDNA) are sequenced
(reads) and then mapped onto the reference genome.
RNA-seq enables not only the identification of differen-
tially expressed genes, but also the precise quantitative
determination of exon and isoform (alternative splicing)
expression, along with the characterization of transcrip-
tion initiation sites (TSSs) and new splicing variants [10].
In the present study, we performed a comprehensive tran-
scriptome analysis of RNA from RASFs from two adult
female RA patients and the SF RNA from two healthy
female donors, using the RNA-seq technique. We found
significant differences in the expression levels of both
genes and gene isoforms between normal SFs and RASFs
RNA samples. These data provide broader and deeper
insights, particularly with respect to isoform expression,
into the effect of RA on the transcriptional regulation of
synovial fibroblasts and a rich resource for further experi-
mentation into the pathogenesis of the disease.

Results
RNA sequencing
Human SFs RNAs from two healthy control donors and
two patients with RA were purchased from Cell Applica-
tions, Inc. (San Diego, CA). Diseased samples were age
and sex-matched with normal controls (Additional file 1).
Paired-end cDNA libraries for each RNA sample were
prepared and sequenced using the Illumina TruSeq RNA
Sample Preparation Kit, as outlined previously [11,12].

Quality analysis of RNA-seq data
Real-time analysis of the sequencing run was performed
by the Illumina HiSeq Control Software. Clusters of
identical sequences were generated on the Illumina cBot
and the number of those clusters was reported, along
with the percentage of those clusters passing an internal
quality filter. Across the 4 samples, between 433,000 and
482,000 raw clusters were detected, with a median of
446,000 clusters per lane. Between 90.9% and 95.0% of
those clusters passed the filter, with a median of 93.2%
of the clusters passing the filter. Each lane was aligned
in real-time with the phiX genome and between 0.80%
and 0.84% of the clusters aligned, with a median of
0.81% aligned. Our control lane of phiX produced
290,000 clusters with 97.9% passing the filter and 99.08%
aligning to the phiX genome. All these values were
within the recommended limits established by Illumina.
Post-run quality analysis of RNA-seq data was carried

out as described by Twine et al. [13]. The total number
of reads produced from each sample was between
80,782,262 and 89,757,726, with a mean across all sam-
ples of 84,177,268 (Table 1). The difference in the num-
ber of reads between the control samples and the RA
samples was not statistically significant (Student’s t-test,
p=0.27). To assess the quality of the reads, data was
pulled from the TopHat log files as well as the output
files. Between 0.10% and 0.15% of the reads were
removed due to low quality before mapping to the refer-
ence genome began. Between 82.8% and 89.1% of the
total reads mapped to the human genome. To ensure
the uniform coverage across the genome, the data was
visualized using a local copy of the Integrative Genomics
Viewer. An example of the reads for both normal and
RA patient samples mapped against chromosome 1 is
shown in Figure 1. The average alignment was computed
across the genome and those alignment scores were log-
transformed (base 2) to better visualize the full range of
the data. As expected, no reads mapped to the centro-
mere or areas of the chromosome without genes.

Differentially expressed genes and isoforms
After mapping the sequencing reads to the reference gen-
ome with TopHat, transcripts were assembled and their
relative expression levels were calculated with Cufflinks in
Fragments Per Kilobase of exon per Million fragments
mapped (FPKM). The sub-program, Cuffdiff was then
used to calculate the differential expression on the gene
and transcript level, as well as the calculation of alterna-
tive promoter usage and alternative splicing. Cufflinks cal-
culates the differential gene expression with the ratio of
the RA group to the control group for every gene and
transcript along with the statistical significance of the
values. Two categories of differential gene/isoform expres-
sion were identified. The first category consists of genes/
isoforms expressed only in control SFs or only in RASFs.
The second category consists of genes/isoforms in which
expression of both samples in each group was up-
regulated or down-regulated two-fold or greater between
control SFs and RASFs.
Overall, there are 12,977 expressed genes in the control

SFs and 13,445 expressed genes in the RASFs, which were
aligned to the reference genome (Table 2). There are 214
genes, whose expressions were only detected in the nor-
mal SFs, while 682 genes whose expressions were only
detected in RASFs. There are 122 up-regulated and 155
down-regulated genes in RASFs with at least two-fold
change compared to the SFs (Table 2). As for known iso-
forms, there are 20,647 in the normal SFs and 21,102 in
RASFs. Among them, there are 526 known isoforms,
whose expressions were detected only in the normal SFs,
while 981 known isoforms whose expressions were
detected only in RASFs. There are 343 up-regulated and
262 down-regulated known isoforms in RASFs by at least



Table 1 RNA-seq sequence reads mapping to UCSC Human genome build 19 by TopHat v1.3.0/Bowtie v0.12.7

WT RA

1 2 Average 1 2 Average

Total reads 80,782,262 82,738,536 81,760,399 89,757,726 83,430,548 86,594,137

Reads removed 0.10% 0.12% 0.11% 0.15% 0.12% 0.13%

Read aligned toreference genome 82.8% 84.6% 83.7% 89.1% 87.6% 88.4%

Total reads and the percentage of those reads removed due to low quality and aligned to hg19 by TopHat. TopHat allows two mismatches when aligning to a
reference genome.
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two-fold change compared to the SFs (Table 2). For novel
isoforms whose annotations are not known in the current
reference gene or transcript database, there are 42,124
expressed in the normal SFs and 42,171 expressed in
RASFs. Among them, there are 105 novel isoforms whose
expressions were only detected in the normal SFs, while
152 novel isoforms were only detected in RASFs. There
are 561 up-regulated and 520 down-regulated novel iso-
forms in RASFs by at least two-fold change compared to
the SFs (Table 2).

Genes expressed only in control SFs or only in RASFs
The top 10 up- and down-regulated genes expressed
only in control SFs or only in RASFs are presented in
Table 3. An expanded list of the top 50 genes expressed
only in either control SFs or in RASFs is presented in
Additional file 2. Analysis of the genes expressed only in
RASF reveals that nine of the top ten genes, including
the major histocompatibility complex (MHC) genes
HLA-A. –B, -C, and –E, are located on chromosome 6
(Table 3). Remarkably, 36 of the top 50 genes (Additional
file 2) expressed only in RASFs are located on chromo-
some 6. The MHC, particularly the HLA-DRB1 alleles
are strongly associated with RA [14-16]. A recent study
by Plenge et al. has also identified associations of alleles
lying outside the MHC on chromsome 6 with RA [17].
Our observation that the CLIC1 gene (chloride intracel-
lular protein) is expressed in RASFs correlates with the
finding that CLIC1(-/-) mice were protected from deve-
lopment of serum transfer induced K/BxN arthritis [18].
Two genes, the high mobility group box 1 (HMGA1) and
the latent transforming growth factor beta binding
3000

