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Anti-oxidative stress regulator NF-E2-related
factor 2 mediates the adaptive induction of
antioxidant and detoxifying enzymes by lipid
peroxidation metabolite 4-hydroxynonenal
Ying Huang1, Wenge Li1,2 and Ah-Ng Tony Kong1*
Abstract

Background: NF-E2-related factor 2 (NRF2) regulates a battery of antioxidative and phase II drug metabolizing/
detoxifying genes through binding to the antioxidant response elements (ARE). NRF2-ARE signaling plays a central
role in protecting cells from a wide spectrum of reactive toxic species including reactive oxygen/nitrogen species
(RONS). 4-hydroxylnonenal (4-HNE) is a major end product from lipid peroxidation of omega-6 polyunsaturated
fatty acids (PUFA) induced by oxidative stress, and it is highly reactive to nucleophilic sites in DNA and proteins,
causing cytotoxicity and genotoxicity. In this study, we examined the role of NRF2 in regulating the 4-HNE induced
gene expression of antioxidant and detoxifying enzymes.

Results: When HeLa cells were treated with 4-HNE, NRF2 rapidly transloated into the nucleus, as determined by the
distribution of NRF2 tagged with the enhanced green fluorescent protein (EGFP) and increased NRF2 protein in the
nuclear fraction. Transcriptional activity of ARE-luciferase was significantly induced by 0.01-10 μM of 4-HNE in a
dose-dependent manner, and the induction could be blocked by pretreatment with glutathione (GSH). 4-HNE
induced transcriptional expression of glutathione S-transferase (GST) A4, aldoketone reductase (AKR) 1C1 and heme
oxygenase-1 (HO-1), and the induction was attenuated by knocking down NRF2 using small interfering RNA.

Conclusions: NRF2 is critical in mediating 4-HNE induced expression of antioxidant and detoxifying genes. This
may account for one of the major cellular defense mechanisms against reactive metabolites of lipids peroxidation
induced by oxidative stress and protect cells from cytotoxicity.
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Background
Polyunsaturated fatty acids (PUFA), essential compo-
nents of cell membrane, are susceptible to oxidation
initiated by free radicals [1]. 4-hydroxylnonenal (4-HNE)
is an end product from lipid peroxidation of omega-6
(n-6) PUFA [2]. The physiological concentration of
4-HNE is generally at the low micromolar level, but is
remarkably increased under continuous oxidative stress
[3]. As an α,β-unsaturated aldehyde, 4-HNE is highly re-
active to a variety of nucleophilic sites in DNA and
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proteins [4]. Exposure to excessive 4-HNE can cause
cytotoxicity, inactivation of enzymes, redox imbalance
and activation of multiple signaling events, and 4-HNE
is implied in the detrimental pathogenesis of a number
of degenerative diseases including cancer [5,6]. Several
metabolic pathways are involved in the detoxification of
4-HNE, including conjugation with glutathione (GSH)
catalyzed by glutathione S-transferases (GST) and reduc-
tion of the aldehyde group to corresponding alcohol by
aldoketone reductases (AKR) [5].
Eukaryotic cells have developed highly efficient ma-

chineries to counteract oxidative stress from environ-
mental insults and aerobic metabolisms [7]. Antioxidant
response elements (ARE) are identified in the regulatory
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Figure 1 (See legend on next page.)
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Figure 1 4-HNE treatment induces NRF2 nuclear translocation. (A) The schematic diagram showing the structures of NRF2 constructs used in
the study. (B) Under the untreated condition, EGFP-NRF2 exhibited a mixed pattern of nuclear (arrow), whole cell and cytosolic (arrowhead)
distribution. After treatment of 10 μM 4-HNE for 30 min, a predominantly nuclear distribution was observed. Scale bar: 10 μm. (C) Time course of
nuclear NRF2 accumulation after 10 μM 4-HNE treatment. *: P < 0.05. (D) Deletion of the KEAP1-binding domain (NRF2ΔN) did not affect 4-HNE
induced nuclear translocation of NRF2.
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region of many cytoprotective genes that encode phase
II drug metabolizing/detoxifying enzymes, antioxidant
enzymes and phase III transporters [8,9]. When oxida-
tive stress is elevated, NF-E2-related factor 2 (NRF2) will
be activated to trigger gene expression through binding
to ARE [10]. Subsequently, it leads to enhanced cellular
capability to remove excess electrophiles and restore
redox homeostasis [11].
NRF2 activity is regulated in part by a repressor pro-