3000

Figure 1 A transcription profile of RNA from control synovial fibrobla
RNA-seq read density plotted along chromosome 1 is shown. Average alig
frequency of reads along the chromosome which range from 0 to 3000 fo
protein 1 (LTBP1) have been reported to be elevated in
RA [19,20] however they are not expressed in the RASFs
examined in this study (Table 3). Interestingly, HMGA1
is the only gene on chromosome 6 in the list of top 50
genes expressed in normal SFs but not expressed in
RASFs (Additional file 2). The CD59 complement regula-
tory protein (CD59) is not expressed in RASFs in this
study. This observation supports the finding that CD59
is protective as CD59 (-/-) knockout mice present with
more severe symptoms in the murine antigen-induced
arthritis model [21]. An automated literature search
using PubMatrix [22] reveals that eleven of the twenty
genes listed in Table 3 have not yet been identified to be
associated with RA (Additional file 3). These genes,
which include chromosome 6 open reading frame 48
(C6orf48), the scavenger receptor class A, member 5
(SCARA5), CutA divalent cation tolerance homolog
(CUTA), Leucine rich repeat containing 59 (LRRC59),
and the protein phosphatase 1, regulatory (inhibitor)
subunit 14A (PPP1R14A), may provide additional thera-
peutic targets. These potential targets include character-
ized genes, like the iron receptor SCARA5 [23] and genes,
such as C6orf48, that have not yet been well-studied.
CutA, which is up-regulated in RASFs, interacts with
BACE1 to regulate B-cleavage of the B-amyloid protein
(APP) [24]. CutA may play a role in the pathogenesis of
Alzheimer’s, however, its role in rheumatoid arthritis
remains to be elucidated. LRRC59 is required for the nu-
clear transport of the fibroblast growth factor 1 (FGF1)
[25]. The affect on FGF1 function resulting from decreased
LRRC59 expression in RASFs warrants further investiga-
tion. PPP1R14A, which inhibits protein phosphatase 1
RA Samples

WT Samples

sts and rheumatoid arthritis fibroblasts for chromosome 1. The
nment was computed by igvtools. Each bar represents the log2
r both control synovial fibroblasts and rheumatoid arthritis fibroblasts.



Table 2 Gene/isoform expression summary

Genes

Control RA Patients

Total Genes Expressed 12,977 13,445

Control Only 214

RA Patients Only 682

Up-regulated (2-fold or greater difference) 122

Down-regulated (2-fold or greater difference) 155

Known Isoforms

Control RA Patients

Total Known Isoforms Expressed 20,647 21,102

Control Only 526

RA Patients Only 981

Up-regulated (2-fold or greater difference) 343

Down-regulated (2-fold or greater difference) 262

Novel Isoforms

Control RA Patients

Total Novel Isoforms Expressed 42,124 42,171

Control Only 105

RA Patients Only 152

Up-regulated (2-fold or greater difference) 561

Down-regulated (2-fold or greater difference) 520

Genes, known isoforms and novel isoforms expressed in control synovial
fibroblasts and synovial fibroblasts from patients with rheumatoid arthritis.
Expression determined by Cufflinks, after normalization to a panel of
housekeeping genes. The fold change is the ratio of RA FPKM to WT FPKM.
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activity, is not expressed in RASFs compared to normal
SFs, suggesting that PP1 activity will increase dramatically
in RASFs. PP1 controls the Akt signal transduction path-
way to regulate cell growth, cell survival, and cell differen-
tiation [26].

Genes differentially expressed two-fold or greater
between control SFs and RASFs
The top 10 up- and down-regulated genes, along with the
expanded top 50 list, in which expression of both samples
in each group was up-regulated or down-regulated two-
fold or greater between control SFs and RASFs are pre-
sented in Table 4 and in Additional file 4, respectively.
Three genes in the top 10 up-regulated list have been
associated with rheumatoid arthritis (Additional file 3).
Interleukin 26 (IL26) is up-regulated (80.8-fold) in RASFs
compared to SFs. Corvaisier et al. has demonstrated that
IL26 is over-expressed in arthritis and induces inflamma-
tory cytokine production [27]. The v-maf musculo-
aponeurotic fibrosarcoma oncogene homolog B (avian)
(MAFB) gene is up-regulated (16.2-fold) in RASFs.
Liu et al. identified polymorphisms in the MAFB gene
associated with altered response to anti-TNF treatment in
patients with RA [28]. Expression of the adrenergic,
alpha-2A-, receptor (ADRA2A) increased 14.4-fold in
RASFs. The adrenergic, alpha-2A-, receptor may play a
critical role in the proliferation and differentiation of
synoviocytes [29]. Although thrombospondin 4 (THSB4)
has not yet been associated with arthritis (Additional
file 3), thrombospondin 1 (THBS1) is over-expressed in
RA tissue [30]. Thrombospondin 1 and 4 are extracellu-
lar matrix remodeling proteins that have been asso-
ciated with increased inflammation in coronary artery
disease (CAD) [30,31], and thus may provide a link be-
tween RA and CAD. Like THBS4, the remaining six
genes up-regulated in RASFs (Table 4) have not yet
been associated with RA but provide potential for fur-
ther investigation. The solute carrier family members,
SLC2A5, SLC14A1, and SLC12A8 are over-expressed in
RASFs suggesting alterations in cellular metabolism.
Complement Factor 1 (CF1) may represent a new target
as the complement system plays a major role in the patho-
genesis of rheumatoid disease [32]. Expression of the
plasminogen activator inhibitor gene, serpin peptidase in-
hibitor, clade B (ovalbumin), member 2 (SERPINB2) is
decreased (-79.1-fold) in RASFs compared to control SFs
(Table 4). The plasminogen activation pathway is dysregu-
lated in arthritis [33]. Aquoporin 1 (AQP1) expression has
been shown to be up-regulated in the synovium from RA
patients [34], but is down-regulated (-44.3-fold) in our
samples. The coagulation factor X (F10), which may con-
tribute to tissue injury and remodeling [35], is down-
regulated (-27.5 fold). The hedgehog interacting protein
(HHIP) inhibits the sonic hedgehog (SSH) signaling path-
way. Inactivation of SSH inhibitor smoothened (Smo)
blocks sonic hedgehog signaling and prevents osteophyte
formation in the murine serum transfer arthritis model
[36]. Thus, the decrease (-26.6-fold) in HHIP expression
observed in RASFs in this study may result in increased
SSH activity resulting in advanced osteophyte formation.

Known isoforms expressed only in control SFs or only
in RASFs
The top 10 isoforms expressed only in control SFs or
only in RASFs are presented in Table 5. An expanded
list of the top 50 up- and down-regulated known iso-
forms expressed only in either control SFs or in RASFs
is presented in Additional file 5. The known isoforms
identified in Table 5 correlate with the genes expressed
only in control SFs or only in RASFs (Table 3 and
Additional file 2). Single isoforms were detected for
SCARA5, PLA2G2A, SPCS1, CITED2, IL13RA2, SLP1,
FAM20A, NUMA1, PSAP, LRRC59, PPP1R14A, and
SNHG6. Two isoforms were identified for PRG4,
ACTG2, and CD59, while five and six isoforms exist
for RPS24 and HMG1A, respectively (Table 5 and
Additional file 5).