tein, Kelch-like ECH-associated protein 1 (KEAP1),
which retains NRF2 in the cytoplasm and mediates its
degradation under homeostatic conditions [12]. Stimuli
such as dietary antioxidants, heavy metals and reactive
oxygen species (ROS) can disrupt the NRF2-KEAP1
binding and induce nuclear translocation of NRF2 where
it dimerizes with small Maf proteins and binds to ARE
[12]. In addition, some studies have shown that the sub-
cellular distribution of NRF2 can also be controlled by
the net driving force of nuclear location signals (NLS)
and nuclear export signals (NES) [13] and phosphoryl-
ation of NRF2 [7] .
In this study, we investigated the role of NRF2 in regu-

lating the gene expression of antioxidant and detoxifying
enzymes upon the exposure to 4-HNE. Our results show
that NRF2 rapidly translocates into nucleus after expos-
ure to 4-HNE and induces transcriptional activity of
ARE and mRNA expressions of AKR1C1, GSTA4 and
heme oxygenase-1 (HO-1). The induction of these de-
toxifying enzymes is diminished when NRF2 is knocked
down using small interfering RNA.

Results
NRF2 translocates into the nucleus after 4-HNE treatment
When expressed in HeLa cells, NRF2 tagged with the
enhanced green fluorescent protein (EGFP) exhibited a
heterologous distribution pattern (Figure 1B). Cell per-
centage assay showed that 64% of cells exhibited a whole
cell distribution pattern. About 15% of cells showed a
nuclear distribution (Figure 1B, arrow) and 21% of cells
showed a cytosolic distribution (Figure 1B, arrowhead).
After treatment with 10 μM 4-HNE for 30 min, nearly
90% of cells exhibited a nuclear distribution (Figure 1B),
indicating robust nuclear translocation of NRF2.
To further confirm the nuclear translocation effect eli-

cited by 4-HNE, we examined the nuclear NRF2 protein
level by Western blotting analyses. HeLa cells were trea-
ted with 10 μM 4-HNE for 0, 0.5,1 and 4 h. 4-HNE
markedly elevated the nuclear NRF2 protein level, with
the highest accumulation at 0.5 h after treatment
(Figure 1C). Similar effects have been observed in PC12
cells and vascular endothelial cells [14,15].
Next, the N-terminal truncation mutant of NRF2

(EGFP-NRF2ΔN, Figure 1D) lacking the KEAP1 do-
main, was expressed in HeLa cells. Under the un-
stressed condition, EGFP-NRF2ΔN demonstrated a
heterologous distribution pattern (Figure 1D). Treat-
ment with 10 μM 4-HNE (30 min) converted the distri-
bution of EGFP-NRF2ΔN to a predominant nuclear
pattern (Figure 1D). Previous study showed that no
NRF2ΔN/KEAP1 binding was detected when NRF2ΔN
was co-expressed with KEAP1 [16]. Since NRF2ΔN is
free from KEAP1 sequestration in the cytosol, the
NRF2ΔN distribution can be deemed as free floating in
the cell. These results show that 4-HNE can directly
affect the subcellular distribution of NRF2 into the
nucleus.