Table 3 Top ten up- and down- regulated genes expressed only in normal synovial RNA or only in rheumatoid arthritis
synovial RNA

Gene Description Chr RA
FPKM

RA2
FPKM

WT1
FPKM

WT2
FPKM

Avg.
RA

Avg.
WT

Ensembl gene ID

HLA-B Major histocompatibility complex, class 1, B chr6 704.3 728.3 – – 716.3 – ENSG00000228964

HLA-A Major histocompatibility complex, class 1, A chr6 778.2 585.6 – – 681.9 – ENSG00000223980

HLA-C Major histocompatibility complex, class 1, C chr6 534.8 452.1 – – 493.5 – ENSG00000206435

TUBB Tubulin, beta class I chr6 405.3 416.7 – – 411 – ENSG00000232421

CLIC1 Chloride intracellular channel 1 chr6 350.5 369.6 – – 360 – ENSG00000223639

RPS18 Ribosomal Protein S18 chr6 260.4 269.1 – – 264.8 – ENSG00000227794

HLA-E Major histocompatibility complex, class 1, E chr6 243.5 260.2 – – 251.9 – ENSG00000230254

C6orf48 Chromosome 6 open reading frame 48 chr6 119.5 225.8 – – 172.6 – ENSG00000206380

SCARA5 Scavenger receptor class A, member 5 chr8 11.36 316 – – 163.7 – ENSG00000168079

CUTA CutA divalent cation tolerance homolog chr6 168.7 133.7 – – 151.2 – ENSG00000226492

ACTG2 Actin, gamma 2, smooth muscle, enteric chr2 – – 1087.76 2.58 – 545.17 ENSG00000163017

RPS24 Ribosomal Protein S24 chr10 – – 407.72 429.08 – 418.40 ENSG00000138326

PSAP Prosaposin chr10 – – 236.86 519.83 – 378.35 ENSG00000197746

HMGA1 High mobility group box 1 chr6: – – 139.35 265.81 – 202.58 ENSG00000189403

CD59 CD59 molecule, complement regulatory protein chr11 – – 111.47 149.28 – 130.38 ENSG00000085063

LRRC59 Leucine rich repeat containing 59 chr17 – – 116.95 88.57 – 102.76 ENSG00000108829

PPP1R14A Protein phosphatase 1, regulatory (inhibitor)
subunit 14A

chr19 – – 142.49 1.10 – 71.79 ENSG00000167641

LTBP1 Latent transforming growth factor beta binding
protein 1

chr2 – – 54.38 66.08 – 60.23 ENSG00000049323

SNHG6 Small nucleolar RNA host gene 6 chr8 – – 46.68 65.62 – 56.15 ENSG00000245910

HNRNPC Heterogeneous nuclear ribonucleoprotein C
(C1/C2)

chr14 – – 52.08 58.46 – 55.27 ENSG00000092199

Genes which were differentially expressed as determined by Cufflinks, after normalization to a panel of housekeeping genes.
The genes were ranked by FPKM and the 10 with the highest or lowest values are listed here.
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Known isoforms differentially expressed two-fold or
greater between control SFs and RASFs
The top 10 up- and down-regulated known isoforms,
along with the expanded top 50 list, in which expression
of both samples in each group was up-regulated or
down-regulated two-fold or greater between control SFs
and RASFs are presented in Table 6 and in Additional
file 6, respectively. Thirteen of the known isoforms iden-
tified in Table 6 can be found in the top 50 up-regulated
and down-regulated genes presented in Table 4 and
Additional file 4. A single isoform of IL26 is expressed
80.8-fold and correlates with the expression (80.8-fold)
of the IL26 gene in RASFs. Seven known isoforms
(ILI27, DHPS, BLCAP, LYNX1, C5orf13, APLP2, and
CSRP1) are not represented in the top 50 regulated
genes. One reason for this observation is differential iso-
form expression, as demonstrated by the two isoforms of
Interferon, alpha-inducible protein 27 (ILI27). One ILI27
isoform is up-regulated 35.8-fold and one is down-
regulated 216.8-fold. Two known isoforms were also
identified for GCNT1, SLC2A5 and C5orf13 in the top
50 list.
Novel isoforms expressed only in control SFs or only
in RASFs
The top 10 up- and down-regulated novel isoforms
expressed only in control SFs or only in RASFs are pre-
sented in Table 7. An expanded list of the top 50 up- and
down-regulated known isoforms expressed only in either
control SFs or in RASFs is presented in Additional file 7.
The list of the top 10 up-regulated novel isoforms includes
transcripts for four unannotated genomic regions. The top
50 novel isoforms contains 21 transcripts from unanno-
tated genomic regions. The list of top 10 down-regulated
novel isoforms is divided into nine isoforms from anno-
tated genes, including a novel transcript for HHIP, and
one down-regulated novel isoform. There are transcripts
for fourteen unannotated genomic regions in the top 50
down-regulated novel isoforms.

Novel isoforms differentially expressed two-fold or
greater between control SFs and RASFs
The top 10 up- and down-regulated novel isoforms,
along with the expanded top 50 list, in which expression
of both samples in each group was up-regulated or



Table 4 Top ten up- and down- regulated genes expressed in rheumatoid arthritis synovial RNA

Gene Description Chr RAFPKM RA2FPKM WT2FPKM WT2FPKM Avg.
RA

Avg.
WT

Fold
change

Ensembl gene ID

IL26 interleukin 26 solute carrier family
2 (facilitated

chr12 17.913 1.927 0.101 0.144 9.920 0.123 80.83 ENSG00000111536

SLC2A5 glucose/fructose transporter),
member 5

chr1 65.268 21.844 0.340 3.851 43.556 2.096 20.79 ENSG00000142583

PLXDC2 plexin domain containing 2 v-maf
musculoaponeurotic

chr10 9.222 2.316 0.098 0.573 5.769 0.335 17.21 ENSG00000120594

MAFB fibrosarcoma oncogene homolog
B (avian) solute carrier family 14
(urea

chr20 37.177 6.679 0.605 2.096 21.928 1.351 16.24 ENSG00000204103

SLC14A1 transporter), member 1 (Kidd
blood group

chr18 6.188 2.096 0.360 0.177 4.142 0.269 15.41 ENSG00000141469

ADRA2A adrenergic, alpha-2A-, receptor chr10 4.373 10.666 0.899 0.145 7.519 0.522 14.42 ENSG00000150594

MAN1C1 mannosidase, alpha, class 1C,
member 1

chr1 16.774 24.3346 0.65654 2.7991 20.554 1.728 11.90 ENSG00000117643

CFI complement factor I solute carrier
family 12

chr4 21.803 28.7589 0.10437 4.3263 25.281 2.215 11.41 ENSG00000205403

SLC12A8 (potassium/chloride transporters),
member 8

chr3 7.442 15.2539 0.62851 1.4395 11.348 1.034 10.97 ENSG00000221955

THBS4 thrombospondin 4 chr5 5.8622 7.09226 0.05843 1.2202 6.477 0.639 10.13 ENSG00000113296