ARE-luciferase activity increases after 4-HNE treatment
To determine whether the nuclear accumulation of
NRF2 could increase the transcriptional activity of ARE,
we co-expressed 0.5 μg pcDNA3.1-NRF2 with 0.25 μg
ARE-luciferase reporter in HeLa cells. Twenty-four
hours after transfection, cells were treated with 0, 0.01,
0.1, 1, 10 μM 4-HNE for 30 min and then cultured in
fresh medium for 6 h. HNE treatments elicited signifi-
cant ARE-luciferase inductions in a dose-dependent
manner (Figure 2A).
HepG2-C8 cells with stably expressed pARE-TI-

luciferase constructs [17] were treated with 0 and 10 μM
4-HNE for 18 h. ARE-luciferase activity was signifi-
cantly induced with 10 μM 4-HNE treatment com-
pared with the untreated cells (Figure 2B). Since the
conjugation to GSH is the major metabolism pathway
for 4-HNE, it will result in a net loss of intracellular
GSH and redox imbalance. We found that when cells
were pretreated with 5 mM GSH, the induction of ARE-
luciferase activity was completely blocked (Figure 2B).

NRF2 is critical in regulating the expression of
detoxifying genes
When HeLa cells were treated with 4-HNE, in agree-
ment with the enhanced ARE-luciferase activity, RT-PCR
results showed that 4-HNE induced the transcription of
AKR1C1, GSTA4 and HO-1 in a dose-dependent manner



0 0.01 0.1 1 10
0.0

1.0

2.0

3.0

L
u

ci
fe

ra
se

 a
ct

iv
it

y 
(f

o
ld

)

*
*

*
*

4.0

4-HNE ( M)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10

L
u

ci
fe

ra
se

 a
ct

iv
it

y 
(f

o
ld

)

4-HNE ( M)

Without GSH
pretreatment

GSH pretreatment

*

A B

Figure 2 ARE-luciferase activity significantly increases by 4-HNE treatment. (A) HeLa cells were transiently transfected with ARE-luciferase
construct for 24 h and treated with 0.01-10 μM 4-HNE. Cells were harvested and lysed after 6 h, and luciferase activity was measured. (B) HepG2
cells stably expressed with ARE-luciferase reporter gene were treated with 10 μM 4-HNE with or without 2 h pretreatment of 5 mM GSH. Cells
were harvested and lysed after 18 h, and luciferase activity was measured. Relative fold of induction was obtained as compared to the untreated
cells. *: P < 0.05.
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(Figure 3A). To examine whether the induction of these
detoxifying and antioxidant genes was dependent on
NRF2, HeLa cells were transfected with NRF2 specific
siRNA or nonspecific siRNA as a control. NRF2 expres-
sion was down-regulated by the siRNA transfection
(Figure 3B). In the cells transfected with control siRNA,
the expression of AKR1C1, GSTA4 and HO-1 was mark-
edly induced by 10 μM 4-HNE, while in the cells trans-
fected with NRF2 siRNA, the induction of these genes
was attenuated (Figure 3B).

Discussion
It is well recognized that our body has a comprehensive
antioxidant system to counter oxidative stress. 4-HNE,
an oxidative stressor, causes adaptive induction of de-
toxifying enzymes such as AKR1C1 and GSTA4 in dif-
ferent cell lines [18,19], although the molecular pathway
is not fully understood. The common feature of these
detoxifying genes is that they have ARE-like sequences
in their 5’-flanking regions [20,21]. In this study, we
demonstrate that NRF2 mediates 4-HNE induced gene
expression of key antioxidant and detoxifying enzymes,
resulting in enhanced 4-HNE metabolism.
4-HNE is a highly reactive electrophile, and several