SERPINB2 serpin peptidase inhibitor, clade B
(ovalbumin), member 2

chr18 0.236 0.095 16.207 10.030 0.166 13.118 −79.11 ENSG00000197632

AQP1 aquaporin 1 (Colton blood
group)

chr7 5.675 3.860 396.183 25.802 4.768 210.992 −44.26 ENSG00000240583

APOBEC3B apolipoprotein B mRNA editing
enzyme, catalytic polypeptide-like
3B

chr22 0.0775 0.23398 2.59902 7.4102 0.156 5.005 −32.13 ENSG00000179750

NEFM neurofilament, medium
polypeptide

chr8 0.0592 0.07122 3.69528 0.2014 0.065 1.948 −29.87 ENSG00000104722

CCDC3 coiled-coil domain containing 3 chr10 0.1241 0.09255 4.48673 1.7074 0.108 3.097 −28.59 ENSG00000151468

F10 coagulation factor X chr13 0.197 0.21727 8.44739 2.9581 0.207 5.703 −27.53 ENSG00000126218

HHIP hedgehog interacting protein chr4 0.073 0.26532 7.88577 1.1075 0.169 4.497 −26.58 ENSG00000164161

ARL2-
SNX15

- chr11 0.361 0.39062 8.29552 11.168 0.376 9.732 −25.90 -

HES4 hairy and enhancer of split 4 chr1 0.3015 0.46829 16.2396 1.0894 0.385 8.664 −22.51 ENSG00000188290

GPAT2 glycerol-3-phosphate
acyltransferase 2, mitochondrial

chr2 0.5547 0.36585 17.6005 3.0486 0.460 10.325 −22.43 ENSG00000186281

Genes which were differentially expressed as determined by Cufflinks, after normalization to a panel of housekeeping genes. The fold change is the ratio of RASF
FPKM to control FPKM. Genes with a fold change of 1.2-fold or greater were defined as significant. The genes were ranked on their fold change and the 10 with
the highest or lowest fold changes are listed here.

Heruth et al. Cell & Bioscience 2012, 2:43 Page 6 of 16
http://www.cellandbioscience.com/content/2/1/43
down-regulated two-fold or greater between control SFs
and RASFs are presented in Table 8 and in Additional
file 8, respectively. A transcript of Fibrillin 1 (FBN1) is
the top up-regulated novel isoform. Of note, a mutation
in FBN1, which encodes an extracellular matrix glyco-
protein, has been associated with the coexistence of
Marfan’s Syndrome and ankylosing spondylitis [37].
Novel isoforms from three unannotated regions of the
genome were identified in the top 10 up-regulated novel
isoforms. A total of 13 novel isoforms identified within
unannotated regions of the genome were up-regulated
in RASFs compared to SFs (Additional file 8). The list of
top 10 down-regulated novel isoforms is divided into
nine isoforms from annotated genes and one down-
regulated novel isoform. A total of 10 novel isoforms
within unannotated regions of the genome were down-
regulated in RASFs compared to SFs. Interestingly, there
are two novel transcripts for both HLA-DRB1 and
SLC2A5 identified in this study (Additional file 8).

Network and pathway analyses of differentially
expressed genes
To identify network and pathway connectivity, the dif-
ferentially expressed gene lists of a two-fold or greater



Table 5 Top ten up- and down- regulated isoforms expressed only in normal synovial RNA or only in rheumatoid
arthritis synovial RNA

Gene Description Locus Length RA1FPKM RA2FPKM WT1FPKM WT2FPKM Avg.
RA

Avg.
WT

Ensembl gene ID

SCARA5 Scavenger receptor class A,
member 5

chr8 4151 11.36 353.51 – – 182.43 – ENSG00000168079

PLA2G2A Phopholipase A2, group IIA chr1 969 3.81 264.84 – – 134.33 – ENSG00000188257

SPCS1 Signal peptidase complex subunit
1 homolog

chr3 1084 81.32 112.54 – – 96.93 – ENSG00000114902

CITED2 Cbp/p300-interacting
transactivator, 2

chr6 1929 69.03 119.73 – – 94.38 – ENSG00000164442

IL13RA2 Interleukin 13 receptor, alpha 2 chrX 1373 9.94 90.27 – – 50.10 – ENSG00000123496

SLPI Secretory leukocyte peptidase
inhibitor

chr20 598 1.36 98.75 – – 50.06 – ENSG00000124107

KYNU Kynureninase chr2 1672 16.46 79.31 – – 47.88 – ENSG00000115919

FAM20A Family with sequence similarity
20, member A

chr17 4275 28.98 60.54 – – 44.76 – ENSG00000108950

NUMA1 Nuclear mitotic apparatus protein
1

chr11 7182 40.51 45.42 – – 42.96 – ENSG00000137497

PRG4 Proteoglycan 4 chr1 4765 1.27 81.59 – – 41.43 – ENSG00000116690

ACTG2 Actin, gamma 2, smooth muscle,
enteric

chr2 1331 – – 1046.45 2.16 – 524.30 ENSG00000163017

PSAP Prosaposin chr10 2822 – – 234.56 510.86 – 372.71 ENSG00000197746

RPS24 Ribosomal Protein S24 chr10 655 – – 149.70 298.29 – 224.00 ENSG00000138326

LRRC59 Leucine rich repeat containing 59 chr17 2915 – – 116.95 88.57 – 102.76 ENSG00000108829

HMGA1 High mobility group box 1 chr6 1846 – – 44.78 99.59 – 72.19 ENSG00000189403

CD59 CD59 molecule, complement
regulatory protein

chr11 7619 – – 68.61 75.31 – 71.96 ENSG00000085063

PPP1R14A Protein phosphatase 1, regulatory
(inhibitor) subunit 14A

chr19 718 – – 142.49 1.10 – 71.79 ENSG00000167641

HMGA1 High mobility group box 1 chr6 1993 – – 43.81 93.26 – 68.54 ENSG00000189403

RPS24 Ribosomal Protein S24 chr10 633 – – 80.53 47.31 – 63.92 ENSG00000138326

SNHG6 Small nucleolar RNA host gene 6 chr8 472 – – 46.68 65.62 – 56.15 ENSG00000245910

Isoforms which were differentially expressed as determined by Cufflinks, after normalization to a panel of housekeeping genes.
The isoforms were ranked by FPKM and the 10 with the highest or lowest values are listed here.
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change in RASFs compared to SFs were submitted to In-
genuity Pathway Analysis (IPA) v9.0-3211 (Ingenuity
Systems, Inc., Redwood City, CA), as described in the
Material and Methods section. The networks affected by
up-regulated genes and isoforms in RASFs compared to
normal SFs are listed in Table 9. Consistent with the
knowledge that RA is an immune disorder, the top net-
work predicted to be affected by the up-regulated genes
was Inflammatory Response, Immunological Disease, Cell
Death, while the top network predicted to be affected by
the up-regulated isoforms was Inflammatory Response,
Cellular Movement, Cell-To-Cell Signaling and Inter-
action. The pathways affected by up-regulated genes and/
or isoforms correlated with the pathways predicted to be
affected by down-regulated gene expression and changes
in isoform expression (Table 10). The top networks
affected by down-regulated genes and isoforms in RASFs
compared to normal SFs are Cellular Movement, Cell
Death, and Tissue Development and Cellular Growth and
Proliferation, Cell Death, Cellular Movement, respectively.
Canonical pathways analyses identified the pathways

from the Ingenuity Pathways Analysis library of canon-
ical pathways that were most significant to the data set.
Genes with a two-fold or greater change in expression
between SFs and RASFs and that were associated with a
canonical pathway in Ingenuity’s Knowledge Base were
considered for the analyses. The top canonical pathways
affected by up-regulated genes and isoforms (Table 11)
and the top canonical pathways affected by down-
regulated genes and isoforms (Table 12) are in agree-
ment with the networks (Tables 9 and 10) affected in
RASFs. The top canonical pathways affected by up-
regulated genes and isoforms (Table 11) are consistent
with the knowledge that B cells, T cells, and macrophage