studies have reported that it is a potent NRF2 inducer
[14,15]. Our current results further confirmed that the
nuclear translocation of NRF2 is significantly increased
by 10 μM 4-HNE treatment in HeLa cells (Figure 1).
There are several mechanisms proposed for the 4-HNE-
induced NRF2 activation. 4-HNE can react with cysteine
sites in the KEAP1 protein and that may disrupt
the KEAP1-dependent degradation of NRF2 [22]. In
addition, 4-HNE may activate NRF2 through activation
of upstream kinases such as protein kinase C, extracellu-
lar signal-regulated protein kinase and phosphoinositide
3-kinase [14,23,24]. In this study, we showed that
4-HNE could induce nuclear translocation of the NRF2
mutant lacking the KEAP1 binding domain (Figure 1D),
indicating that 4-HNE may have a direct effect on NRF2
itself. We found that 4-HNE could modify NRF2 protein
in an in vitro testing system (Additional file 1:
Figure S1), and future studies will be needed to identify
the specific amino acid sites modified by 4-HNE and
their impacts in NRF2 signaling. In addition, several
studies have reported that 4-HNE treatment leads to
dramatic decrease of intracellular GSH [25,26], and de-
pletion of GSH can activate NRF2 signaling [27]. In the
present study, we showed that pretreatment of GSH
could block the induction of ARE transcriptional activity
by 4-HNE (Figure 2B), suggesting that 4-HNE may acti-
vate NRF2 via depletion of GSH.
GSTA4 and AKR1C1 are two important enzymes for

detoxification of 4-HNE. In the large GST family,
GSTA4 is the most active isoform in catalyzing conjuga-
tion of GSH to 4-HNE [4]. The higher expression level
of GSTA4 in DU145 prostate cancer cells is associated
with faster 4-HNE metabolism rate, compared to PC3 or
LNCaP prostate cancer cells [28]. It is also reported that
overexpression of GSTA4 protects HepG2 cells from
4-HNE mediated oxidative injuries [29]. AKR1C1 has
high catalytic activity in reducing 4-HNE to less toxic
1,4-dihydroxynonenol [19]. The role of HO-1 in the de-
toxification of 4-HNE is not clear. The induction of
HO-1 may enhance the overall cellular antioxidant cap-
acity and prevent oxidative stress induced cytotoxicity
[15]. Therefore, the induction of gene expression of
these cellular protective enzymes by 4-HNE appears to
be an adaptive response to enhance elimination of
4-HNE and reduce its toxicity. The transcriptional in-
duction of these detoxifying and antioxidant genes is
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attenuated when NRF2 is knocked down (Figure 3C),
indicating that the induction is mediated by NRF2.

Conclusions
In this study, we demonstrate that NRF2 regulates the
enhanced gene expression of antioxidant and detoxifying
enzymes by 4-HNE. Our study highlights the importance
of the NRF2-ARE signaling mechanism in the detoxifica-
tion of reactive lipid metabolites such as 4-HNE.

Methods
Cell culture and chemicals
Human cervical squamous cancerous HeLa cells and
human hepatoma HepG2 cells were obtained from
ATCC (Manassas, VA). The establishment of stably
expressed HepG2 cells with the ARE luciferase reporter
was described previously [17]. Cells were cultured in
Dolbecco’s modified eagle medium supplemented with
10% FBS. 4-HNE was purchased from Cayman Chemical
(Ann Arbor, Michigan).

Cell fractionation and Western blotting
HeLa cells were treated with 10 μM of 4-HNE for 0,
0.5, 1 and 4 h, and then rinsed with ice-cold PBS and
harvested. Nuclear protein was extracted using NE-
PER nuclear and cytoplasmic protein extraction kits
(Thermo scientific) according to the manufacturer’s in-
struction. The protein concentration of each sample
was measured, and 10 μg of nuclear proteins were
used for Western blotting analyses. The details of
Western blotting procedures were described previously
[30]. Antibodies against NRF2 and Lamin A were
from Epitomics and Santa Cruz, respectively. The
densitometry of the bands were analyzed by ImageJ
program.