Table 6 Top ten up- and down- regulated known isoforms expressed in rheumatoid arthritis synovial RNA

Gene Description Locus Length RA1FPKM RA2FPKM WT1FPKM WT2FPKM Avg.
RA

Avg.
WT

Fold
change

Ensembl gene
ID

IL26 interleukin 26 chr12 1047.00 17.91 1.93 0.10 0.14 9.92 0.12 80.83 ENSG00000111536

GCNT1 glucosaminyl (N-acetyl)
transferase 1, core 2

chr9 5478.00 3.99 3.35 0.08 0.05 3.67 0.07 55.82 ENSG00000187210

IFI27 interferon, alpha-
inducible protein 27

chr14 652.00 272.04 223.93 5.09 8.77 247.99 6.93 35.79 ENSG00000165949

GCNT1 glucosaminyl (N-acetyl)
transferase 1, core 2

chr9 5596.00 3.81 2.20 0.06 0.13 3.01 0.09 32.54 ENSG00000187210

IGFBP3 insulin-like growth
factor binding protein
3

chr7 2631.00 123.09 213.34 2.30 8.88 168.22 5.59 30.09 ENSG00000146674

DHPS deoxyhypusine
synthase

chr19 1184.00 12.04 2.92 0.40 0.14 7.48 0.27 27.42 ENSG00000095059

BLCAP bladder cancer
associated protein

chr20 2073.00 9.25 2.16 0.20 0.32 5.70 0.26 22.14 ENSG00000166619

SLC2A5 solute carrier family 2
(facilitated glucose/
fructose transporter),
member 5

chr1 2438.00 62.93 20.78 0.21 3.63 41.85 1.92 21.79 ENSG00000142583

SLC12A8 solute carrier family 12
(potassium/chloride
transporters), member
8

chr3 3447.00 6.34 16.64 0.32 0.73 11.49 0.52 22.01 ENSG00000221955

LYNX1 Ly6/neurotoxin 1 chr8 1290.00 6.07 3.23 0.39 0.06 4.65 0.23 20.48 ENSG00000180155

C5orf13 chromosome 5 open
reading frame 13

chr5 1996.00 0.32 0.71 303.46 6.35 0.52 154.91 −300.00 ENSG00000134986

IFI27 interferon, alpha-
inducible protein 27

chr14 648.00 0.40 1.10 5.62 318.85 0.75 162.23 −216.80 ENSG00000165949

C5orf13 chromosome 5 open
reading frame 13

chr5 2068.00 0.14 0.19 40.42 1.50 0.16 20.96 −127.90 ENSG00000134986

APLP2 amyloid beta (A4)
precursor-like protein 2

chr11 3274.00 0.06 0.23 5.27 15.27 0.14 10.27 −71.07 ENSG00000084234

CSRP1 cysteine and glycine-
rich protein 1

chr1 1938.00 0.20 0.41 34.33 3.74 0.31 19.03 −61.54 ENSG00000159176

AQP1 aquaporin 1 chr7 2807.00 4.71 2.55 390.29 23.23 3.63 206.76 −56.95 ENSG00000240583

PARP2 poly (ADP-ribose)
polymerase 2

chr14 1887.00 0.10 0.19 2.43 6.85 0.14 4.64 −32.85 ENSG00000129484

APOBEC3B apolipoprotein B mRNA
editing enzyme,
catalytic polypeptide-
like 3B

chr22 1536.00 0.08 0.26 2.60 7.41 0.17 5.00 −29.50 ENSG00000179750

CCDC3 coiled-coil domain
containing 3

chr10 2738.00 0.12 0.10 4.49 1.71 0.11 3.10 −27.21 ENSG00000151468

MTIF3 mitochondrial
translational initiation
factor 3

chr13 1098.00 0.14 0.22 3.98 5.73 0.18 4.85 −26.92 ENSG00000122033

Isoforms which were differentially expressed as determined by Cufflinks, after normalization to a panel of housekeeping genes. The fold change is the ratio of
RASF FPKM to control FPKM. Isoforms with a fold change of 1.2-fold or greater were defined as significant. The isoforms were ranked on their fold change and the
10 with the highest or lowest fold changes are listed here.
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cells play key roles in the inflammatory response and are
involved in the activation and proliferation of RASFs
[3,4,7]. These findings are further supported by the ana-
lysis of the pathways affected by the down-regulated
genes and isoforms (Table 12). Dysregulation of the in-
nate immune response and alterations in the number
and types of cytokines and chemokines are well known
features of RA [4,7]. Altered cell cycle control of
chromosomal replication and BRCA1 in DNA damage
response, are in concordance with the hyperproliferation
of synovial tissue and the corresponding decrease in
apoptosis in RA [3,38]. The identification of potential
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networks and pathways involved in arthritis may provide
additional insights into the molecular and cellular
mechanisms by which RASFs are involved in the patho-
genesis of RA.

Discussion
In the present study, we performed a comprehensive
transcriptome analysis of human SF RNA isolated from
healthy controls and patients with RA using the Illumina
RNA-seq technique. It has revealed a complete picture
of differentially expressed genes and their isoforms in
RASFs and provided a global transcriptional insight into
the novel roles of synovial fibroblasts in the pathogenesis
of rheumatoid arthritis.
For RNA-seq, we used the Illumina HiScanSQ instru-

ment to perform a 2 × 101 paired end run for all of our
samples. The advantage of a paired end run is that both
reads contain long range positional information, allow-
ing for highly precise alignment of reads. We calculated
the number of differentially expressed genes between
RNA from two control SF and two RASF samples. We
obtained a mean value of 84,177,268 reads per sample,
which meets the criteria for sufficient sequence coverage
for transcriptome profiling [39]. Our mean rate of 86%
total reads that map to the reference genome met quality
standards of the RNA-seq technique [40]. The breadth
of the RNA sequencing reads covering chromosome 1
for both the RASFs and normal SFs indicates quality
RNA-seq runs (Figure 1). Therefore, we are confident
that our RNA-seq data provides an objective, high qual-
ity profile of the transcriptome in human RASFs and
normal SFs.
The aim of this study was to provide a global glean