Epifluorescent Microscopy
HeLa cells were cultured on ethanol-sterilized glass
coverslips and transfected with 1 μg of EGFP-NRF2 or
its EGFP-NRF2ΔN using the Lipofectamine method
(Invitrogen) and further cultured in DMEM for 24 h.
The generation of plasmids was described in our previ-
ous study [30]. After transfection, cells were treated
with 10 μM of 4-HNE for 30 min. The expression and
subcellular distribution of EGFP-tagged NRF2 and
NRF2ΔN were examined using a Nikon Eclipse E600
epifluorescent microscope and a Nikon C-SHG1 UV
light source purchased from Micron-Optics (Cedar
Knolls, NJ). The EGFP signals were examined using
FITC filters. The epifluorescent images were digitalized
using the Nikon DXM1200 camera and Nikon ACT-1
software.

Luciferase Activity Assay
The HepG2-C8 cell line with a stably expressed
pARE-TI-luciferase construct was previously estab-
lished [17] and used to test the ARE transcriptional
activity in this study. Cells were seeded in 6-well
plates overnight, and then treated with 10 μM of 4-
HNE for 18 h with or without pretreatment of 5 mM
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glutathione (GSH) for 2 h. Cells were then washed
twice with ice-cold PBS and lysed with 1× reporter
lysis buffer (Promega). A 10 μl lysate was mixed with
the luciferase substrate (Promega) and the luciferase
activity was measured using a Sirius luminometer
(Berthold Detection System) and normalized by pro-
tein concentration.
Reverse Transcription-PCR
RNA was extracted using RNeasy mini kit (Qiagen,
Valencia, CA) according to manufacturer’s instructions
and reverse transcribed (RT) using TaqManW reverse
transcription reagents (Applied Biosystems). The RT
products were further analyzed by PCR reactions. The
sequences of the PCR primers used are listed in
Table 1. The RT-PCR products were resolved in 1.5%
agarose gel with ethidium bromide and visualized in
UV light.
Transfection with siRNA
The sense and antisense sequences of siRNA against
NRF2 and nonspecific sequences were described
previously [31]. The siRNA oligomers were synthe-
sized by Integrated DNA technologies. HeLa cells
were transfected using Lipofectamin RNAiMAX
reagent (Invitrogen) following the manufacturer’s
instructions. Cells were transfected for 48 h with
50 nM siRNA in Opi-MEM medium without antibio-
tics and serum. Then, the cells were treated with
10 μM 4-HNE for 6 h.
Statistical analyses
Fold induction of ARE-luciferase and relative densi-
tometry of nuclear NRF2 protein were analyzed using
one-way ANOVA, where 4-HNE concentration or the
exposure time of 4-HNE was treated as the main effect,
followed by Tukey’s studentized range test.
Table 1 Oligonucleotide primers used for PCR

Gene NCBI ID Primer sequence

GAPDH NM_002046.3 Forward 5’-AAGGTCGGAGTCAACGGATTTGGT-3’

Reverse 5’- ACAAAGTGGTCGTTGAGGGCAATG-3’

AKR1C1 NM_001353 Forward 5’- AGCTTTGGTGCAATTCCCATCGAC-3’

Reverse 5’- GGGCTTTGCTGTAGCTTGCTGAAA-3’

GSTA4 NM_001512.3 Forward 5’- TGAAGTTGGTACAGACCCGAAGCA-3’

Reverse 5’- ACCATGACAGAGCTGGGATCCATT-3’

HO-1 NM_002133 Forward 5’- AGGAGATTGAGCGCAACAAGGAGA-3’

Reverse 5’- TCGCCACCAGAAAGCTGAGTGTAA-3’
Additional file

Additional file 1: Figure S1. NRF2 protein is modified by 4-HNE.
Purified 6×His-NRF2 protein (10 μg, 0.146 nmol) was incubated with
different molar excess of 4-HNE in 30 μL phosphate buffer
(50mM, pH = 7.4) for 30 min. Reaction was terminated by adding 10 μL of
Laemmli's SDS buffer and samples were boiled at 95°C. 20 μL of each
sample was subject to Western blotting analyses. Primary anti-4-HNE
antibody (Alpha Diagnostic) was used to detect 4-HNE modifications.
Then, the primary antibody was stripped off and anti-NRF2 antibody was
used to detect NRF2 protein as a loading control.
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