into the transcriptional regulation in RASFs, which may
provide mechanistic insights into the pathogenesis of
rheumatoid arthritis. The activation and subsequent pro-
liferation of SFs by proinflammatory cytokines produced
by cells from both the innate and the adaptive immune
systems plays a critical role in the pathogenesis of RA
[3-5]. The production of additional cytokines, chemo-
kines and matrix-degrading enzymes by RASFs leads ul-
timately to the progressive destruction of the joint that
is a hallmark feature of RA [5-7]. However, the complete
repertoire of active molecules, networks and pathways of
differentially expressed genes and their isoforms of
RASFs in this process are not characterized fully. Our
study is filling this gap of knowledge. With RNA-seq, we
found that 214 genes were not expressed in RASFs while
682 genes were only expressed in RASFs (Table 2).
There are 122 up-regulated genes and 155 down-
regulated genes by at least two-fold in RASFs compared
to those in normal SFs. The majority of differentially
expressed genes identified in this study (Tables 3 and 4
and Additional files 2 and 4) have not been previously
reported to be altered in RASFs compared to normal
SFs. One notable prowess of RNA-seq is to identify and
quantify the expression of different isoforms of a gene.
Gene isoforms are generated by alternative splicing or
alternative promoter usage. Regulation of different gene
isoform expression is a central aspect of most normal
and disease processes. In this study, we detected more
than 20,000 expressed known isoforms and more than
40,000 expressed novel isoforms (Table 2). Among them,
there are 526 known isoforms which were not expressed
in RASFs while 981 known isoforms were only expressed
in RASFs. There are 343 up-regulated known isoforms
and 262 down-regulated known isoforms by at least
two-fold in RASFs compared to those in normal SFs.
There are 105 novel isoforms which were not expressed
in RASFs, while 152 novel isoforms were expressed only
in RASFs. There are 561 up-regulated novel isoforms
and 520 down-regulated novel isoforms by at least two-
fold in RASFs compared to those in normal SFs. Net-
work and canonical pathway analyses of differentially
expressed genes and their known isoforms revealed that
inflammatory response and cell death are represented
strongly. Although these pathways have been predicted
previously to correlate with RA, our study provided a
more complete list of genes and isoforms involved in the
inflammatory response and cell death pathways. We also
identified other relevant novel networks and pathways,
such as Antigen Presentation Pathway, Atherosclerosis
Signalling, LXR/RXR Activation, and Role of BRCA1 in
DNA Damage Response, whose dysregulation may each in
part underlie their implication in the pathogenesis of RA.
Several microarray transcriptome analyses have been

performed on RASFs [41-53]. The heterogeneous nature
of RA and the different types of tissues used in these
microarray studies leads to variations between the stud-
ies. The results from the present RNA-seq study both
correlated and differed from previous microarray studies.
The SFs used in our study were first isolated from syn-
ovial tissue either from healthy control donors or from
patients with RA and cultured for two passages prior to
RNA isolation. It should be noted, that this passage
number is lower than what has been reported previously
for gene profiling in SFs that have been cultured prior to
RNA isolation. Del Rey et al. [43] and Masuda et al. [47]
cultured SFs for 4 and 6 passages, respectively, before
isolating RNA, while Haupl et al. [48] used immortalized
SFs. The matrix metalloproteinases 1 (MMP1) and 3
(MMP3) are key players in the pathogenesis of RA [50].
MMP1 and MMP3 were up-regulated 816.2- fold and
215.6-fold, respectively, in our study. Microarray ana-
lyses of RA synovial tissue in three separate studies
detected increased MMP1 expression of 63.1-fold [51],
31.0-fold [52], and 36.6-fold [53]. MMP3 expression was
also increased 23.2-fold [52] and 18.7-fold [53] in these



Table 7 Top ten up- and down- regulated novel isoforms expressed only in normal synovial RNA or rheumatoid
arthritis synovial RNA

Gene Description Coordinates Length FPKM
Wildtype

FPKM
RA

Ensembl gene ID

GIPC1 GIPC PDZ domain containing family. Member 1 chr19:14588570-14606944 1650 – 8.09135 ENSG00000123159

MPPE1 Metallophosphoesterase 1 chr18:11883385-11908455 1973 – 5.66007 ENSG00000154889

- NA chr11:69066649-69184402 410 – 5.19725 NA

EPB41L2 Erythrocyte membrane protein band 4.1-like 2 chr6:131160487-
131384462

3393 – 4.45046 ENSG00000079819

MRPL14 Mitochondrial ribosomal protein L14 chr6:44072507-44123256 658 – 4.29538 ENSG00000180992

PPIEL Peptidylprolyl isomerase E-like pseudogene chr1:39987953-40025316 509 – 4.21536 ENSG00000243970

- NA chr6:166822859-
167041186

3525 – 3.83632 NA

- NA chr21:39607975-39679370 1369 – 3.3631 NA

FAM101A Family with sequence similarity 101. member A chr12:124774147-
124800566

2242 – 3.16322 ENSG00000178882

- NA chr4:39454172-39460535 666 – 3.12642 NA

- NA chr20:30432079-30433458 1379 18.1953 – NA

GPAT2 Glycerol-3-phosphate acyltransferase 2,
mitochondrial

chr2:96687342-96700658 2732 6.12103 – ENSG00000186281

PCDHGC5 Protocadherin gamma subfamily C, 5 chr5:140746308-
140914003

4930 6.08509 – ENSG00000240764

RSAD2 Radical S-adenosyl methionine domain containing
2

chr2:6988770-7038095 5210 4.87066 – ENSG00000134321

HEYL Hairy/enhancer of split related with YRPW motif-
like

chr1:40089102-40105348 3872 4.34476 – ENSG00000163909

GPR107 G protein-coupled receptor 107 chr9:132815745-
132902440

3463 4.15184 – ENSG00000148358

GOLGA2 Golgin A2 chr9:131018105-
131038268

3014 2.8846 – ENSG00000167110

HHIP Hedgehog interacting protein chr4:145567142-
145660251

2628 2.57248 – ENSG00000164161

ITIH3 Inter-alpha-trypsin inhibitor heavy chain 3 chr3:52828743-52838029 1944 2.20862 – ENSG00000162267

HEATR5A HEAT repeat containing 5A chr14:31757730-31889797 6427 2.17675 – ENSG00000129493

Novel isoforms which were differentially expressed as determined by CuffDiff after Benjamini-Hochberg correction. The isoforms were ranked by FPKM and the 10
with the highest or lowest fold changes are listed here.
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studies. Interleukin 1 beta (IL1B) and Interleukin 8 were
up-regulated 3.2 and 9.3 fold, respectively, in RASFs
from patients treated with prednisolone [48]. In the
present study, IL1B was decreased by 25.3-fold and IL8
was down-regulated 9.5-fold. Collagen, Type III, alpha 1
(COL3A1) was increased 1.76 fold in a microarray study
[44] compared to a 1.3-fold decrease in the present
study. Keratin 7 (KRT7) was down-regulated 0.49 by
microarray analysis [44] and 14.6-fold by RNA-seq. The
results presented in our study correlate well with what
has been previously reported in the literature. Of the top
40 differentially expressed genes (Tables 3 and 4), 16
have been reported previously to be associated with RA
(Additional file 3). Thus, we have identified 24 new po-
tential gene targets among the genes listed in Tables 3
and 4 for further exploration. These findings are strength-
ened further by the ability of RNA-seq, as described
above, to identify isoforms, both known and novel, that
are expressed differentially in RA. With further improve-
ments of next generation DNA sequencing techniques
and further reductions of sequencing costs, it may be
feasible to extend this study to analyze the transcriptomes
of RASFs isolated from multiple patient samples at pro-
gressing stages of pathogenesis.

Conclusion
In summary, our first complete transcriptome analysis of
synovial fibroblast RNA from patients with rheumatoid
arthritis using RNA-seq has provided important insights
into the transcriptional regulation of gene expression in
RASFs. Further in-depth, follow-up analyses using large
patient populations will be necessary to validate the
alterations in transcriptional regulation reported in this
study and to provide the resources necessary to elucidate



Table 8 Top ten up- and down- regulated novel isoforms expressed in rheumatoid arthritis synovial RNA

Gene Description Coordinates Length FPKM
Wildtype

FPKM RA Fold
change

Ensembl gene ID

FBN1 fibrillin 1 chr15:48700502-
48944261

3642 0.35665 122.625 343.82 ENSG00000166147

TNXB tenascin XB chr6:31913771-
32077409

10005 0.0711364 9.52612 133.91 ENSG00000168477

VCAN versican chr5:82767225-
82878111

7388 0.145287 17.706 121.87 ENSG00000038427

LRP1 low density lipoprotein receptor-related protein 1 chr12:57522228-
57607140

6609 0.223758 19.9154 89.00 ENSG00000123384

DPYSL2 dihydropyrimidinase-like 2 chr8:26435420-
26515693

3416 0.287829 23.9348 83.16 ENSG00000092964

- Genes nearby:FAM198B: family with sequence similarity
198, member B

chr4:159045731-
159093718

1964 0.064901 5.20752 80.24 ENSG00000164125

- Genes nearby:TGFBR3: transforming growth factor, beta
receptor III

chr1:92145899-
92351836

1323 0.137404 11.0015 80.07 ENSG00000069702

ALDH1L2 aldehyde dehydrogenase 1 family, member L2 chr12:105413561-
105478341

4568 0.0522639 3.45172 66.04 ENSG00000136010

- NA chr14:74964883-
75079368

2880 0.114262 6.82866 59.76 NA

Genes nearby: ISCA2: iron-sulfur cluster assembly 2
homolog

ENSG00000165898

SNED1 LTBP2: latent transforming growth factor beta binding
protein 2

chr2:241936998-
242041710

8107 0.15755 9.34599 59.32 ENSG00000119681

TINAGL1 tubulointerstitial nephritis antigen-like 1 chr1:32041807-
32053290

995 129.883 0.462813 −280.64 ENSG00000142910

TPM2 tropomyosin 2 (beta) chr9:35681989-
35690053

1083 78.6638 0.329924 −238.43 ENSG00000198467

MT2A metallothionein 2A chr16:56642376-
56692994

248 701.232 5.35657 −130.91 ENSG00000125148

FSTL1 follistatin-like 1 chr3:120113060-
120169918

1640 10.7318 0.0822263 −130.52 ENSG00000163430

ITPRIP inositol 1,4,5-trisphosphate receptor interacting protein chr10:106069730-
106098576

6523 18.5495 0.146115 −126.95 ENSG00000148841

- NA chr13:41958154-
41958844

690 51.6499 0.522452 −98.86 NA

SPTBN1 spectrin, beta, non-erythrocytic 1 chr2:54683453-
54898583

7086 12.396 0.126624 −97.90 ENSG00000115306

HLA-
DRB1

major histocompatibility complex, class II, DR beta 5 chr6:32441211-
32557589

513 12.6351 0.129095 −97.87 ENSG00000198502

SEMA3F sema domain, immunoglobulin domain (Ig), short basic
domain, secreted, (semaphorin) 3F

chr3:50192454-
50226507

3394 6.92733 0.0764133 −90.66 ENSG00000001617

CNN1 calponin 1, basic, smooth muscle chr19:11649578-
11661139

659 67.4653 0.799449 −84.39 ENSG00000130176

Novel isoforms which were differentially expressed as determined by CuffDiff after Benjamini-Hochberg correction. The fold change is the ratio of RASF FPKM to
control FPKM. Novel isoforms with a fold change of 1.2-fold or greater were defined as significant. The isoforms were ranked on their fold change and the 10 with
the highest or lowest fold changes are listed here.
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the molecular mechanisms underlying the role of SFs in
the pathogenesis of RA.

Methods
RNA sequencing
Human SF RNA from 2 healthy female donors and 2
adult female RA patients (Additional file 1) was pur-
chased from Cell Applications, Inc. (San Diego, CA). SFs
were first isolated from synovial tissue either from
healthy control donors or from patients with RA and cul-
tured for two passages prior to RNA isolation. Paired-end
cDNA libraries were prepared for each sample and
sequenced using the Illumina TruSeq RNA Sample Prep-
aration Kit, as described previously [11,12]. Briefly, the
cDNA libraries were quantified using a Biotek EPOCH
spectrophotometer and checked for quality and size using



Table 9 Top networks affected by up-regulated genes/isoforms in rheumatoid arthritis synovial RNA

Up-regulated genes

Top Functions Score Genes

Inflammatory Response, Immunological Disease, Cell Death 68 58

Cell Morphology, Tissue Development, Cell Death 30 36

Cell-To-Cell Signaling and Interaction, Hematological System

Development and Function, Immune Cell Trafficking 25 32

Inflammatory Response, Infectious Disease, Immunological Disease 23 31

Cellular Development, Cancer, Developmental Disorder 22 30

Inflammatory Response, Cellular Development, Cell Death 22 30

Cell Death, Hematological System Development and Function, Tissue Morphology 22 30

Up-Regulated Isoforms

Top Functions Score Genes

Inflammatory Response, Cellular Movement, Cell-To-Cell Signaling and Interaction 88 70

Cellular Development, Cell Death, Cellular Growth and Proliferation 26 36

Inflammatory Response, Organismal Injury and Abnormalities, Cellular Movement 24 35

Cellular Growth and Proliferation, Cellular Development, Cancer 24 35

Cell-To-Cell Signaling and Interaction, Inflammatory Response, Hematological System Development and Function 23 34

Cellular Movement, Hematological System Development and Function, Immune Cell Trafficking 23 34

Networks significantly affected in RASFs compared to control SFs as determined by Ingenuity Pathway Analysis. The score is based on the p-value of the affected
network. Networks with a score of 15 or greater were defined as significant.
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a Bio-Rad Experion DNA 1K chip. The four cDNA librar-
ies were each diluted to 6 pM and spiked with 1% phiX
control to improve base calling while sequencing. A 6 pM
dilution of phiX control sample was also prepared for ana-
lysis. Following the Illumina cBot and HiSeq protocols,
the four libraries and the phiX control underwent cluster
Table 10 Top networks affected by down-regulated genes/iso

Top Functions

Cellular Movement, Cell Death, Tissue Development

Cellular Growth and Proliferation, Cellular Development, Hematological Syste

Cell Cycle, Cellular Growth and Proliferation, Cell Death

Cellular Growth and Proliferation, Cell Cycle, Tissue Development

Hematological System Development and Function, Tissue Morphology, Tissu

Top Functions

Cellular Growth and Proliferation, Cell Death, Cellular Movement

DNA Replication, Recombination, and Repair, Cell Cycle, Hematological Syste

Cellular Development, Cell Morphology, Cellular Assembly and Organization

Cellular Growth and Proliferation, Tissue Morphology, Hematological System

Cellular Growth and Proliferation, Cellular Movement, Embryonic Developme

Cell Death, Cellular Development, Hematological System Development and F

Networks significantly affected in RASFs compared to control SFs as determined by
network. Networks with a score of 15 or greater were defined as significant.
generation on a HiSeq PE flow cell v3 and were then
sequenced using a HiScanSQ (Illumina). A paired-end
(2×101) run was performed using the SBS Kit (Illumina).
Real-time analysis and base calling were performed using
the HiSeq Control Software Version 1.4.5 (Illumina). The
resulting basecalling (.bcl) files were converted to. FASTQ
forms in rheumatoid arthritis synovial RNA

Down-regulated genes

Score Genes

35 32

m Development and Function 29 28

27 27

23 24

e Development 21 23

Down-Regulated Isoforms

Score Genes

45 43

m Development and Function 28 32

25 30

Development and Function 25 30

nt 24 29

unction 24 29

Ingenuity Pathway Analysis. The score is based on the p-value of the affected



Table 11 Top canonical pathways affected by up-regulated genes/isoforms in rheumatoid arthritis synovial RNA

Up-regulated genes

Canonical Pathway p-value Ratio

Antigen Presentation Pathway 0.000 0.455

Graft-versus-Host Disease Signaling 0.000 0.275

Communication between Innate and Adaptive Immune Cells 0.000 0.188

Crosstalk between Dendritic Cells and Natural Killer Cells 0.000 0.159

Autoimmune Thyroid Disease Signaling 0.000 0.214

Up-regulated Isoforms

Canonical Pathway p-value Ratio

Atherosclerosis Signaling 0.001 0.133

Hepatic Fibrosis / Hepatic Stellate Cell Activation 0.001 0.119

Colorectal Cancer Metastasis Signaling 0.010 0.088

Toll-like Receptor Signaling 0.011 0.143

FXR/RXR Activation 0.012 0.114

Top canonical pathways significantly affected in RASFs compared to SFs as determined by Ingenuity Pathway Analysis. Pathways with a p-value less than 0.05
defined as significant.
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files using Illumina’s CASAVA 1.8 software. The number
of reads for each sample type was analyzed using the Stu-
dent’s t-test in SigmaPlot version 11.0 (Systat Software
Inc., San Jose, CA). A p-value of below 0.05 was consid-
ered significant. The sequence data have been submitted
to the NCBI Short Read Archive with accession number
SRA048057.1.

Mapping of RNA-seq reads and transcript assembly and
abundance estimation using Tuxedo Suite
Paired-end fastq sequence reads for each sample were
aligned to the UCSC Homo sapiens reference genome
Table 12 Top canonical pathways affected by down-regulated

Canonical Pathway

LXR/RXR Activation

Atherosclerosis Signaling

LPS/IL-1 Mediated Inhibition of RXR Function

Inhibition of Angiogenesis by TSP1

Phenylalanine Metabolism

Canonical Pathway

Role of BRCA1 in DNA Damage Response

Mitotic Roles of Polo-Like Kinase

Cardiac β-adrenergic Signaling

Type I Diabetes Mellitus Signaling

Graft-versus-Host Disease Signaling

Top canonical pathways significantly affected in RASFs compared to SFs as determi
defined as significant.
hg19 using TopHat v1.3.0 [54,55] integrated with Bowtie
v0.12.7 [56], as described previously [11,12]. The result-
ing aligned reads were analyzed further by Cufflinks
v1.0.3 [55,57]. The aligned reads were assembled into
transcripts, either with or without a reference genome,
and the expression of those transcripts were reported in
Fragments Per Kilobase of exon per Million fragments
mapped (FPKM). Cuffdiff analysis was performed, with
use of the reference genome, to determine differential
expression of known isoforms between pooled RA pa-
tient samples and pooled control samples. To detect
novel isoforms, Cufflinks was run without a reference
genes/isoforms in rheumatoid arthritis synovial RNA

Down-regulated genes

p-value Ratio

0.011 0.057

0.011 0.057

0.017 0.044

0.018 0.083

0.019 0.086

Down-regulated Isoforms

p-value Ratio

0.002 0.125

0.002 0.123

0.004 0.079

0.005 0.086

0.007 0.125

ned by Ingenuity Pathway Analysis. Pathways with a p-value less than 0.05
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genome. The RA and control transcript files were
compared to the reference genome using Cuffcompare
to filter out previously discovered transcripts. To test
the differential expression of these novel isoforms,
Cuffdiff analyses were performed using the combined
transcript files as the reference genome. Cuffdiff ana-
lyses were performed two ways: comparing the RA pa-
tient transcripts to the control transcripts, using the
RA patient transcripts as the reference genome; and
comparing the RA patient transcripts to the control
transcripts, using the control transcripts as the refer-
ence genome.
Visualization of mapped reads
Aligned reads were visualized using a local copy of the
Integrative Genomics Viewer (www.broadinstitute.org/
igv/). The output files generated from TopHat were
converted into files viewable in IGV by BEDTools [58]
and then processed further by the “count” function in
igvtools (included with the IGV software) to create an
average alignment track viewable as a bar chart. The
log2 of the frequency of the reads was plotted to better
visualize the extensive range of the read coverage. In-
dividual gene views were created by first merging the
TopHat output files from the RA and control samples
into two files using SAMTools [59]. These merged files
were processed in the same way as above with the
“count” function in igvtools. The raw frequency of the
reads was visualized in this case.
Automated literature search
Multiplex literature mining analysis was conducted
with PubMatrix, [22] as described previously [60]. We
restricted our search to human symbols approved by
HUGO Gene Nomenclature Committee (HGNC) for
the top 10 genes and isoforms for each category.
Terms “rheumatoid arthritis”, “osteoarthritis”, “arthritis”
and “disease” were used for cross-referencing candidate
genes.
Functional analysis of differentially expressed gene lists
using ingenuity pathway analysis
The differentially expressed gene lists were submitted to
Ingenuity Pathway Analysis (IPA) v9.0-3211 (Ingenuity
Systems, Inc., Redwood City, CA). Genes with a two-
fold or greater change in expression between the RA
group and the control group were used. The settings for
the core analysis were as follows: Ingenuity Knowledge
Base; Endogenous Chemicals not included; Direct and
Indirect relationships; molecules per pathway: 70; and
networks per analysis: 25.
Additional files

Additional file 1: RNA samples from synovial fibroblasts for RNA-seq
analysis.

Additional file 2: Top fifty up- and down- regulated genes
expressed only in normal synovial RNA or only in rheumatoid
arthritis synovial RNA.

Additional file 3: PubMatrix Literature Search.

Additional file 4: Top fifty up- and down- regulated genes
expressed in rheumatoid arthritis synovial RNA.

Additional file 5: Top fifty up- and down- regulated isoforms
expressed only in normal synovial RNA or only in rheumatoid
arthritis synovial RNA.

Additional file 6: Top fifty up- and down- regulated known
isoforms expressed in rheumatoid arthritis synovial RNA.

Additional file 7: Top fifty up- and down- regulated novel isoforms
expressed only in normal synovial RNA or rheumatoid arthritis
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